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0. V. VERBITSKY

ON A DUAL VERSION OF THE WEISFEILER-LEHMAN
ALGORITHM

We address a simplified variant of the Weisfeiler-Lehman graph canonizetion ol-
gorithm that corresponds to the fragment of first erder logic with bounded number
of variables precisely in the same way as the slandard variani corresponds to ihis
fragment enriched with counting quaentifiers. We propose a notural dual version of
the color refinement subroutine and prove that the dual algorithm has optirnum di-
mension one greater than the optimum dimension of the stendurd algoritfun.

1. Introduction. I'he Weisfeiler Lehman algorithm for recognition of graph
isomorphism was invented in the sixties and since then has been intensively studied
for decades (see e.g. [1, 2, 3]). The most important complexity characteristic of the
algorithm is its dimension {the algorithm description and relevant definitions are
postponed to Section 3). Cai, Fiirer, and Immerman {2] characterized the minimum
dimension of the algorithmn sufficient to detect (nonlisomorphism of input graphs
G and G’ as the number one smaller than the minimum number of variables
in a first order formula with counting quantifiers that is true on & but false on
(' . This characterization turned out very useful for proving lower bounds for the
algorithm dimension needed to process graphs on n vertices. For this purpose it
was also involved the relationship between the first order expressibility and the
Ehrenfeucht game on graphs G and G’ [4].

We here discuss a reduced version of the Weisfeiler Lehman algorithm that
corresponds to the fragment of first order logic with bounded number of variables
precisely in the same way as the standard version corresponds to this fragment
enriched with counting quantifiers. The reduced version has a simplified color re-
finement subroutine where, in contrast to the standard version, multiplicities of
equally colored adjoining configurations are not recorded. By this reason, the re-
duced version sometimes (e.g. even for trees) rvequires muech higher dimension.
Nevertheless, the best upper bound we know for the worst case dimension of the
standard Weisfeiler Lehman algorithm actually holds also for the reduced version,
what makes investigation of the reduced version worthwhile.

We propose a natural dual version of the color refinement procedure and
characterize the optimum dimension of the dual algorithm in terms of the length of
the Ehrenfeucht game. As a resnlt, we prove that the dual algorithm has optimnm
dimecnsion one greater than the optimum dimension of the standard algorithm. This
shows that the running time of the dual version is nearly as good as in the standard
algorithm. It is not excluded that on some classes of inputs the dual algorithm may
have better space complexity. It would be interesting to make both empiric and
theoretical comparative analysis of the space complexity of both versions.

2. Notation and definitions. Given a graph &, we denote its vertex set
by V(G). Given an ordered k-tuple of vertices @ = (uy,...,ux) € V(G)F, let
s = s(u)} be the number of distinct components in @« and define a function Fj :
{1.....k} = {1,...,8} by Ia(i) = [{uy,....u;}. Furthermore, let G be the
graphk on the vertex set {1,...,s} with vertices a and b adjacent iff, for the
smallest ¢ and j such that F,(i} =a and F,(j) = b, u; and u; are adjacent in
GG . The pair (Fs, @) is an isomoerphism type of u and will be denoted by [ul.

If we V(G) and i <k, welet @"" denote the result of substituting w in
place of u; in w#. The order of G is the number of its vertices. We write G = 7
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to say that graphs G and G’ are isomorphic. A coloring of V(G)* is a map from
V(G to an arbitrary set, whose elements are called colors.

3. Description of the algorithm. We distinguish two modes of the al-
gorithm. In the canonization mode the algorithm takes as an input a graph ¢
and is purported to output its canonic form W{(G), that is, it is required that
W(G) =WI(F) iff GG Inthe isomorphism testing mode the algorithm takes
as an input two graphs G and &' and should decide if ¢ = &7, We split our de-
seription of the & dimensional Weisfeiler Lehman algorithm and versions thereof
in three stages.

INITIAL COLORING
The algorithm assigns each @ € V(G)* color Wi "(m) = [u] (in a suitable encod-
ing).

COLOR REFINEMENT STEP
In the r-th step each @ € V(G)* is assigned color

I*'Vé‘f-‘:-(’_) ([V’. T l {(ka N l l m) o H{ré"‘r i(ﬁk‘m)) e E”‘-E"G)}) .

This description regards the reduced version that is discussed in the introduction
and is considered in the paper In the proper Weisfeiler-Lehman algorithm, the
second component of H (@) is a multiset rather than a set.

In parallel we start d(‘,scrlp‘rlgn of the dual version. We will denote the r—th
dual coloring of @ < V(G)' by Ii'”éf'('ﬂ). The initial dual and standard colorings
coincide: Wé;ﬁ{ﬁ) = W"é‘”(ﬂ).

DUAL COLOR REFINEMENT:

Wi () =
(‘i"ré,- i(ﬁ:), { Iig;r‘ i(:ﬂ-];m} cwE VE‘G)} e, { ﬂfé?‘ 1{'ﬂi<h=) s e V[Gj}) .

Below we analize the dual version. As it will be easily seen, all the same holds true
for the standard version. The following fact, is straightforward.

Proposition 1. If ¢ as an tsomorphism from G to &', then for all k, 1,
and € V(G it holds W ki (#) = l@’é‘r(@kifﬁ)).

Proposition 2. For every pair of graphs G and ' there is a number R
such that for all u e V(G}k, v e V(GHY, and v > R

WeT(m) = WET (@) iff WEta) = wEHo).

Moreover, if B (G,G") denotes the smallest such R, then Ry (GG < {G’{;" +
|G"|F.

P r oo f By Proposition 1 it suffices to prove the claim for arbitrary
isomorphic copies of ¢ and G' and we therefore can suppose that V{G7) and
V(G") are disjoint. Colorings W;‘ " and ﬁ"é‘," determine a partition of the union
V(G u V(G into rnono{’hromatlc classes. Denote this partition by II". Since
the (r+ 1)-th color incorporates the r-th color, II"*! is a subpartition of 11" It
is elear that we eventually have ™! = II" and the smallest such R is less than
[V (G)IF + [VIGHE.

COMPUTING AN QUTPUT
Isomorphism testing mode. The algorithm terminates color refinement as soon as
the partition II" of V(G)k U V(G’}’“ coincides with 7™, ie., after performing
r= Rp(G, G+ 1 refinement steps. The algorithm decides that & 2= &7 iff

{W“ Viac V(c:)} = { WE (b5« be V(G’)} (1)
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where w” denotes a diagonal vector (wy,...,w) with all w; = w.
Canonization mode. The algorithm performs » = 2|G{* — 1 refinement steps

and outputs the set {Wk Ty ueV (G")} .

This completes description of (the dual version of} the algorithm. The dual
version differs from the standard one only in the ecclor refinement step. We will
refer to the dual k& -dimensional version as the DuaAL & - WL Avcoritasm and to
the standard % dimensional version as the STANDARD & WL ALGORITHM.

In the above description we skipped some important implementation details.
Denote the minimum length of the code of IrVé: "(i) over all & by L{r). As easily
seen, for any natural encoding we should expect that L{r) = (b + 1)L{(r —1). To
prevent increasing L(r) at the exponential rate, before every refinement step we
arrange colors of all & tuples in the lexicographic order and replace each color
with its number. In the canonization mode we should keep substiation tables of
all steps. In the isomorphism testing mode this is unnecessary but it should be
stressed that color renaming must be common for both input graphs.

For each dimension %, making the decision in the isomorphism testing mode
can be done in space bounded by a polynomial in n2. This is so because checking the
condition (1) reduces to deciding, given @ € V{G)* and © € V(G")*, if W"' "(a) =
h'zi,r(zs) The latter reduces to checking equalities of type W =N a) = ;" P )
for at most kn® + 1 pairs (i, v), that can be done one by one with m-t.mdmg only
the results of preceding checks.

4. Relation to the Ehrenfeucht game. Let 7 and ' be graphs with
disjoint vertex sets. The r-round k-pebble Ehrenfeucht game on & and &7,
denoted by EHRf‘f(G .G, is played by two players, Spoiler and Duplicator, with
using k pairwise distinct pebbles py. ..., pg, each given in duplicate. Spoiler starts
the game. A round consists of a move of Spoiler followed by a move of Duplicator.
At each move Spoiler takes a pebble, say p;, selects ane of the graphs & or (7,
and places p; on a vertex of this graph. In response Duplicator should place the
other copy of p; on a vertex of the other graph. It is allowed to remove previously
plaﬂnd pebbles to another vertex and place more than one pebble on the same

Aﬁt"r each round of the game, for 1 < i < k let x; (resp. 1) denote the
vertex of G (resp. G') oceupied by py, 11r£.‘sp(:ctweiy of who of the players placed
the pebble on this vertex. If p; is off the board at this moment, 2; and wy; are
undefined. If after every of ¢ rounds it is true that

mi=x; iy =y forall 1 <i<j <k

and the component—wise correspondence {z1,..., 2} to {y1,...,yx) is a partial
isomorphism from G to 7, this is a win for Duplicator; Otherwise the winner is
Spoiler.

Given k—tuples & € V(G)* and » € V(G')¥, we use notation Eur® (G, u,
@) to denote the r —round & —pebble Ehrenfencht game on ¢ and G starting from
the position with (zq....,2r) =« and {yy, ..., ¥} = 0.

Let L(G,G") dmmm the minimum k Su(“.h that Spoiler has winning strategy
in EnrF(&,G") for some r. As proved in 2], if ¢ and G’ are non-isomorphic
graphs with the same number of vertices, then the STANDARD k- WL ALGORITHM
recognizes (G and G’ as non-isomorphic iff £ > L(G, G')—1. We are able to obtain
a similar result for the DuaL & WL AvLcoritum.

Proposition 3. For all we V(G and o € V(G the equality
W (w) = W (2) (2)

holds iff Duplicator has a winning strategy in E-HR? {1, 0).
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P roof. We proceed by induction on r. The base case © = (b is straight-
forward by the definitions of the initial coloring and the game. Assume that the
proposition is true for » — 1 rounds.

Let a; and y; denote the vertices in G and G’ respectively marked by
the i-th pebble pair. Assume (2) and consider the Ehrenfeucht game on G, &'
with initial configuration (z4,...,2%) =u and {yi,...,y) = v. First of all, this
configuration is non-iosing for Duplicator since (2) implies that [u] = [v]. Assume
that in the first move Spoiler removes the j—th pebble, say in G, from u; to

another vertex a € V(). By the definition of ﬁ;émr it. holds
{Whm @y weviey) = {WEr @y we vieh},

It follows that there is b € V(G') such that W5™ '(a/%) = W5 ' (#**). In his
first move Duplicator selects such f. Note that Duplicator does not lose after the
first round because [##*} = {o#]. Furthermore, Duplicator wins Exar* (G, . 7. v)
iff he wins EuRY | (G, w7/, 47%). The latter is true by the induction assumption.

Conversely, assume that (2) is false. It follows that either ﬁ«’é”‘ Yoy #
'i»'TVg‘,r l(;.'?') (then Spoiler wins in 7 — 1 moves by the induction assumption} or
there is 7 < £ and a vertex a in one of the graphs, say in &, such that for every
b in the other graph, resp. in &/, WE™ Haie) £ WET 1@, In the latter case
Spoiler in his first move removes the j—th pebble to a. Let b be the vertex that
Duplicator in response marks by the other copy of the 7 -th pebble. Starting from
the next round the players essentially play EHR&?E(G. T € ") Spoiler has a
winning strategy by the induction assumption. The proof is complete.

If G = G, then any version of the Weisfeiler Lehman algorithm recognizes
(7 and (' as isomorphic for every dimension #. This follows from Proposition 1.
If &% G’, then the algorithm may be wrong if k is chosen too small.

Proposition 4. If G and G’ are non-isomorphic graphs of the same order
n, then the DuAL kWL ALGORITHM recognizes G and G’ as non-isomorphic
iff k> LG.G).

Proof Look at the decision eriterion (1) and note that Duplicator has
a winning strategy in ENRS(G.G7) #f for every a € V(G) (resp. b € V(')
there is b e V(G') (resp. a € V(F)) such that Duplicator has a winning strategy
in Eur*_,(G,a.G',b) or, equivalently, in Enr®_ (G, a* G, 4%). It follows by
Propositions 2 and 3 that the k-dimensional algorithm decides that G = G iff
Duplicator has a winning strategy in EH‘F{HG, ') for all r. Recall that L(C, G
is equal to the smallest % such that Spoiler has a winning strategy in EHRf‘( G, G
for some r. Therefore the decision of the £ -—dimensional algorithm is correct iff
k= L{G.G).

We call the smallest dimension of the algorithm giving correct outputs on
graphs of order » the eptimum dimension. Let L{n) denote the maximum
L{(G,G") over all non—isomorphic ¢ and G’ both of order n. In these terms
Proposition 4 is rephrased as follows.

Theorem. The oplimum dimension of the DUAL WL ALGORITHM is equal to
L{n).

In [5] we prove that L{n) < (n+ 3}/2.

Corollary. The optimum dimension of the DuaL WL ALGORITHM does not
exceed (n+ 3) /2.
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MIPO AYAJIBHY BEPCIIO AJITOPUTMY BAVNCOAWMJIEPA-JIEMAHA

Mu poszandeermo cupowenudl sapiowin anzopumay rauowizauit epadie Bodicdniisepn
Jemana, axudt sidnosidoe fipazmentnosi A02ixe nepuozo nopadky 3 OMENCERDW Kiabkic-
M) SMIHHUE TRGRUM HCE WUHOM, A% cinandapmnuil sapienm sidnosidae ywosmy Gpeemer-
most sbazaenomy parywumn seasmopesia. Mu npononyesmo npupedny dyaaiony sepei
npoyedypi nodpibienna xoasapis i dosoduMo, UW ONTULMAABHG PUSMIPHICTIS OpLaniozo
GAZOPUTTIAY HE 0OUHULH TEPESUULYE ONIMALMAADHRY FOSMIIHICTIIO CIGHOAPITIROZ0 GARCPIETT-
MY,

O OVAJILHOW BEPCHUU AJITOPUTMA BAVICOANWJIEPA-JIEMAHA

Mu pucemampusaes ynpouennsnil SQpuaHIn aszopuinme sononusauuy pados Badedad-
snepa-Jlemana, coomeememeyusull GpeerMeninyg A0ZURY REPEO20 TOPATKG € 0ZPOHUYEH-
HOLA CUCAOM TEPEMEHHDLE TROUHO TNAKHCE, KK CIaHIODmHNE SQPUAHIt COGMEETICIEY-
eI oMy Ppuzmeniny obozauennomy cuumawwume Keermopoemu. Mw npedaazaen
ECTRECINBEHHYN OYLALHYH BEPCUN TPOLEGYPDE YIMOHYER LR UBEM0E 1 JOKGIDEAEM, o
ORTMUMAADHAA PLIMEPHOCTIID OYAABHOZ0 AAROPUTIALL HA eMUEHUALY GOABUIE, “UeM OTINILAMAAD-
HAA PAIMCPHOCTIL t’-ﬂiﬂ-ﬂaﬂﬂiﬁ'ﬂ&‘?ﬂ AAZOPUTA.

Kuincsrmit naniomananamii Orpuaana
yuieepcurer iv. T. [leruenxa 15.07.03
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