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TRANSIENT HEAT CONDUCTION PROBLEM
FOR A COMPOSITE LAYER ON A HOMOGENEOUS SUBSTRATE

The paper deals with the transient heat conduction problems of a periodic
composite layer joined with a homogeneous half-space. The layer is composed of
periodically repeated cells with rectangular cross-sections. The composite solid is
heated on its boundary by a mormal heat flux with uniform intensity. From the
results, some solutions of the heat conduction problems for the particular cases of
the composite structure are also derived. The influence of thermal and geometric
properties of the composite components on the temperature distributions is
presented in the form of graphs.

1. Introduction. Composite materials with periodic structures are widely
utilized in building engineering, machine elements, and aviation structures.
Composite components possess different thermal -characteristics. The
investigations connected with modeling and solving heat conduction problems
in periodic composites are important and are the subject of many papers [1—
11, 13—15]. A variety of methods exact, approximate and purely numerical are
available for deriving mathematical solutions for periodic composites.
However, in cases when the number of repeated cells is large, it seems useful
to employ homogenization procedures and description of heat conductions
with approximate models. One of the methods is the homogenized model with
microlocal parameters [14]. The homogenized model enables determining of
mean and local temperature gradients and heat fluxes in each material
component of the composite.

This paper is a continuation of our previous studies [7, 8]. The composite
structure permits to obtain some special cases of the periodically homogene-
ous strip: a layered body, a composite with periodically distributed inclusions,
a chessboard structure and a homogeneous body. Thus, from the derived
solution the distributions of temperature and heat flux for the particular cases
of the composite strip structure are obtained.

2. The homogenized composite model. We consider the nonstationary
heat conduction problem of a periodic com-
posite layer resting on a homogeneous half- - I
space. Both structures are assumed to be | y -
nondeformable. The nonhomogeneous layer
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is composed of periodically repeated cells {
with rectangular cross-section, see Fig. 1.

Let a,b be the cross-sectional dimensions zz, 7 //// /// ////

of the fundamental composite cell and a,, b,

Y
the dimensions of the cross-section of the Fig. 1
first composite component. Perfect thermal
contact on the interfaces is assumed. The composite body is heated on its
boundary by a normal heat flux with constant intensity q at time t > 0. Let

A= {(x,y) eR* 0<x<a, 0< y < b} represent the cross-section of the fun-
damental cell, see Fig. 1. Denote by A, the cross-section of the i-th composite
component with thermal conductivity K;, thermal capacity c,, i=1,2,3,4,
and density p;, =p, =p; =p, =p-

The nonstationary heat conduction problem of the composite strip will be
described within the framework of the homogenized model with microlocal

parameters [7, 9, 14]. According to the results of [7] the temperature T, in the
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composite layer is written in the following form (the summation convention
holds with respect to all repeated indices):

T, (x,y,t) = O(x,y,t) + £;(x,y)y;(x,y, 1),  1=1234, 1)

where [, :R*> > R are known a priori A -periodic functions called shape
functions which satisfy the conditions

J-Ei(x,y)dxdyzo, |¢.(x,y)| < max(a,b).
A

The function 6 is an unknown function interpreted as the macrotempe-
rature, and the functions 7y, stand for extra unknown functions called the

thermal microlocal parameters, which are related to the periodic structure of
the body. The shape functions are chosen so that the continuity conditions on
the interfaces are satisfied. Let the shape functions be given in the form [7]:

x —0.5a,, (x,y) € A1,4’

£y 5(x,y) =19 (a; —m)/L—m;) - 05a;, (x,y) € Ay,
0, (x,y) € Az, U Ay,
y - 0.5b,, (x,y) € A1,2’

5234(90,?!) = (b1 _nz)/(l_n2)_0-5b17 (x7y) € A433’ (2)
0, (x,y) € Ay, U Ay,

where
m =a/a, n, =b/b. (3)

Denote by < f(-)> the mean value of A -periodic integrable function ta-

king constant values f; in A;:

<f>z$l§: Aff dxdy=$§fi|Ai|, (4)
where

A, =(0,a,)x(0,by), |A1|=a1b1,

A, =(a;,a)x(0,by), |A2|=(a—a1)b1,

A; =(a;,a)x(b,b), |A3|=(a—a1)(b—b1),

A, =(0,ay) x (b, b), |A4|=a1(b—b1). (5)

By using equations (2)—(5) and according to the results of papers [7, 14],
the governing equations of the homogenized model with microlocal parame-
ters can be written in the form

(KY(0 0 +0,,)+ (Kl )7, + (KL )1, —p(c)0, =0, (6)
(K, )0, + (K, ")y, =0,  (Kl,,)0, +(K(ly,) )1, =0, (1)

(Kly,)0, + (K@) )5 =0, (K,,)0, +(K(,,)")r, =0, (8

where the following set of material constants is obtained
(K)=mnmyK, + (1= MK, + (1= ;)1 = ny)Ky +n,(1-ny)K,,
< C> =M NyCy + (1- nl)nzcz +(1- Th)(l - nz)cg + Th(l - le)04 s
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K, ,) =y (K, - K,), (Ke,,) = (K, ~K,),
Kly,)=m-n)(K, -Ky),  (KLf,,)=0-nmy(K, - K,),
Kt =02, = {0y, ) = (L) =0,

K(£, ,)%) = nmylK, + 0Ky /(L -y,

nNe[K; + MKy /(1 —my)],

K, ,

<
{
{
(K(t1,)") =
(K(t,,)")
( ) =m0 - my)K, +n,Ky/(1-m)],

(K(l,,)") = @ =n)my[K, + 1K, /(1 ny)]. 9)

By using relations (7)—(9) the microlocal parameters y, can be eliminated
from equation (6). Thus, we obtain

AO . +A40, —p(c)o, =0, (10)

(k) (Ke,,)

Kl ) (K, 7))

<K€2,y>2 _ <K€4,y>2 ) (11)
K(ly, ) (K(ly,))

Since |€i(x,y)| < max(a,b) for every (x,y), then for small max(a,b) the

where

A1=<K>—<

A2:<K>—<

underlined terms in equation (1) are small and will be neglected (functions
¢,(-) take infinitesimal values during the homogenization procedure, see [14]).

However, the derivatives /£ i and 12 ;y are not small and they cannot be
neglected, so we have:

T, = 0, S ~9 + /0. ~9 + /0. (12)

i, Vi ) yyz

Thus, by using equations (7)—(9) and (12) the heat flux vector q; takes the
form

q; = [B19,x’ B29,y]7 q, = [Ble,x’ B3e,y] ) (13)

;s =[B®,, BO,], a4, =[B,0,, B,O,],
where

5 _ KK, 5 _ KK,

1" (1-n)K, +nK,’ 27 (1-ny)K, +n,K,
K,K K.K

B, = 23 , B, = 34 : (14)

57 (1-my)K, + MK, T (1-n)K, +n,K,

From equations (13) and (14) it follows that the continuity conditions for
the heat flux on the composite interfaces are satisfied.

3. Problem formulation. Consider the composite strip heated by a normal
heat flux with constant intensity q at time ¢t >0 on the upper boundary

plane. Let d =nb be the thickness of the composite layer, where n is a
sufficiently large natural number (Fig. 1). The strip is assumed to be perfectly
joined with the homogenous half-space y > d. From the assumptions given
above it follows that the problem is independent with respect of the vari-
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able x. So, we consider the following equations of heat conduction:

0,, —k;'0,=0, 0<y<d, t>0, (15)
and

Tf.yy

~k;'T;, =0, y >d, t>0, (16)
where k, = A, / (p<c>) and kf are the thermal diffusivities of the composite

strip and foundation, respectively.
The boundary conditions will be taken into account in the following
approximate form

Aze,y(y,t)z_% y=07 t>05 (17)

0(d,1) = Ty(d, 1), A8 ,(y,1) =K, T, (y,0), y=0, t>0, (18)

where Kf is the thermal conductivity of the foundation. The initial conditions
are assumed as

6(y,0) =0, 0<y<d, T;(y,0) =0, d<y<ow, (19)
and the condition of regularity at infinity is

Tf(y,t) -0 for Yy > ©. (20)

4. Solution of the problem. Denoting the Laplace transforms by [12]

0(y,p) = [0(y,t)exp(-pt)dt, Ty(y,p) = [ T;(y,t)exp(~pt)dt,
0 0

the solution of the nonstationary heat conductivity problem (15)—(20) can be
written as

0(y,p) = ————ch[(d - y){ p/Ak, | +esh[(d -y} p/Ak |, (1)
pyp N(p)

= q
Ty(y,p) = ————exp|[-(y - d)[p/k; ], (22)
d pyp N(p) d
where
N(p) = ( / j+ﬁch(dfij (23)
/ ,/ kf Akl
K, | Ak
S A it §
A% (24)
* K} 1- KK
a=%, N LSS (25)
c (1—n2)+n2 (1-ny)K, +n,K
¢ = NNy + 1- rll)C; +(1- ﬂl)(l - ﬂ2)0§ + Th(l - nz)CZ) , (26)
K K K
K,=—2, K;=-2  K;=-%,
2 7K, 3 7K, 4+ 7K,
% C2 ES C3 ES C4
= — = — = 2
Cy ¢’ C3 ¢’ Cy ¢’ (27)

= K,/(pc;) is the thermal diffusivity of the first composite component. We

note that the parameter ¢ (24) refers to the coefficient of thermal activity of
the foundation concerning a composite strip.
Decomposing the denominator N(p) (23) in a series by the parameter

B=(1-¢)/1+¢), the solutions in (21) and (22) can be rewritten as
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_ L %
0y, p) = — {Z YJEeXp[—(2dn+y) ﬁ}
1

+z }:/Eexp[—(Zdn—y) Aikl}}’ (28)

2qyk, SR [ / p

= E exp| - (2dn+d) —(y— (29)
KK (1+e) (P A’“ f

where

_{B, 0<B<1,
"l Bl —1<p <o

The forms (28) and (29) of the solutions permit finding readily their
inverse Laplace transforms [12]

Ts(y,t)ze(y,t)—K(f/‘/;{Zy ie fc(2 At j ZY ierfc (_2d"—yﬂ’

“~ 2, Akt
0<y<d, (30)

4qy kit & d@n+1)  y-a
T(y,t):—Zy ierfe ( y>d, (31)
d K VK" (1+ &) no0 Akt 2,/

where ierfc(x) = exp (—x* )/«/? —xerfc(x), erfc(x)=1—erf(x) and erf(x) is

the error function. The solutions (30) and (31) are the basis for our subsequent
numerical investigations.

5. Numerical results and final remarks. The temperature distributions in
the composite strip and the homogeneous substrate given by equations (30)
and (31) depend on many dimensionless parameters. These include thermal
parameters, which are related to the thermal properties of the first

component of composite K; K K4, c2, 03, c4 (27), and two geometrical

parameters mn;, n, (3). Introduce the following dimensionless variables

d % Yy * klt * T qh
h’ Y =n t K2’ A’ K’

where T =T, for 0<y<d and T=T, for y>d and h is a characteristic

d* =

dimension (for example, the thermal penetration depth [10]).

The distributions of dimensionless temperature in the composite layer
and the homogeneous half-space are presented in Figs 2—11. The structure of
the composite strip permits us to consider some particular cases of the body.

Figs 2—11 are performed for the dimensionless time moment t* = 0.5 and the
width of the strip d* = 0.2 in the case when ¢, =¢, =¢; =¢, =c.

The dimensionless temperature T* as a function of dimensionless
variable y* for the layered structure of the strip is shown in Figs 2 and 3.
The thermal conductivity of the substrate is taken to be the same as the
thermal conductivity of the upper layer (K; = K, = K;). The temperature T
referred to the homogeneous half-space with the conductivity coefficient Kf

is presented by curves 1; the temperature in the homogeneous strip-substrate
system for K,/K, =2 in Fig. 2 and for K,/K, =0.5 in Fig. 3 is presented by

curves 2.
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The solid curves refer to the composite strip — substrate system for heat
conduction ratio K/K, =K;/K, =K,/K =2, K,/K; =1 (Fig. 2) and for

K,/K, = K;/K, =K,/K =05, K,/K, =1 (Fig. 3) at fixed geometric parameter
n; =1 and for values of the parameter n, = 0.3, 0.5, 0.7.

T*
\
\
0.6 \\’1
N\ =03
04 "N\ 05
N0
02 "N
\7~\\'\.
P SR e e |
0o o5 1 15 2 25 yY* ) 2 25 Y
Fig. 2 Fig. 3

The dimensionless temperature T* as a function of dimensionless

variable y* in the non-homogeneous structure composed of the layered strip
with the layering normal to the boundary and the homogeneous substrate is

presented in Figs 4 and 5. The temperature T* referred to the homogeneous
half-space is presented by curves 1; the temperature in the homogeneous

strip-substrate system for K, /K, =2 in Fig. 4 and for K, /K, =0.5 in Fig. 5

is presented by curves 2.
The solid curves refer to the composite strip — substrate system for heat

conduction ratio K /K, =K,/K, =K;/K, =2, K,/K, =1 (Fig. 4) and for
K,/K, = Ky/K, =K;/K, = 0.5, K,/K, =1 (Fig. 5) at fixed geometric parameter
M, =1 and for values of the parameter n, = 0.3, 0.5, 0.7.

T*

0.6
04

0.2

T*
0.6 N T]1=T]2=0.7
LY
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Fig. 6 Fig. 7

The temperature T as a function of dimensionless variable y* for
composite with periodically distributed rectangular inclusions at fixed values
of the parameters m,,m, is shown in Figs. 6 and 7. The temperature T~
referred to the homogeneous half-space is presented by curves 1; the

177



temperature in the homogeneous strip-substrate system for K]c /K, =2 in

Fig. 6 and for K]c /K, =0.5 in Fig. 7 is presented by curves 2.

The solid curves refer to the composite strip — substrate system for heat
conduction ratio K,/K, = K,/K, = K;/K, = K,/K, =2 (Fig. 6) and for K;/K, =
=K,/K, = K;/K, = K,/K, = 0.5 (Fig. 7) at several values of the geometric pa-

rameters 1, and 1,.

T =< ---i=1
0.7
06
05
04 L Il L Il L Il L Il L L L L L L
0 0.2 04 06 08 M 0 0.2 04 0.6 08 M
Fig. 8 Fig. 9

Figs 8 and 9 show the dimensionless temperature on the boundary sur-
faces of the strip y* =0 and y" =d as functions of the parameter n, (the
dashed curves) and m, (the solid curves) for different values of thermal con-
ductivities. The solid curves refer to the composite strip — homogeneous sub-
strate system for heat conduction ratio K;/K, = K;/K, = K,/K, =2, K,/K, =1
(Fig. 8) and for Kf/K1 =K,;/K, =K,/K, =05, K,/K, =1 (Fig. 9) at fixed
geometric parameter m; =1. The dashed curves refer to the case Kf/K1 =
=K,/K, =K;/K, =2, K,/K, =1 (Fig. 8) and Kf/K1 =K,/K, =K,;/K, =05,
K,/K,=1 (Fig. 9) at fixed value n, =1.

1.0

Fig. 10 Fig. 11
The lines of constant dimensionless temperature on the boundary surface
y" =0 are presented in Figs 10 and 11 in the case of a composite strip with

periodically distributed inclusions for thermal conductivities Kf/K1 =K,/K, =
=K,;/K, =K,/K, =2 (Fig. 10) and Kf/K1 =K,/K, =K;/K, =K,/K, =05
(Fig. 11) at different values of the geometrical parameters n,, i =1,2.

The results obtained for the temperature distributions in the composite
strip attached to a homogeneous half-space given by equations (30) and (31)
have permitted us to obtain the solutions of heat conduction problems for the
layered strip, chessboard structures, the composite with periodically dis-

tributed inclusions. Assuming that K, =K, =K; =K, and ¢; =¢, =¢5 =¢,
from equation (30) we obtain the solution for the homogeneous layer. More-
over, the above case under assumption Kf =K,, Icf =k;, 1=12,3,4, leads to
the case of homogeneous semi-space.
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HECTALIOHAPHA 3AAYA TEMNJIOMNPOBIAHOCTI
anAa KOMNO3nTHOI CMYI HA OOQHOPIAHIN OCHOBI

Pozzaanymo necmayioHapHy 3a0ayy menaonposgioHocmi Oasi cmyzu, HaHeceHoi Ha 00HO-
pi0HYy ocHosy. Cmyea craadaemsbes 13 nepioduuHOl cucmemu KOMIPOK NPAMOKYMHO20
nonepeurozo nepepidy. Taxe KYcKoso-o0HOPIOHEe HaniebesmedxtcHe MIA0 HAZPIBAEMDBCA HA
BINBHIU MOBEPLHT MENA0BUM NOMOKOM CMAN0L THMeHcusHocmi. Jucaosl Ppo3parynxu
npogedeHo Oas 0eaxux yacmrosuxr gopm xKomnodumy. Bnaue mennodisuunux i ceomem-
purHux napamempie 3adaui Ha pPo3nodin memnepamypu nodaro Yy suzandi epaghixis.

HECTALIMOHAPHASA 3A0AYA TEMNONPOBOOAHOCTU ANA
KOMNO3NUMOHHOU NoJIoCbl HA OAHOPOAHOM OCHOBAHUU

Paccmompena necmayuonapras 3adaua menaonposooHocmu O0as MOAOCHL, HAHeceHHOU
Ha 00HOPOOHOe ocHosaHrue. IToaoca cocmoum u3 nepuoduueckoli cucmemsvl sueex NPsmo-
Y204bHO020 nonepeunozo cevenus. Ha c60600H0U noseprrocmu cocmasioe meao Hazpesa-
emcs Menaosblim NOMOKOM NOCMOAHHOU unmencusnHocmu. Jucaosvie pacuemsvl. nped-
cMasnerbl OAs HeKOMOPbHLL YACTMHBIX cayuaes Popmbl Komnosuma. Bausanue menaogpu-
3UUECKUXT U 2e0MeMPUUECKUX Napamempos 3a0auu HaA pacnpedererue memnepamypdvl
noKa3aro 8 sude 2pagPuros.

1 Warsaw Univ., Warsaw, Poland,
2 Bialystok Univ. of Technology, Bialystok, Poland,

3 Pidstryhach Inst. of Appl. Problems Received
of Mech. and Math. NASU, L’viv 22.11.04

179



