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INVESTIGATION OF IDEALIZED VIRUS CAPSID MODEL WITH
THE DYNAMIC ELASTICITY APPARATUS

The three-dimensional dynamic theory of elasticity is applied to investigate the
mechanical properties of virus capsid. The idealized model of the virus is based on
the 3D boundary-value problem of mathematical physics formulated in spherical
coordinate system for the steady-state oscillation process. The virus is modeled as a
hollow elastic sphere filled by acoustic medium and is located in different acoustic
medium. The stated boundary-value problem is solved with the help of the integral
transform method and method of the discontinuous solutions. As a result, the
exact solution of the problem is obtained. The numerical calculations of the virus
elastic characteristics are carried out.

The development of virus mathematical model is necessary to represen-
ting the effect of parameters variation on the behavior of a virus as a dyna-
mic system. Such mathematical models based on the reasonable biological as-
sumptions were obtained earlier within three main interdisciplinary appro-
aches: 1) the hydrodynamic approach [23, 21, 30]; 2) the approach with the
use of the numerical methods for solving the nonlinear problems of hydrody-
namics and elasticity [16, 18, 28, 29, 36]; 3) the approach based on the linear
elasticity models [15, 34, 36]. The mentioned models allowed to obtain many
important characteristics of the virus, but they could not fully solve the prob-
lem of investigation of the virus as a 3D elastic object. In this paper the
authors first propose to use the complete system of motion equations of linear
elasticity for representation of virus wave field. It allows to take into conside-
ration the virus 3D structure and to obtain its new qualitative characteristics.

The morphology of icosahedral viruses ranges from highly spherical to
highly faceted, and for some viruses a shape transition occurs during the viral
life cycle. This phenomena is predicted from continuum elasticity, via the
buckling transition theory by Nelson [22], in which the shape is dependent on
the Foppl — von Karman number 7y, which is a ratio of the two-dimensional

Young’s modulus, Y, and the bending modulus ®: y = YRZ/ae (R is the vi-

rus radius). However, until now, no direct calculations have been performed
on atomic-level capsid structures to test the predictions of the theory.

The elasticity and mechanical stability of empty and filled viral capsids
under external force loading are studied in a combined analytical and nume-
rical approach. Quantitative measurements of the mechanical response of
nanosized protein shells (viral capsids) to large-scale physical deformations
were reported in [29]. These measurements were compared with theoretical
descriptions from continuum modeling and molecular dynamics. In [22] it was
shown that the icosahedral packings of protein capsomeres proposed by
Caspar and Klug for spherical viruses become unstable to faceting for
sufficiently large virus size. A model, based on the nonlinear physics of thin
elastic shells, produced excellent one-parameter fits in real space to the full
three-dimensional shape of large spherical viruses. The mechanical properties
of individual empty capsid and DNA-containing virions of the minute virus of
mice were investigated by using atomic force microscopy in [17]. The stiffness
of the empty capsid was found to be isotropic. Remarkably, the presence of
DNA inside the virion leads to an anisotropic reinforcement of the virus
stiffness by = 3%, 40 %, and 140 % along the fivefold, threefold, and twofold
symmetry axes respectively. An emerging paradigm for self-organized soft
materials, geometrically frustrated assemblies, where interactions between
self-assembling elements (e.g., particles, macromolecules, proteins) favor local
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packing motifs that are incompatible with uniform global order in the assem-
bly was overviewed in [19]. Some of the key ideas that have been set in both
the materials and biological settings were described in general terms in [27].
Some future developments along these lines were speculated. An atomistic
force-probe molecular dynamics simulations of the complete shell of southern
bean mosaic virus, a prototypical T =3 virus, was performed in explicit sol-
vent in [36]. It was done to study the distribution and heterogeneity on the
virus surface of the mechanical properties of viral shells. A course-grained
modeling approach within the framework of three-dimensional nonlinear
continuum elasticity was adopted in [18]. Homogeneous, isotropic, elastic,
thick-shell models were proposed for two capsids: the spherical cowpea chlo-
rotic mottle virus, and the ellipsocylindrical bacteriophage ¢29. The mecha-

nical properties of crystalline shells of icosahedral symmetry on a substrate
under a uniaxial applied force were studies in [32] by computer simulations.
The elastic response for small deformations, and the buckling transitions at
large deformations were predicted. A previously described multiscale method
by May and Brooks was employed to calculate Y and & for the bacterio-
phage HK97 in [24], which undergoes a spherical to faceted transition during
its viral life cycle. A change in y consistent with the buckling transition the-

ory was observed and a significant reduction in @, which facilitates formation
of the faceted state, was studied. The influence of capsid structure and chira-
lity on the mechanical properties were analyzed in [15]. It was found that ge-
nerally skew shells have lower stretching energy. The mechanical properties
of viral capsids, calling explicit attention to the inhomogeneity of the shells
that is inherent to their discrete and polyhedral nature, were investigated in
[34]. The distribution of stress in these capsids was calculated, and their
response to isotropic internal pressure was analyzed.

Static-state fluctuations in three-dimensional bodies were studied in
many works (see, e.g., [2, 5, 7, 8, 10, 25]) in view of the necessity of their
practical engineering applications.

Several problems for hollow spheres were investigated by many authors.
It should be pointed the classical works by Grinchenko and Meleshko [3],
Ulitko [9], Chernina [12].

The transient response of the fluid-shell system of a thin, elastic and
ring-stiffened spherical shells, which accelerates in an acoustic medium was
studied numerically in [13]. The problem of scattering of a plane sound wave
by an acoustically rigid spherical shell with spherical inclusion in the
unlimited homogeneous isotropic media [20] was reduced to solving dual series
equations on Legendre polynomials. The dual equations were transformed into
an infinite system of linear algebraic equations of the second kind with a
completely continuous operator. The motion of a rigid sphere in a viscoelastic
medium in response to an acoustic radiation force of short duration was
investigated in [14]. The multiple scattering of a spherical acoustic wave from
an arbitrary number of fluid spheres was investigated theoretically in [33]. A
problem on radial oscillations of the hollow elastic inhomogeneous transverse-
isotropic sphere in unlimited acoustic medium was investigated in [6]. The
theory of resonance scattering was used in [11] for solving the problem of
sound scattering from an elastic transversely isotropic solid sphere in an ideal
acoustic fluid medium. The solution is obtained with use the normal mode
expansion technique in conjunction with the Frobenius power series.

As it is seen from the literature analysis the apparatus of 3D elasticity
can be efficiently applied for the constuction of the idealized capsid model.

1. The statement of the problem. A porcine circovirus type 2 (PCV2) (see

Fig. 1) is modeled by a hollow elastic sphere occupying the area R, <

<r<R,, 0<0<2n, —n<¢<n in the spherical coordinate system.
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b)

a)
Fig. 1. The geometry of idealized capsid model: a) — PCV2 at full atom resolution;
b) — the mathematical model of the virus.
Motion equations are written with respect to the displacements

u=u,(r,0,9,t), v=1uy(r,0,0,t), w= uq)(r, 0,¢,t) in the following form [26]:

Vi, - 2fu, + ko S sinoy s g e
+X%H(ur,ue,u¢,7‘,9,¢) = 5662:; :

Pur SN et e
+X%%H(u,,ue,uq},r,9,q>)=5662%,

Viu, + - :ine[aaur +ctge%—2:{—‘;e}+
+rsf”ne%H(ur,ue,u(P,r,e,(p)=;36;%, 1)

where
2
ve =r%%(r2 %)+ r? sline%(sme%)eraa_(Pw

E vE

v is Poisson’s ratio, E is Young’s modulus, p = 2(1—+v)’ A= m,

2
A= %, p is virus density, p = %

It is assumed that the virus is filled and surrounded with two dissimilar
acoustic media. The wave potentials ®,(r,0,9,t) of the external, ¢=2, and

the internal, 7 =1, acoustic media satisfy the wave equations [4]

oD,
av, =L ts0, =12, 2)
c; Ot
here c,;, i =1,2, are wave velocities.
It is assumed that adhesion occurs on the contact surfaces of virus and

surrounding acoustic media

0, (R, +0,0,0,6) =~y (0,0,0)],_p =Py 2 (R, ~0,0,0,0),
G,’. (R2 - 07 e’ (P, t) = _p2(67 (P, t)|r=R2 = p2 %(‘D2 + q)())(Rz + 05 67 (P, t) ’ (3)
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T:Ri - TT9|T=R1.

Tro =0, i=12. (4)

It is also assumed that on the contact surfaces of virus and surrounding
acoustic media the such conditions for velocities are satisfied:

ou, oD,
W(Rl + 0,6,(P,t) = W(Rl - 0767(P5t) )

ou
5 (R, = 0,0,0,8) = 2 (®y + By )(R, +0,0,0,1). )

The boundary conditions with respect to the variables 6 and ¢ can be

formulated as displacements or stresses which are given on the surfaces. Here
it was proposed that the conditions of the second main elasticity problem are
fulfilled.

One has to determine the wave field under the influence of a spherical

pressure wave @ (r,0,¢,t) which incident on the virus external surface and

satisfies Zommerfeld’s conditions.
2. The reformulation of the stated problem in the form of the disconti-
nuous boundary problem. The steady-state oscillations are considered:
u,(r,0,09,t) = u(r,0, (p)ei‘”ot , uy(r,0,0,t) = v(r,0, (p)emot s
pxany

u(P(r,O,(p,t) = w(r,e, (P)e y

®,(7,0,0,t) = D, (r,0,0)e" 7, i=12, (6)
here ®,, ®,, o, are oscillation frequencies of the sphere, internal and exter-
nal acoustic environments, respectively.

The tilde symbol in Cf)j(r,e,(p) will be omitted from now on.

The finite Fourier transform method is applied to equations (1), (2) and
boundary conditions (3)—(5) with regard to variable ¢ [31].

The transformations of the unknown functions are presented as a super-

" . 1 2 _1 2 1 2
position of the functions w, =u, +u,, v, =v, +v,, w, =w, +w,, where

n
the upper index «1» denotes the mechanical characteristics, which are
discontinuous on the interior surface of the spherical shell, and the upper
index «2» denotes the mechanical characteristics, which are discontinuous on

the external surface of the spherical shell [35]

Fllvry = (Bl + (0, = (A g =~ Fa(BL+0,0),
Fllvr, = ()| g, + (), e, = (2] g, = o (Ro - 0,0), (7)
where <fn>|r=Ri =f, (R, =0,0)-f (R, +0,0), fe{u,v,w, Gr,rre,rm}. For the

external wave field the wave potential is constructed as a superposition of the
field generated by the incident wave and the wave scattered on the external
shell of the virus:

D, (r,0) =D, (r,0)+ D, (1,0).

The jumps of the acoustic potentials are introduced in the following way.
Since acoustic environments are inside and outside the spherical shell,

®,,.(r,0) =0, r >R, ®,, (r,0)=0, r<R,,
and
(@1 ), = P1(By = 0,0) = Py, (R, +0,0) = @y (R, -0,0),

<CD2n>|T:R2 =®,, (R, -0,0)—®,, (R, +0,0)+ D, (R,,0) =
=-®, (R, +0,0)+ D, (R,,0). (8)
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Conditions (3) and (5) can be rewritten with regard to the formulas (7)
and (8) as

G}’_(RZ—0,9,(P,t)+6$_(R2—0,9,(\D, ) Pza (CD + @ )(R +0 e(P, )7
GL(R, +0,6,0,0)+ G*(R, +0,6,0,6) = p, = (R, ~0,0,0,1), 9)

ou’ ou’
’"(R +0,0,¢,t) + T(R +0,0,0,t) = CD(R -0,0,¢,t),

a ; 6u2
~0,0,,1)+ = (Rz—o,e,@,t)=§(<b2+®o)(R2+o,e,q>,t). (10)

Accordlngly to [1] the discontinuous solution for a spherical defect in the
finite Fourier transform domain has the form shown in Appendix A. It

depends on unknown jumps of displacements <ufzk(Ri )> and unknown jumps
of stresses <Gink(Ri )> , 1=12.

The Legendre integral transform is applied with respect to variable 6 by
the rule

Fue(r) = [ sin 0 B" (cos 0, (r,0) d6 ,
0

where f e {u v, w', ol o) } 1,7 = 1,2, with the inverse formulas

) 're’ ‘r(p’

£,(r,0) = Z fnk(r)ck‘  Pl"(cos ),

fo=
—|n|)!(k +1 / 2)
(k +|n))!

The discontinuous solution for the acoustic potentials in the transform
domain has the following form:

(1) = BE (@0 () Ty (1, R) = (0 (R)) 0Ty (1, R |, 1= 1,2,
(11)

here Gk,‘ n‘ =

where

] I (RQ)K (TQ-), T>R‘7
[ R)=—T=s " 7 P k=0,1,2,..., v=k+1/2
7 2| TR Iv(rqi )Kv(qui)’ r< R]‘,

g

2
4 =-—, i=L2.
€

3. Derivation of the calculation formulas describing the wave field. To
get the calculation formulas one has to determine the wave potentials jumps
and its derivatives, and also the displacement and stress jumps.

In view of the formulas (8) one can obtain the correlations between the
jumps in the transform domain:

<(D’1nk(Ri )> = <q)1nk(R1 )> 91 (Ry),

(@ (Ry) = (@0 (Ry)) 9 (Ry)

where
0
OR,
(R +0,R) ’

0
oR,
T, (R, —0,Ry)

I (R, +0,R,) T, (R, —0,R,)

91 (Ry) =

9o (Ry) =
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Thus
(1) = BE (@, (R)) | 0, (R) — 2T, R |, 0= 1,2, (12)
i
To determine jumps <uik(Ri )>, <Gink(Ri )>, i=1,2, the conditions (3), (5)

are used. So one can obtain formulas for jumps <u;k(Ri )>, <Gink(Ri )> ,1=12,

depending on acoustic potential jumps:

1 1 1
<Grsnk(R1 )> = =Py 51 (P + chsnk)L,:Rl_o =—h1s ((DO.snk +

’

+ R} <‘D1nk(Rl)>[91k(R1)_aiélrlk(ﬁRﬂB .
r=R; -

2 2 2
<Grsnk(R2 )> =Py Sy (CD[)snk + cD2snk) r=Ry+0 = P28y (CDOsnk +

’

=Ry +0

+ R} <cD2nk(R2 )> [sz(Rz) - % Tyi (1R, )D

where @, . (R,), Py, (R,) are transforms of the incident waves from the
inner and outer acoustic environments, respectively.

To determine jumps <cDink(Ri)>’ 1=1,2, the second condition in (4) is
used. So one can get the system of two complex linear equations for
(@ (B), i =12,

After inversing the Fourier transform by the formulas (7) and taking into
account the steady-state oscillations (5) one can obtain the final formulas for

the displacements.
4. Discussion. The calculations were done for the elastic thick shell

(E=0.25- 10° Pa, u =04, p=750au/nm3) with the inner and outer radiuses
R, = 104-10°m, R, = 13.2-10""m, respectively. The values of the speed of

sound for internal and external acoustic environments are ¢, =1400m/s
(water), ¢, =1560m/s (sea water), respectively.

Consider the case when frequencies of spherical shell, inner and outer
acoustic environments are o, =0.1, o, =0.1, o, =0.2, incident waves from

the inner and outer acoustic environments are
@y, (R;,0,9,t) =0,

’ ]

T
D@y (R,,0,0,t) = Ry : c,
0 2

T
—<0<mr
72 ’

In Fig. 2 the dependence of the displacements u, at the inner and outer
surfaces of the spherical shell on 6 is presented. When 6 changes from 0 to
n, displacements wu, increase. As can be seen, maximal spikes at the inner

surface (r =R;) are larger than at the outer surface (r=R,) The
dependence of the displacements u, at the inner and outer surfaces of the

spherical shell on 6 is shown in Fig. 3 . The periodicity of the displacements
u, is observed. As can be seen, the displacements u, on the outer surface

(r = R,) are larger than displacements at the inner surface (v = R,). Values of

the displacements u, are obviously less than displacements u, values.
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Fig. 2. Dependence of the displacements u,

at the inner and outer surfaces of the
spherical shell on 0.
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Fig. 3. Dependence of the displacements
u, at the inner and outer surfaces of

the spherical shell on 0.
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Fig. 4. Dependence of the displacements u, Fig. 5. Dependence of the displacements

at the inner and outer surfaces of the u, atthe inner and outer surfaces of

spherical shell on 6. the spherical shell on .

In Fig. 4 the same investigation of the displacements u, dynamics at the

inner and outer surfaces of the spherical shell regarding 0 is shown. One can

sure that the displacements U, values are negligibly less than the values of

the displacements u, and u,. In Fig. 5 the dependence of the displacements
u, on radius-vector r at the inner and outer surfaces of the spherical shell is
presented. The displacements u, values increase in the direction from the

inner virus surface (r = R;) to the outer surface (r = R,). As can be seen
from the figures, the change in the load depending on angle ¢ is negligible.
So one can observe more simple axisymmetric problem.

Conclusions. The 3D idealized virus capsid PCV2 model of a virus was
constructed with the help of apparatus of the boundary value problems of
dynamic elasticity.

The formulas determining the virus wave field under the acoustic pres-
sure wave were obtained. The graphics of the spherical shell displacements
are presented.

This model will serve as a first step in developing more realistic models
of viruses with a varying density of the capsid and its thickness.
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Appendix A.

0

1 2 i 0
_b_zkzn[ (bR? — 2kl + D) {ulyo(R)) ST, (r,Ry) +

i R/ d* n
+ (4<unk(Ri )+ T<cmk(Ri ))j sz Tar(m R, )} O Pl (cOS 0) +

i

e 2n 3 (2l R) + S (ol (R) T R -

T sin® 0 k=|n| b2

= 2{u (R)) 5 Ty (1, R, )} O Pl (cOS 0) -

_% N &[(2 <u;k(Ri )> + %(Gink(Ri )>jrb,k(TvRi) -

2
k=n| D

—2<uf1k(Ri)>%Fb,k(r,Ri)}Gk‘ = 4° plnl(cos ) -

-= ctg 0 z |: (2 <u;k(Ri )> + %(Gink(Ri )>J Ly (r Ry —

kn| D

i 0 d ~In
2<unk(Ri )>ﬁrb,k(T,Ri )} Ol n| %P,L ‘(COS 0),

vl (r,0) = ™ Z [ (b°R? - 2k(k +1))<uik(Ri)>Fayk(r,Ri) +
=p

+(4(u;k(Ri)>i( ol (R, ))) a,k(r,Ri)Jck‘n‘ 7 £ pl"l(cos 0) +
< Rz i Rz i
o3 2 [ (pfunm) + (o) st R -

—2(uly () 20 4 pl"l(cos0) +

R, Iy (R, )} Oy

nl do

0

+2 %[(2<u;k(Ri )> + %(Gink(Ri )>)§Fb’k(T,Ri) -

e
~2{up (R, )>a R, bk(r,Ri)Jck‘n‘ deP‘ (cos0),
wh (r,0) = — %52[@ R = 2k(le + 1)) (uly,(R)) Ty (1, Ry) +
+ (4<u;k(Ri ) + %( sl (R, ))j T, (R, )} 0 o Pl (€05 0) -
grr i |:(2<uilk(Ri)>+%<Gink(Ri)>jr oi (T R,) =

_2<

>
- i%[( ub RO+ 1)+ (00 () | 21, R ) -

b,k('r,Ri) }ck,‘n‘P,‘c"‘(cos 0) -
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100

2l R =L T, (1, Ry) 0 P (03 6)
oroR, Ly (1 R;) |G B (cOs0),

0 _ 2
n9_1 } [bzR?—2lc(lc+1))<u;k(Ri)>a—2Fak(r,Ri)+
2” k |n| or ’

TS’IL(

i R,/ o° n|
+ | 4(u,, (R;)+——(c,, Ri))—l"a 7R, :|G aPe (cosB) —
(<k (ot} TR o P05

_La i [ (bR? — 2Kk(k + 1))<u;k(Ri )>Fb,k(r,Ri) +
+ (4<u;k(Ri )+ %<c§nk (R, )>j%Fb,k (r,R, )} O/ Ph" (cOS 0) +

+b? i %[(2<u;k(R1)> + i < mk(R )>jrb,k(T’Ri) -

k=|n|
2(ul ) (R))20-T, (1, R,) | 0 Bl (cos 0) +
nk\ViJ[ GR T bk M k|n|" k

0

+ b2rk§%[(z<u;k<1{i I+ S (o) | 2 T R -

2w (R)) =2 Ty (1 R) |0 P (08 0) +
oroR, Ly i (1, R;) |0y o B (cOS

0

o5 o) Eoin) e
63

- 2<u;k(Ri )>Wrb'k(r’ R, )} Gk"n‘P,‘cn‘(cos 0) +

s R i R i ’
o ) ) -

2(ul (R,))—2 R P7lcos 0
h < nk( 1)>6 36 b,k(r’ l) ka‘n‘ k (COS )7
ren 11 9 i
2u szkn[ (VR = 2kelle + 1)) (1(R)) )5 TR +

. . . 2
+(4(u;k(Ri)>+%(cink(Ri)>) ar%R W R, )}ka‘n‘%ﬂ‘ﬁn‘(cose)—

+(4<u;k(Rl)>+i‘L< rnk(R)>) 0 Fb,k(T’Ri)}Gk‘n‘ deP‘ ‘(COSG)+
+ i&[(2<u;k(Ri)>+%< mk(R)>) sTyr(rR) -

- 2< unk(Ri)>mrb,k(T,Ri) }ka 26 P"(cos 0) +



+%§:Ri[(2<u;k(1{i)>+%< mk(R)>) Ty (r,R,) —

2l (R,)) =2 R. 4 plnlcos0) +
N <unk( 1)>W bk(T i) Skln| 30 a0 (cos ) +

b2 1) v R, i R; i
(5 7) (2 uho) # S o) Jruscno-
_2<u;k(R1)>aiRil"b,k(r,Ri)}ck‘n‘ 4 plrl(eos),
Ti(pn("',e) __in_ 1 i [(bzR? —2k(k+1))<ui (R‘)>£F (r.R.) +
2u rsin 0 p2 W i L A T
i R,/ 4 d* |n]
+(4<unk(Ri)>+T<cmk(R ))Ja o, Tor(m R, )}ok‘ P (cos 0) -
n 11 < 2152 i
-1l k;[(b R? - 2k(k + 1)) {wiy,(R,) )Ty (r,R)) +

+(4(ubel®) + %( S (R)) >)aiRin,k<r,Ri )] 0Pl o5 0) -

R

J s R i R/ 0
* 5111:116 kz;Lb_z[(2< unk(R1)> +T<Grnk(Ri)>)Erb,k(T’Ri) -

i 52 n
—2<unk(Ri)>mrbyk(r,Ri)}ok,‘n‘P)€ (cos 0) +

+ (% —%)é%[@( u;k<Ri>>+%{cinkmiw]rb,k(nm -

r

Here

: o
~2(uy(R)) ) 55Ty (r.R) J Gpejn(Pi(cOS 0).
1
|1, (R;q,)K, (rq;), >R,
L., (r,R,)=—F_ v iy sl 7 k=012,.., v=k+1/2
W TSI, {Iv(rq»KV(qui), r<R, /

q €{a,b}, f,.(r) is the Fourier — Legendre transform.
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OOCNIIXEHHSA IOEANI30BAHOI MOAEJSI BIPYCY KAMCUAY 3A OMOMOIoto
AMAPATY OUHAMIYHOI TEOPIi MPY>XHOCTI

Tpusumipny OUHAMIUHY MeEoPit0 NPYHCHOCME 3ACMOCOBAHO NPU O0CAIOHCEHHT MeXaAHIU-
HUX saacmusocmed gipycy xancudy. Ideanizosarna modeas 8ipycy 6A3YyeMbCS HA MPUBU-
MIPHIU Kpatiosit 3adaui mamemamuurol Hiauku, Wo cPHoPMYAbO8AHA Y cPhepuunitl cuc-
memi KoOpOUHAM OASL YCMAAGHUX KOAUBAHDB. Bipyc wmodeatoemves mopoxicHuUcCmMo0
NPYACHOMO cPeporo, 3anosHeHoto JesKum aKycmuinHum cepefosuujem i OMoOUeHO0 THULUM
akycmuunum cepedosuwem. Kpailogy 3adauwy pose’sszarno 3a 0onomozoro memoody iHmee-
PANLHUX Nepemeopend 8 memooy Po3pusHuxr po3s’askie. Ompumaro MoUHUL PO36’A30K
3a0aui. BUKOHAHO 00U UCACHHA NPYHCHUX TAPAKMEePUCUK 8IPYCY.

WUCCNEQOBAHUE UOEANU3UPOBAHHOW MOJENW BUPYCA KAMNCUAA C MOMOLLBIO
AMNMAPATA AUHAMUYECKOW TEOPUM YNPYIOCTU

TpéxmepHas OUHAMUUECKAS MEOPUL YNPY20CMU NPUMEHEHA K UCCAeD08AHUID MeXAHU-
yecxux ceoticme eupyca wxancuda. Vlearusuposannas mMmo0eab 6UPYCA OCHOBAHA HA
mpéxmepHoti kKpaesoll 3adare mamemamuieckol Puauru, cHopmysuposanHol 8 chepu-
yeckoll cucmeme KOOPOUHAM OAsl YcmaHosuswuxrcs Koaedbanut. Bupyc modesupyemces
noaotl ynpyzoti cghepoil, 3anoaHeRHOU HeKomopol akycmuueckol cpedol, pazmeweHHot
8 0pyeoll axycmuueckoll cpede. Kpaesas 3adaua pewreHa C NOMOUBIO Mmemoda uHmez-
ParLHBLLE NPeodPaszosarull u memoda pa3pviersvlr peweruti. Iloayueno mounoe peuwerHue
3a0ayu. Buinoanensl 8vlyucaenus ynpyzux rapaKxmepucmur supyca.

" Odessa I. I. Mechnikov National University, Odessa, OpnepsraHo
? Aston University, Birmingham, UK 19.09.17
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