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ON SEMITOPOLOGICAL BICYCLIC EXTENSIONS OF
LINEARLY ORDERED GROUPS

For a linearly ordered group G let us define a subset A < G to be a shift-set if

for any x,y,z€ A with y<x we get x-y ' -ze A. We describe the natural
partial order and solutions of equations on the semigroup B(A) of shifts of
positive cones of A. We study topologizations of the semigroup B(A). In
particular, we show that, for an arbitrary countable linearly ordered group G and
a non-empty shift-set A of G, every Baire shift-continuous T, -topology t on
B(A) 1is discrete. Also we prove that, for an arbitrary linearly non-densely ordered
group G and a nmon-empty shift-set A of G, every shift-continuous Hausdorff
topology 1 on the semigroup B(A) is discrete.

Introduction and preliminaries. We shall follow the terminology of [17,
21, 23, 27, 36, 43, 44].

A semigroup is a non-empty set with a binary associative operation. A
semigroup S is called inverse if for any x € S there exists a unique y € S

such that x-y-x=x and y-x-y =y. Such an element y in S is called the

inverse of x and denoted by x™!. The map defined on an inverse semigroup
S which maps every element x of S to its inverse x™! is called the
inversion.

For a semigroup S by E(S) we denote the set of idempotents in S. If S
is an inverse semigroup, then E(S) is closed under multiplication and we shall
refer to E(S) as the band of S . A semilattice is a commutative semigroup of
idempotents.

Let 3, denote the set of all partial one-to-one transformations of an in-

finite set X together with the following semigroup operation: x(af) = (xo)p
if e dom(ap)={y e doma |yoa e dompB}, for a,B € I. The semigroup Iy
is called the symmetric inverse semigroup over the set X (see [21].). The sym-
metric inverse semigroup was introduced by Wagner [1] and it plays a major

role in the theory of semigroups.

The bicyclic monoid C(p,q) is the semigroup with the identity 1 genera-
ted by two elements p and g subjected only to the condition pq =1. The bi-
cyclic monoid is a combinatorial bisimple F -inverse semigroup and it plays an
important role in the algebraic theory of semigroups and in the theory of to-
pological semigroups. For example the well-known Andersen’s result [9] states
that a (0-)simple semigroup is completely (0—) simple if and only if it does
not contain the bicyclic monoid. The bicyclic monoid does not embed into
stable semigroups [38].

Recall from [27] that a partially-ordered group is a group (G,-) equipped

with a translation-invariant partial order <; in other words, the binary
relation < has the property that, for all a,b,ge G, if a <b then a-g<b-g
and g-a<g-b.

By e we denote the identity of a group G. The set G' ={xr e G:e < x}

in a partially ordered group G is called the positive cone of G and satisfies
the properties:
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1° G -G* < G*:
2°) G*N(GH)™ ={e};
3% 2 G"-x <G for each x €G.
Any subset P of a group G that satisfies the conditions 1°-3° induces a
partial order on G (x <y if and only if x! -y € P) for which P is the

positive cone. An elements of the set G™ \ {e} is called positive.
A linearly ordered or totally ordered group is an ordered group G whose
order relation «<» is total (see [16] and [20]).
From now on we shall assume that G is a non-trivial linearly ordered
group.
For every g € G the set
G (9={xeG:g<x}.
is called the positive cone on element g in G.
For arbitrary elements g,h € G we consider a partial map of :G - G
defined by the formula
(x)of =x- gt-h, for xeG'(g).
We observe that Lemma XIIL1 from [16] implies that for such partial map
ay :G - G the restriction a : G*(g) > G'(h) is a bijective map.
We consider the semigroups

B(G)={a :G > G:g,h G},

B (G)={a):G—>G:9,heG"},

endowed with the operation of the composition of partial maps. Simple verifi-
cations show that

a%-alg =af, where a=(hvk)-h'.g and b=(hvk)-k*-¢, (1)
for g,h,k,/ € G, where by hvk we denote the join of h and k in the
linearly ordered set (G, <). Therefore, property 1° of the positive cone and
condition (1) imply that B(G) and B*(G) are subsemigroups of 3g-

By Proposition 1.2 from [31] for a linearly ordered group G the following
assertions hold:

(1) elements aj and ocg are inverse of each other in B(G) for all
g,h € G (respectively, B"(G) for all g,h € G");

(i) an element aj of the semigroup B(G) (respectively, B*(G)) is an
idempotent if and only if g = h;

(#4i) B(G) and B*(G) are inverse subsemigroups of 35

(iv) the semigroup B(G) (respectively, B*(G)) is isomorphic to the set
S; =G xG (respectively, S; =G" xG") with the following semi-
group operation:

(c-bt-a,d), b<e,
(a,b)(c,d) =4 (a,d), b=c, (2)
(@,b-ct-d), b>ec,
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where a,b,c,d € G (respectively, a,b,c,d € G").

It is obvious that:

1°) if G is isomorphic to the additive group of integers (Z,+) with usual
linear order <, then the semigroup B*(G) is isomorphic to the bicyclic mo-
noid C(p,q) and the semigroup B'(G) is isomorphic to the extended bicyclic
semigroup C, (see [24]);

2°) if G is the additive group of real numbers (R,+) with usual linear
order <, then the semigroup B(G) is isomorphic to B(Zfooyw) (see [40, 39] ) and
the semigroup B*(G) is isomorphic to B[lopo) (see [4—8));

3°) the semigroup B*(G) is isomorphic to the semigroup S(G) which is
defined in [25, 26].

In the paper [31] semigroups B(G) and B"(G) are studied for a linearly
ordered group G . That paper describes Green’s relations on B(G) and B*(G)

and their bands and shows that these semigroups are bisimple. Also in [31] it
is proved that, for a commutative linearly ordered group G, all non-trivial

congruences on the semigroups B(G) and B'(G) are group congruences if
and only if the group G is Archimedean; and the structure of group con-

gruences on the semigroups B(G) and B*(G) is described.

In this paper we present a more general construction than the semi-
groups B(G) and B'(G). Namely, for a linearly ordered group G let us
define a subset A < G to be a shift-set if for any x,y,ze€ A with y <x we

get x-y ' -ze A.For any shift-set A c G let
B(A) ={aj : G"(a) > G (b) : a,b € A}

be the semigroup of partial bijections defined by the formula

(x)af =x-a' b for x e G'(a).
The semigroup B(A) is isomorphic to the semigroup S, = AxA endowed
with the binary operation defined by formula (2). For A =G the semigroup
B(A) coincides with B(G) and for A = G" it coincides with the semigroup
B*(G).

Later in this paper for a non-empty shift-set A c G we identify the
semigroup B(A) with the semigroup S, endowed with the multiplication
defined by formula (2). We observe that B(A) is an inverse subsemigroup of
B(G) for any non-empty shift-set A of a linearly ordered group G.
Moreover, the results of [31] imply that an element (a,b) of B(A) is an
idempotent iff a =b, and (b,a) is inverse of (a,b) in B(G).

We recall that a topological space X is said to be

e locally compact, if every point x € X has an open neighbourhood with
the compact closure;

e Cech-complete, if X is Tychonoff and X is a G;-set in its Cech —
Stone compactification BX;

e  Buaire, if, for each sequence (U,)7, of open dense subsets of X, the

o0
intersection ) U, is a dense subset in X.
i=1
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Every Hausdorff locally compact space is Cech-complete, and every
Cech-complete space is Baire (see [23]).

A semitopological (topological) semigroup is a topological space with a se-
parately continuous (jointly continuous) semigroup operation.

A topology 1 on a semigroup S is called:

e semigroup if (S, 1) is a topological semigroup;
e  shift-continuous if (S, 1) is a semitopological semigroup.

The bicyclic monoid admits only the discrete semigroup Hausdorff topo-
logy and if a topological semigroup S contains it as a dense subsemigroup
then C(p,q) is an open subset of S [22]. We observe that the openness of
C(p,q) in its closure easily follows from the non-topologizability of the bicyc-

lic monoid, because the discrete subspace D is open in its closure D in any
T, -space containing D. Bertman and West in [15] extend this result for the
case of Hausdorff semitopological semigroups. Stable and I' -compact topologi-
cal semigroups do not contain the bicyclic monoid [10, 37]. The problem of an
embedding of the bicyclic monoid into compact-like topological semigroups
studied in [11, 12, 33]. Independently Taimanov in [3] constructed a semigroup
2. of cardinality @ which admits only the discrete semigroup topology. Also,
Taimanov [2] gave sufficient conditions on a commutative semigroup to have
a non-discrete semigroup topology. In the paper [29] it was shown that for the
Taimanov semigroup 2, from [3] the following conditions hold: every T, -to-

pology 1 on the semigroup 2, such that (2_,t) is a topological semigroup is
discrete; for every T, -topological semigroup which contains 2, as a subsemi-

group, 2, is a closed subsemigroup of S; and every homomorphic non-iso-

morphic image of 2 is a zero-semigroup. Also in the paper [24] it is proved
that the discrete topology is the unique shift-continuous Hausdorff topology
on the extended bicyclic semigroup C,. Also, for many (0-)bisimple semi-
groups of transformations S the following statement holds: every shift-conti-
nuous Hausdorff Baire (in particular locally compact) topology S 1is discrete
(see [18, 19, 32, 34, 35]). In the paper [42] Mesyan, Mitchell, Morayne and Pé-
resse showed that if E is a finite graph, then the only locally compact Haus-
dorff semigroup topology on the graph inverse semigroup G(E) is the discrete
topology. In [14] it was proved that the conclusion of this statement also holds
for graphs E consisting of one vertex and infinitely many loops (ie., infinite-
ly-generated polycyclic monoids). A surprising dichotomy for the bicyclic mo-

noid with adjoined zero C° = C(p,q)L1{0} was proved in [28]: every Hausdorff

locally compact semitopological bicyclic monoid C° with adjoined zero is
either compact or discrete. The above dichotomy was extended by Bardyla in
[13] to locally compact A-polycyclic semitopological monoids and to locally
compact semitopological interassociates of the bicyclic monoid [30].

For a linearly ordered group G and a non-empty shift-set A of G, the
natural partial order and solutions of equations on the semigroup B(A) are
described. We study topologizations of the semigroups B(A4). In particular, we
show that for an arbitrary countable linearly ordered group G and a non-
empty shift-set A of G, every Baire shift-continuous T, -topology t© on B(A)
is discrete. We also prove that for an arbitrary linearly non-densely ordered
group G and a non-empty shift-set A of G, every shift-continuous
Hausdorff topology t on the semigroup B(A4) is discrete, and hence (B(4),7)
is a discrete subspace of any Hausdorff semitopological semigroup which
contains B(A) as a subsemigroup.
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1. Solutions of some equations and the natural partial order on the se-
migroup B(A). It is well known that every inverse semigroup S admits the
natural partial order:

s=<t ifandonlyif s=et for some e e E(S).

This order induces the natural partial order on the semilattice E(S), and for
arbitrary s,t € S the following conditions are equivalent:

(@: s=t; B): s=ss't; (y: s=tsls (3)

(see [41, Chap. 3]).
Proposition 1. Let G be a linearly ordered group and A be a non-empty
shift-set in G . Then the following assertions hold:

(@) if (9,9),(h,h) € E(B(A)) then (g,9) = (h,h) if and only if g=h in A;

(i7) the semilattice E(B(A)) is isomorphic to A considered as v -semilat-
tice under the isomorphism i : E(B(A)) »> A,17:(g,9) > ¢ ;

(772) (g9,h)R.(k,¢) in B(A) if and only if g =k in A;
(iv) (g,h)L(k,?) in B(A) if and only if h=/{ in A,

(v) (g,h)H (k,f) in B(A) if and only if g=k and h=/¢ in A, and hence

every H -class in B(A) is a singleton;

(vi) B(A) is a bisimple semigroup and hence it is simple;

P r o o f. Assertions (7) and (¢2) are trivial, (#22)—(v) follow from Propo-
sition 2.1 from [31] and Proposition 3.2.11 from [41], and (v%) follows from Pro-
position 3.2.5 from [41]. ¢

Later we need the following lemma, which describes the natural partial
order on the semigroup B(A).

Lemma 1. Let G be a linearly ordered group and A be a mon-empty
shift-set in G . Then for arbitrary elements (a,b), (c,d) € B(A) the following
conditions are equivalent:

(@) (a,b) =2 (c,d) in B(A);
(i) a'-b=c'-d and a>c in A;
(i) bV -a=dl-band b>d in A.
P r o o f. () = (i3). The equivalence of conditions (a) and (B) in (3) im-

plies that (a,b) <(c,d) in B(A) if and only if (a,b) = (a,b)(a,b) }(c,d).
Therefore we have that

(a,b) = (a,b)(a,b) ' (c,d) = (a,b)(b,a)(c,d) = (a,a)(c,d) =

(c-at-a,d), a<e,

=< (c,d), a=c,

(@,a-ct-d), a>c.

This implies that

(Cid)7 a < C’
(a,b) =1 (c,d), a=c
(@,a-ct-d), a>c,
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and hence the condition (a,b) < (c,d) in B(A) implies that alb=ct-d
and a>c in A.

(i) = (@). Fix arbitrary (a,b),(c,d) € B(A) such that a'-b=c?-d and
a>c in A. Then we have that

(a,b) = (a,b)(a,b)fl(c,d) = (a,b)(b,a)(c,d) =

= (a,a)(c,d) = (a,a-c'-d) = (a,b)
and hence (a,b) < (c,d) in B(A).

The proof of the equivalence (i7) < (41%) is trivial. ¢

The definition the semigroup operation in B(A) implies that (a,b) =
= (a,c)(c,d)(d,b) for arbitrary elements a, b, c,d of the group A. The fol-
lowing two propositions give descriptions of solutions of some equations in the
semigroup B(4).

Proposition 2. Let G be a linearly ordered group, A be a non-empty
shift-set in G, and a, b, c,d be arbitrary elements of A. Then the following
conditions hold:

(@) (a,b)=(a,c)(x,y) for (x,y) e B(A) if and only if (c,b) = (x,y) in

B(A);

(7) (a,b) = (x,y)(d,b) for (x,y) e B(A) if and only if (a,d) = (x,y) in
B(4);

(#1) a,b = (a,c)(x,y)(d,b) for (x,y) € B(A) if and only if (c,d) = (x,y) in
B(A).
Proof (7) (=) Suppose that (a,b) =(a,c)(x,y) for some (x,y) € B(4).
Then we have that
(a-,c- xt ‘Y), ¢>ux,
(a7 C)(x, y) = (a7 y)’ C = x’
(.7c-c_1 -a,y), c<x.

Then in the case when ¢ > x we get that b=c-a -y and hence Lem-
ma 1 implies that (c,b) < (x,y) in B(A). Also, in the case when c=x we
have that b =y, which implies the inequality (c,b) < (x,y) in B(A). The case
c<x does not hold because the group operation on G implies that
x-c'a<a.

(«<). Suppose that the relation (c,b) < (a,y) holds in B(A). Then by Lem-
ma 1 we have that ¢! -b=a" -y and ¢ 2 x in A, and hence the semigroup
operation of B(A) implies that

(aic)(x7y) = (a,c : 'xﬁl : y) = (a,c : C71 : b) = (CL, b) .
The proof of statement (i7) is similar to statement (7).

(747) (=). Suppose that (a,b) = (a,c)(x,y)(d,b) for some (x,y) € B(A).
Then we have that
1

(a,c-x -y), c>ux,
(a,c)(x,y) =4 (a,y), c=ux,
(x-c’l-a,y), c<x.
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Therefore,
(a) if ¢ > x, then
(a,0)(x,y)(d,b) = (a,c- " - y)(d,b) =
(@,c-x! -y-cl_1 ‘b), c-xt-
=4 (a,b), c-x
C .

(d-y’l-x-c’l-a,b), x -

1 .

(b) if ¢ = a, then
(a,y-d™-b), y>d,
(a,c)(x,y)(d,b) = (a,y)(d,b) =1 (a,b), y=d,
d-y'-ab), y<d;
(c) if ¢ < x, then
(x-ctayy-dtb), y>d,
(a,e)(@,y)(d,b) = (x- ¢ -a,y)(d,b) = (x-c -a,b), y=d,
(ol-y_1 cx-cla,b), y <d.
Then the equality (a,b) = (a,c)(x,y)(d,b) implies that
in case (a): if c>x,then c-a?-y-d'=ein G,
in case (b): if c=x, then y=4d,
and the case (c) does not hold. Hence, by Lemma 1 we get that (c,d) < (x,y)
in B(A).
(<=). Suppose that the relation (c,d) < (x,y) holds in B(A). Then by Lem-
ma 1 we have that ¢'-d=x"'-y and ¢>x in A, and hence the semigroup
operation of B(A) implies that

1 1

(a,c)(x,y)(d,b) = (a,c)(x,y)(c cx y,b) = (aic)(c Sx y- y71 ' x7b) =

= (a,0)(c-x ™" - x,b) = (a,0)(c,b) = (a,b),
because c-x ' -y >y in A.
Proposition 3. Let G be a linearly ordered group, A be a non-empty

shift-set in G, and a, b, c,d be arbitrary elements of A. Then the following
conditions hold:

(@) if a<c in A, then the equation (a,b) =(c,d)(x,y) has no solutions
in B(A);

(1) if a>c in A, then the equation (a,b) = (c,d)(x,y) has the unique
solution (x,y) = (a- ¢l-d,b) in B(A);

(717) the equation (a,b) = (a,d)(x,y) has the unique solution (x,y)=(d,b)
in B(A);

(iv) if b<d in A then the equation (a,b) = (x,y)(c,d) has no solutions in
B(A);

(v) if b>d in A, then the equation (a,b)=(x,y)(c,d) has the unique
solution (x,y) = (a,b-d™" -¢) in B(A);

(vi) the equation (a,b) = (x,y)(c,b) has the unique solution (x,y) = (a,c)
in B(A).
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Pr oo f (i). Assume that a < c. Then formula (2) implies that d < x in
A and hence (a,b) = (x-d ! -c,y). This implies that a =x-d ' -¢ and b = Y.
Since d < x, the equality a = x- dl.c implies that a > ¢, which contradicts

the assumption of statement ().
(77). Assume that a > c. Then formula (2) implies that d <x in A and

hence we have that (a,b)=(x- dt -¢,y). This implies the equalities
x=a-c'-dand y=»b.

(717) follows from formula (2).

The proofs of statements (iv), (v) and (vi) are dual to the proofs of (z),
(22), and (17), respectively. ¢

Later we need the following proposition which follows from formula (2)
and describes right and left principal ideals in the semigroup B(A) for a non-
empty shift-set A in G.

Proposition 4. Let G be a linearly ordered group and A be a non-empty
shift-set in G . Then the following conditions hold:

(7) (a,a)B(A) = {(.x',y) € B(A):x>a in A};

(77) B(A)(a,a) = {(.x',y) € B(A):y=>a in A}.

2. On topologizations of the semigroup B(A). It is obvious that every
left (right) topological group G with an isolated point is discrete. This implies
that every countable T, -Baire left (right) topological group is a discrete space,
too. Later we shall show that the similar statement holds for Baire se-
mitopological semigroup B(A) over a non-empty shift-set A of a countable
linearly ordered group G .

For an arbitrary element (a,b) of the semigroup B(A) we denote

T (a,b) = {(x,y) € B(A) : (a,b) < (x,y)} .

Lemma 2. Let G be a linearly ordered group, A be a non-empty shift-set
m G, and T be a shift-continuous topology on B(A) such that (B(A),1)
contains an isolated point. Then the space (B(A), 1) is discrete.

P r o o f. Suppose that (a,b) is an isolated point of the topological space
(B(A),1). Assume that for an arbitrary u € A there exists ¢ € A such that
u >c, which implies d=c-u'-b<b. By Proposition 3(v) the equation
(a,b) = (x,y)(c,d) has the unique solution

(x,y) = (a,b-ol_1 -c) = (a,b~(c.u‘1 .b)—l ~c) =

= (a,b-b"1 cu-ct -¢) =(a,u)

in B(A). If u is the smallest element of A, then by Proposition 3(vi), the
equation (a,b)=(x,y)(u,b) has the unique solution (x,y)=(a,u). In both
cases the continuity of right translations in (B(A4),t) implies that for arbitrary
u € A the pair (a,u) is an isolated point of the topological space (B(A4),1).

Fix an arbitrary element v of A. Assume that there exists d € A such
that d < v, which implies ¢c=d-v'-a <a. Then by Proposition 3(ii), the
equation (a,u) = (c,d)(x,y) has the unique solution

(x,y)=(a-c'-du)=(a-(d-v"' a)"-du)=

=(a-atv-dt-du) = (v,u)
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in B(A). If v is the smallest element of A, then by Proposition 3(iiz), the
equation (a,u) = (a,v)(x,y) has the unique solution (x,y) = (v,u). Since (a,u)
is an isolated point of (B(A), 1), in both cases the continuity of left translations
in (B(A),t) implies that for arbitrary u € A the pair (v,u) is an isolated point
of the topological space (B(A4),t). This completes the proof of the lemma. ¢

Theorem 1. Let A be a countable non-empty shift-set in a linearly
ordered group G and t be a T, -Baire shift-continuous topology on B(A).
Then the topological space (B(A),t) is discrete.

P r o o f. By Proposition 1.30 from [36] every countable Baire T -space
contains a dense subspace of isolated points, and hence the space (B(A4),71)
contains an isolated point. Then we apply Lemma 2. ¢

Theorem 1 implies the following

Corollary 1. Let A be a countable non-empty shift-set in a linearly
ordered group G, and 1T be a shift-continuous Cech complete (locally compact)
T, -topology on B(A). Then the topological space (B(4),t) is discrete.

Remark 1. Let R be the set of reals with usual topology. It is obvious
that Sp = RxR with the semigroup operation

(a—b+ecd), b<e,

(a,b)(c,d) =1 (a,d), b=c,

(a,b—c+d), b>c,
is isomorphic to the semigroup B(G), where G is the additive group of reals
(R,+) with usual linear order <. Then simple verifications show that S with
the product topology 7, is a topological inverse semigroup (also, see [39, 40]).

Then the subspace SQ ={(x,y) € Sg :x and y are rational} with the indu-
ced semigroup operation from S is a countable non-discrete non-Baire
topological inverse subsemigroup of (S,rp). Also, the same we get in the case
of subsemigroup S(& ={(x,y) € Sg:x>0 and y2> 0} of (S,7,) (see [4-8]).

The above arguments show that the condition in Theorem 1 that t isa T -

Baire topology is essential.
Recall that a linearly ordered group G is said to be densely ordered if
for every positive element g € G there exists a positive element h € G such

that h <g.

Remark 2. It is obviously that for a linearly ordered group G the follo-
wing conditions are equivalent:
(1) G 1is not densely ordered,

(i) for every geG there exists a unique ¢ e€G such that
G (9\G"(g")={g};

(777) for every ge G there exists a unique g €G such that
G'(9)\G"(g")={g}, where G (g) is the negative cone on the element
g,ie, G (g)={xeG:x<g}.

In what follows, for a linearly ordered group G which is not densely

ordered and an arbitrary element g of a non-empty shift-set A in G by ¢*
(respectively, g~ ) we denote the minimum (respectively, maximum) element

of the set G"(g)\ {g} N A (respectively, G (g)\ {g} N A).
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Theorem 2. Let G be a linearly ordered group which is not densely orde-
red and A be a mon-empty shift-set in G . Then every shift-continuous
Hausdorff topology t on the semigroup B(A) is discrete, and hence B(A) is a
discrete subspace of any semitopological semigroup which contains B(A) as a
subsemigroup.

P r o o f. We fix an arbitrary idempotent (a,a) of the semigroup B(A)
and suppose that (a,a) is a non-isolated point of the topological space
(B(A),7). Since the maps Ai,, :B(A) > B(A) and pg,, :B(A) > B(A)
defined by the formula (x,y)k(a,a) = (a,a)(x,y) and (x,y)p(a’a) = (x,y)(a,a) are
continuous retractions, we conclude that (a,a)B(A) and B(A)(a,a) are closed

subsets in the topological space (B(A),t) (see [23, Exercise 1.5.C]). For an

arbitrary element b of the shift-set A in the linearly ordered group G we
put

DL, ,)[(b,b)] = {(x,y) € B(A) : (x,y)(b,b) = (b,b)} .
Lemma 1 and Proposition 2 imply that
DL, ,)[(b,b)] =T, (b,b) = {(x,x) € B(A): z <b in A}

and since right translations are continuous maps in (B(A),T) we get that
DL(b7b)[(b,b)] is a closed subset of the topological space (B(A),t) for every
b e A. Then there exists an open neighbourhood W, ,, of the point (a,a) in
the topological space (B(A),t) such that

W

(a,a

y € B(A)\ ((@",a")B(A)U B(A)(a",a")UDL(a",a")).

Since (B(A),t) is a semitopological semigroup we conclude that there
exists an open neighbourhood V|, ,, of the idempotent (a,a) in the topological

space (B(A),t) such that the following conditions hold:
\%

(a,a

) S Waoy  (@0) Vigay € Wy Vg (@8) € W)
Hence at least one of the following conditions holds:
(@) the neighbourhood V|, , contains infinitely many points

(a,y) € B(A) such that x <y <a in the group A4;
or
(b)  the neighbourhood V|, , contains infinitely many points

(x,y) € B(A) such that y < x < a in the group A.
In the case (a) by Proposition 2 we have that

(a,a0)(x,y) = (q,a-x ' -y) g W,

a,a)’
because x ' -y >e in G, and in the case (b) by Proposition 2 we have that

(xv y)(a,a) = (a’ : y71 : x,a) 2 V‘/(

a,a)

because y'-x>e in G, which contradicts the separate continuity of the
semigroup operation in (B(A),t). The obtained contradiction implies that the
set Vi, isa singleton, and hence the idempotent (a,a) is an isolated point of

the topological space (B(A4),1).
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Now, we apply Lemma 2 and get that the topological space (B(4),1) is

discrete. ¢

Theorem 2 implies the following three corollaries.
Corollary 2. Let G be a linearly ordered group which is not densely

ordered and A be a mnon-empty shift-set in G . Then every semigroup
Hausdorff topology t on the semigroup B(A) is discrete.

Corollary 3 [24]. Every shift-continuous Hausdorff topology t on the bi-

cyclic extended semigroup C, is discrete.

Corollary 4 [15, 22]. Every shift-continuous Hausdorff topology t on the

bicyclic monoid C(p,q) s discrete.
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HAMIBTOMNOMNONIYHI BILUKMIYHI PO3LWNPEHHSA NIHINHO
BNOPAOKOBAHUX I'PYN

ITiomnoncuny A < G atHitiHo enopadkosanoi zpynu G HA3UBAIOMb MPAHCAAYIUHOTO,

akuwo oas doginvHux x,Yy,z€ A, y <x, etemenm X - y ' -ze A. Onucano npupodnuil
yacmrosull nopsadox i po3e’a3ku pisHAHb Ha nieepyni B(A) 3cyeis dodamHux KoHYycCie
muoxcunu A . Busuaemwca monoaozizayia nisepynu B(A). 3oxkpema, nokasaro, w0 0asl
008IAbHOT 3ATUEHHOT NTHIUHO 8nopadkosanoi epynu G 1 HEeNOPOICHLOT MPAHCAAYIUHOL
muomcurnu A, A c G, xoxcHa Oepiscbka Mpancasuiino Henepepena T, -mononozis <t
Ha B(A) € duckpemnoro. Takosx dogedeno, wo 0nsn 008LALHOT ATHIUHO HEWIABHO 8NOPAO0-
Ko8anoil epynu G i HenopoHCHBOT MPAHCAAYIUHOT MHONCUHU A KOHIHA MPAHCAAYIUHO
Henepepsna 2aycdopgosa monoaozii T Ha nigzpyni B(A) e duckpemnoro.

nonyTonosorM4eECKUE BULIMKIMMYECKUE PACLLUUPEHUA
JIMHEWHO YNOPAOOYEHHbIX TPYMNN

IToomnoscecmso A < G auneluno ynopadouenHnol epynnvt G HA3bLBATOM MPAHCAAYU-

OHMBLM, ecAu OAf MPOUIBOALHBIL X,Y,z€ A, Yy <x, asemenm x-y ' -ze A. Onucan
ecmecmeentsltl. YacCmMuUduHbld Nopadox U peweHus YypasHeHut Ha mnoayzpynne B(A)
c08U208 NONOHCUMEABHBLL KOHYCO8 MmHodcecmsea A . Vsyuaemcs mMoOnoao2usayus noay-
epynnovt B(A). B uwacmuocmu, moxkasaHo, 4mo Oas NPOU3BOALHOU CUEMHOU AUHEUHO
ynopadouennou epynnvt. G U HENYcmoz0 MmpaHcasyuorHozo wmuoxcecmea A, Ac G,
Kaxcoas 6IPOECKAL MPAHCAAYUOHHO HenpepbieHas T -mononozus t na B(A) searsemcs
Ouckpemnoi. Taxxce Odoxazano, 4¥mo 048 NPOUIBOALHOU AUHEUHO HENAOMHO Ynopsdo-
uennoU epynnvt G U HeNYcmozo MPAHCAAYUOHHOZ0 MHOdcecmea A Kaxc0as Mpancas-
YUOHHO HenpepsvleHas z2aycdopgosa monoaozus T Ha mnoayepynne B(A) sasasemcs
ducxkpemnou.
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