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ON SEMITOPOLOGICAL BICYCLIC EXTENSIONS OF 
LINEARLY ORDERED GROUPS 
 

For a linearly ordered group G  let us define a subset A G⊆  to be a shift-set if 

for any , ,x y z A∈  with y x<  we get 1x y z A−⋅ ⋅ ∈ . We describe the natural 

partial order and solutions of equations on the semigroup ( )B A  of shifts of 

positive cones of A . We study topologizations of the semigroup ( )B A . In 

particular, we show that, for an arbitrary countable linearly ordered group G  and 
a non-empty shift-set A  of G , every Baire shift-continuous 1T -topology τ  on 

( )B A  is discrete. Also we prove that, for an arbitrary linearly non-densely ordered 

group G  and a non-empty shift-set A  of G , every shift-continuous Hausdorff 
topology τ  on the semigroup ( )B A  is discrete.  

 
Introduction and preliminaries. We shall follow the terminology of [17, 

21, 23, 27, 36, 43, 44]. 
A semigroup is a non-empty set with a binary associative operation. A 

semigroup S  is called inverse if for any x S∈  there exists a unique y S∈  

such that x y x x⋅ ⋅ =  and y x y y⋅ ⋅ = . Such an element y  in S  is called the 

inverse of x  and denoted by 1x− . The map defined on an inverse semigroup 

S  which maps every element x  of S  to its inverse 1x−  is called the 
inversion. 

For a semigroup S  by ( )E S  we denote the set of idempotents in S. If S  
is an inverse semigroup, then ( )E S  is closed under multiplication and we shall 
refer to ( )E S  as the band of S . A semilattice is a commutative semigroup of 
idempotents. 

Let Xℑ  denote the set of all partial one-to-one transformations of an in-

finite set X  together with the following semigroup operation: ( ) ( )x xαβ = α β  

if dom ( ) dom | domx y y∈ αβ = ∈ α α ∈ β{ } , for , Xα β ∈ ℑ . The semigroup Xℑ  

is called the symmetric inverse semigroup over the set X  (see [21].). The sym-
metric inverse semigroup was introduced by Wagner [1] and it plays a major 
role in the theory of semigroups. 

The bicyclic monoid ( , )C p q  is the semigroup with the identity 1  genera-

ted by two elements p  and q  subjected only to the condition 1pq = . The bi-

cyclic monoid is a combinatorial bisimple F -inverse semigroup and it plays an 
important role in the algebraic theory of semigroups and in the theory of to-
pological semigroups. For example the well-known Andersen’s result [9] states 
that a (0 )− simple semigroup is completely (0 )−  simple if and only if it does 
not contain the bicyclic monoid. The bicyclic monoid does not embed into 
stable semigroups [38]. 

Recall from [27] that a partially-ordered group is a group ( , )G ⋅  equipped 

with a translation-invariant partial order ≤ ; in other words, the binary 
relation ≤  has the property that, for all , ,a b g G∈ , if a b≤  then a g b g⋅ ≤ ⋅  

and g a g b⋅ ≤ ⋅ . 

By e  we denote the identity of a group G . The set :G x G e x+ = ∈ ≤{ }  

in a partially ordered group G  is called the positive cone of G  and satisfies 
the properties: 



32 

1°) G G G+ + +⋅ ⊆ ; 

2°) 1( )G G e+ + − =∩ { } ; 

3°) 1x G x G− + +⋅ ⋅ ⊆  for each x G∈ . 

Any subset P  of a group G  that satisfies the conditions 1°–3° induces a 

partial order on G  ( x y≤  if and only if 1x y P− ⋅ ∈ ) for which P  is the 

positive cone. An elements of the set \G e+ { }  is called positive. 

A linearly ordered or totally ordered group is an ordered group G  whose 
order relation « ≤ » is total (see [16] and [20]). 

From now on we shall assume that G  is a non-trivial linearly ordered 
group. 

For every g G∈  the set  

 ( ) :G g x G g x+ = ∈ ≤{ } . 

is called the positive cone on element g  in G . 

For arbitrary elements ,g h G∈  we consider a partial map :g
h G Gα →  

defined by the formula 

 1( ) g
hx x g h−α = ⋅ ⋅ , for ( )x G g+∈ . 

We observe that Lemma XIII.1 from [16] implies that for such partial map 

:g
h G Gα →  the restriction : ( ) ( )g

h G g G h+ +α →  is a bijective map. 

We consider the semigroups 

 ( ) : : ,g
hB G G G g h G= α → ∈{ } , 

 ( ) : : ,g
hB G G G g h G+ += α → ∈{ } , 

endowed with the operation of the composition of partial maps. Simple verifi-
cations show that 

 g k a
bhα ⋅ α = αl , where 1( )a h k h g−= ∨ ⋅ ⋅  and 1( )b h k k−= ∨ ⋅ ⋅ l , (1) 

for , , ,g h k G∈l , where by h k∨  we denote the join of h  and k  in the 

linearly ordered set ( , )G ≤ . Therefore, property 1° of the positive cone and 

condition ( )1  imply that ( )B G  and ( )B G+  are subsemigroups of Gℑ . 

By Proposition 1.2 from [31] for a linearly ordered group G  the following 
assertions hold: 

 (i) elements g
hα  and h

gα  are inverse of each other in ( )B G  for all 

,g h G∈  (respectively, ( )B G+  for all ,g h G+∈ ); 

 (ii) an element g
hα  of the semigroup ( )B G  (respectively, ( )B G+ ) is an 

idempotent if and only if g h= ; 

(iii) ( )B G  and ( )B G+  are inverse subsemigroups of Gℑ ; 

(iv) the semigroup ( )B G  (respectively, ( )B G+ ) is isomorphic to the set 

GS G G= ×  (respectively, GS G G+ + += × ) with the following semi-

group operation: 

 

1

1

( , ), ,
( , )( , ) ( , ), ,

( , ), ,

c b a d b c
a b c d a d b c

a b c d b c

−

−

 ⋅ ⋅ <
= =
 ⋅ ⋅ >

 (2) 
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where , , ,a b c d G∈  (respectively, , , ,a b c d G+∈ ). 
It is obvious that: 
1°) if G is isomorphic to the additive group of integers ( , )+Z  with usual 

linear order ≤ , then the semigroup ( )B G+  is isomorphic to the bicyclic mo-

noid ( , )C p q  and the semigroup ( )B G+  is isomorphic to the extended bicyclic 

semigroup CZ  (see [24]); 

2°) if G  is the additive group of real numbers ( , )+R  with usual linear 

order ≤ , then the semigroup ( )B G  is isomorphic to 2
( , )B −∞ ∞  (see [40, 39] ) and 

the semigroup ( )B G+  is isomorphic to 1
0, )B ∞[  (see [4–8]); 

3°) the semigroup ( )B G+  is isomorphic to the semigroup ( )S G  which is 
defined in [25, 26]. 

In the paper [31] semigroups ( )B G  and ( )B G+  are studied for a linearly 

ordered group G . That paper describes Green’s relations on ( )B G  and ( )B G+  
and their bands and shows that these semigroups are bisimple. Also in [31] it 
is proved that, for a commutative linearly ordered group G , all non-trivial 

congruences on the semigroups ( )B G  and ( )B G+  are group congruences if 
and only if the group G  is Archimedean; and the structure of group con-

gruences on the semigroups ( )B G  and ( )B G+  is described. 
In this paper we present a more general construction than the semi-

groups ( )B G  and ( )B G+ . Namely, for a linearly ordered group G  let us 
define a subset A G⊆  to be a shift-set if for any , ,x y z A∈  with y x<  we 

get 1x y z A−⋅ ⋅ ∈ . For any shift-set A G⊆  let  

 ( ) : ( ) ( ) : ,a
bB A G a G b a b A+ += α → ∈{ }  

be the semigroup of partial bijections defined by the formula 

 1( ) a
bx x a b−α = ⋅ ⋅  for ( )x G a+∈ . 

The semigroup ( )B A  is isomorphic to the semigroup AS A A= ×  endowed 

with the binary operation defined by formula (2). For A G=  the semigroup 

( )B A  coincides with ( )B G  and for A G+=  it coincides with the semigroup 

( )B G+ . 
Later in this paper for a non-empty shift-set A G⊆  we identify the 

semigroup ( )B A  with the semigroup AS  endowed with the multiplication 

defined by formula (2). We observe that ( )B A  is an inverse subsemigroup of 
( )B G  for any non-empty shift-set A  of a linearly ordered group G . 

Moreover, the results of [31] imply that an element ( , )a b  of ( )B A  is an 
idempotent iff a b= , and ( , )b a  is inverse of ( , )a b  in ( )B G . 

We recall that a topological space X  is said to be 

• locally compact, if every point x X∈  has an open neighbourhood with 
the compact closure; 

• Čech-complete, if X  is Tychonoff and X  is a Gδ -set in its Čech –

Stone compactification Xβ ; 

• Baire, if, for each sequence 1( )i iU ∞
=  of open dense subsets of X , the 

intersection 
1

i
i

U
∞

=
∩  is a dense subset in X . 



34 

Every Hausdorff locally compact space is Čech-complete, and every 
Čech-complete space is Baire (see [23]). 

A semitopological (topological) semigroup is a topological space with a se-
parately continuous (jointly continuous) semigroup operation. 

A topology τ  on a semigroup S  is called: 
• semigroup if ( , )S τ  is a topological semigroup; 

• shift-continuous if ( , )S τ  is a semitopological semigroup. 

The bicyclic monoid admits only the discrete semigroup Hausdorff topo-
logy and if a topological semigroup S  contains it as a dense subsemigroup 
then ( , )C p q  is an open subset of S  [22]. We observe that the openness of 

( , )C p q  in its closure easily follows from the non-topologizability of the bicyc-

lic monoid, because the discrete subspace D  is open in its closure D  in any 

1T -space containing D . Bertman and West in [15] extend this result for the 

case of Hausdorff semitopological semigroups. Stable and Γ -compact topologi-
cal semigroups do not contain the bicyclic monoid [10, 37]. The problem of an 
embedding of the bicyclic monoid into compact-like topological semigroups 
studied in [11, 12, 33]. Independently Taimanov in [3] constructed a semigroup 

æA  of cardinality æ  which admits only the discrete semigroup topology. Also, 
Taimanov [2] gave sufficient conditions on a commutative semigroup to have 
a non-discrete semigroup topology. In the paper [29] it was shown that for the 
Taimanov semigroup æA  from [3] the following conditions hold: every 1T -to-

pology τ  on the semigroup æA  such that ( , )τæA  is a topological semigroup is 

discrete; for every 1T -topological semigroup which contains æA  as a subsemi-

group, æA  is a closed subsemigroup of S ; and every homomorphic non-iso-

morphic image of æA  is a zero-semigroup. Also in the paper [24] it is proved 
that the discrete topology is the unique shift-continuous Hausdorff topology 
on the extended bicyclic semigroup CZ . Also, for many (0 )− bisimple semi-

groups of transformations S  the following statement holds: every shift-conti-
nuous Hausdorff Baire (in particular locally compact) topology S  is discrete 
(see [18, 19, 32, 34, 35]). In the paper [42] Mesyan, Mitchell, Morayne and Pé-
resse showed that if E  is a finite graph, then the only locally compact Haus-
dorff semigroup topology on the graph inverse semigroup ( )G E  is the discrete 
topology. In [14] it was proved that the conclusion of this statement also holds 
for graphs E  consisting of one vertex and infinitely many loops (i.e., infinite-
ly-generated polycyclic monoids). A surprising dichotomy for the bicyclic mo-

noid with adjoined zero 0 ( , ) 0C C p q= C{ }  was proved in [28]: every Hausdorff 

locally compact semitopological bicyclic monoid 0C  with adjoined zero is 
either compact or discrete. The above dichotomy was extended by Bardyla in 
[13] to locally compact λ -polycyclic semitopological monoids and to locally 
compact semitopological interassociates of the bicyclic monoid [30]. 

For a linearly ordered group G  and a non-empty shift-set A  of G , the 
natural partial order and solutions of equations on the semigroup ( )B A  are 
described. We study topologizations of the semigroups ( )B A . In particular, we 
show that for an arbitrary countable linearly ordered group G  and a non-
empty shift-set A  of G , every Baire shift-continuous 1T -topology τ  on ( )B A  
is discrete. We also prove that for an arbitrary linearly non-densely ordered 
group G  and a non-empty shift-set A  of G , every shift-continuous 
Hausdorff topology τ  on the semigroup ( )B A  is discrete, and hence ( ( ), )B A τ  
is a discrete subspace of any Hausdorff semitopological semigroup which 
contains ( )B A  as a subsemigroup. 
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1. Solutions of some equations and the natural partial order on the se-
migroup ( )B A . It is well known that every inverse semigroup S  admits the 
natural partial order: 

 s t°  if and only if s et=  for some ( )e E S∈ . 

This order induces the natural partial order on the semilattice ( )E S , and for 
arbitrary ,s t S∈  the following conditions are equivalent: 

 (α): s t° ; (β): 1s ss t−= ; (γ): 1s ts s−=  (3) 

(see [41, Chap. 3]).  
Proposition 1. Let G  be a linearly ordered group and A  be a non-empty 

shift-set in G . Then the following assertions hold: 

(i) if ( , ), ( , ) ( ( ))g g h h E B A∈  then ( , ) ( , )g g h h°  if and only if g h≥  in A ; 

 (ii) the semilattice ( ( ))E B A  is isomorphic to A  considered as ∨ -semilat-
tice under the isomorphism ( ( )) , : ( , )i : E B A A i g g g→ → ; 

 (iii) ( , ) ( , )g h kR l  in ( )B A  if and only if g k=  in A ; 

 (iv) ( , ) ( , )g h kL l  in ( )B A  if and only if h = l  in A ; 

 (v) ( , ) ( , )g h kH l  in ( )B A  if and only if g k=  and h = l  in A , and hence 

every H -class in ( )B A  is a singleton;  

 (vi) ( )B A  is a bisimple semigroup and hence it is simple; 

P r o o f.  Assertions (i) and (ii) are trivial, (iii)–(v) follow from Propo-
sition 2.1 from [31] and Proposition 3.2.11 from [41], and (vi) follows from Pro-
position 3.2.5 from [41].   

Later we need the following lemma, which describes the natural partial 
order on the semigroup ( )B A . 

Lemma 1. Let G  be a linearly ordered group and A  be a non-empty 
shift-set in G . Then for arbitrary elements ( , ), ( , ) ( )a b c d B A∈  the following 
conditions are equivalent: 

 (i) ( , ) ( , )a b c d°  in ( )B A ; 

 (ii) 1 1a b c d− −⋅ = ⋅  and a c≥  in A ; 

 (iii) 1 1b a d b− ⋅ −⋅ = ⋅  and b d≥  in A . 

P r o o f.  (i) ⇒ (ii). The equivalence of conditions (α) and (β) in ( )3  im-

plies that ( , ) ( , )a b c d°  in ( )B A  if and only if 1( , ) ( , )( , ) ( , )a b a b a b c d−= . 
Therefore we have that 

 1( , ) ( , )( , ) ( , ) ( , )( , )( , ) ( , )( , )a b a b a b c d a b b a c d a a c d−= = = =  

 

1

1

( , ), ,
( , ), ,

( , ), .

c a a d a c
c d a c

a a c d a c

−

−

 ⋅ ⋅ <
= =
 ⋅ ⋅ >

 

This implies that 

 
1

( , ), ,
( , ) ( , ), ,

( , ), ,

c d a c
a b c d a c

a a c d a c−

 <
= =
 ⋅ ⋅ >
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and hence the condition ( , ) ( , )a b c d°  in ( )B A  implies that 1 1a b c d− −⋅ = ⋅  
and a c≥  in A . 

(ii) ⇒ (i). Fix arbitrary ( , ), ( , ) ( )a b c d B A∈  such that 1 1a b c d− −⋅ = ⋅  and 
a c≥  in A . Then we have that 

 1( , ) ( , )( , ) ( , ) ( , )( , )( , )a b a b a b c d a b b a c d−= = =  

 1( , )( , ) ( , ) ( , )a a c d a a c d a b−= = ⋅ ⋅ =  

and hence ( , ) ( , )a b c d°  in ( )B A . 

The proof of the equivalence (ii) ⇔ (iii) is trivial.  

The definition the semigroup operation in ( )B A  implies that ( , )a b =  

( , )( , )( , )a c c d d b=  for arbitrary elements , , ,a b c d  of the group A . The fol-
lowing two propositions give descriptions of solutions of some equations in the 
semigroup ( )B A . 

Proposition 2. Let G  be a linearly ordered group, A  be a non-empty 
shift-set in G , and , , ,a b c d  be arbitrary elements of A . Then the following 
conditions hold: 

 (i) ( , ) ( , )( , )a b a c x y=  for ( , ) ( )x y B A∈  if and only if ( , ) ( , )c b x y°  in 

( )B A ; 

 (ii) ( , ) ( , )( , )a b x y d b=  for ( , ) ( )x y B A∈  if and only if ( , ) ( , )a d x y°  in 

( )B A ; 

(iii) , ( , )( , )( , )a b a c x y d b=  for ( , ) ( )x y B A∈  if and only if ( , ) ( , )c d x y°  in 

( )B A . 

P r o o f.  (i) (⇒). Suppose that ( , ) ( , )( , )a b a c x y=  for some ( , ) ( )x y B A∈ . 
Then we have that 

 

1

1

( , ), ,
( , )( , ) ( , ), ,

( , ), .

a c x y c x
a c x y a y c x

x c a y c x

−

−

 ⋅ ⋅ ⋅ >
= =
 ⋅ ⋅ <

 

Then in the case when c x>  we get that 1b c x y−= ⋅ ⋅  and hence Lem-

ma 1 implies that ( , ) ( , )c b x y≤  in ( )B A . Also, in the case when c x=  we 

have that b y= , which implies the inequality ( , ) ( , )c b x y≤  in ( )B A . The case 

c x<  does not hold because the group operation on G  implies that 
1x c a a−⋅ ⋅ < . 
(⇐). Suppose that the relation ( , ) ( , )c b x y≤  holds in ( )B A . Then by Lem-

ma 1 we have that 1 1c b x y− −⋅ = ⋅  and c x≥  in A , and hence the semigroup 

operation of ( )B A  implies that 

 1 1( , )( , ) ( , ) ( , ) ( , )a c x y a c x y a c c b a b− −= ⋅ ⋅ = ⋅ ⋅ = . 

The proof of statement (ii) is similar to statement (i). 

(iii) (⇒). Suppose that ( , ) ( , )( , )( , )a b a c x y d b=  for some ( , ) ( )x y B A∈ . 
Then we have that 

 

1

1

( , ), ,
( , )( , ) ( , ), ,

( , ), .

a c x y c x
a c x y a y c x

x c a y c x

−

−

 ⋅ ⋅ ⋅ >
= =
 ⋅ ⋅ <
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Therefore, 
(a) if c x> , then 

 1( , )( , )( , ) ( , )( , )a c x y d b a c x y d b−= ⋅ ⋅ =  

 

1 1 1

1

1 1 1

( , ), ,

( , ), ,

( , ), ;

a c x y d b c x y d

a b c x y d

d y x c a b c x y d

− − −

−

− − −

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ >
= ⋅ ⋅ =
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ <

 

(b) if c x= , then 

 

1

1

( , ), ,
( , )( , )( , ) ( , )( , ) ( , ), ,

( , ), ;

a y d b y d
a c x y d b a y d b a b y d

d y a b y d

−

−

 ⋅ ⋅ ⋅ >
= = =
 ⋅ ⋅ <

 

(c) if c x< , then 

 

1 1

1 1

1 1

( , ), ,

( , )( , )( , ) ( , )( , ) ( , ), ,

( , ), .

x c a y d b y d

a c x y d b x c a y d b x c a b y d

d y x c a b y d

− −

− −

− −

 ⋅ ⋅ ⋅ ⋅ ⋅ >
= ⋅ ⋅ = ⋅ ⋅ =
 ⋅ ⋅ ⋅ ⋅ <

 

Then the equality ( , ) ( , )( , )( , )a b a c x y d b=  implies that  

in case (a):  if c x> , then 1 1c x y d e− −⋅ ⋅ ⋅ =  in G , 

in case (b):  if c x= , then y d= , 

and the case (c) does not hold. Hence, by Lemma 1 we get that ( , ) ( , )c d x y°  

in ( )B A . 

(⇐). Suppose that the relation ( , ) ( , )c d x y≤  holds in ( )B A . Then by Lem-

ma 1 we have that 1 1c d x y− −⋅ = ⋅  and c x≥  in A , and hence the semigroup 

operation of ( )B A  implies that 

 1 1 1( , )( , )( , ) ( , )( , )( , ) ( , )( , )a c x y d b a c x y c x y b a c c x y y x b− − −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =  

 1( , )( , ) ( , )( , ) ( , )a c c x x b a c c b a b−= ⋅ ⋅ = = , 

because 1c x y y−⋅ ⋅ ≥  in A . 

Proposition 3. Let G  be a linearly ordered group, A  be a non-empty 
shift-set in G , and , , ,a b c d  be arbitrary elements of A . Then the following 
conditions hold: 

 (i)  if a c<  in A , then the equation ( , ) ( , )( , )a b c d x y=  has no solutions 

in ( )B A ; 

 (ii) if a c>  in A , then the equation ( , ) ( , )( , )a b c d x y=  has the unique 

solution 1( , ) ( , )x y a c d b−= ⋅ ⋅  in ( )B A ; 

(iii) the equation ( , ) ( , )( , )a b a d x y=  has the unique solution ( , ) ( , )x y d b=  

in ( )B A ; 

(iv) if b d<  in A  then the equation ( , ) ( , )( , )a b x y c d=  has no solutions in 

( )B A ; 

(v)  if b d>  in A , then the equation ( , ) ( , )( , )a b x y c d=  has the unique 

solution 1( , ) ( , )x y a b d c−= ⋅ ⋅  in ( )B A ; 

(vi) the equation ( , ) ( , )( , )a b x y c b=  has the unique solution ( , ) ( , )x y a c=  

in ( )B A . 
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P r o o f.  (i). Assume that a c< . Then formula (2) implies that d x<  in 

A  and hence 1( , ) ( , )a b x d c y−= ⋅ ⋅ . This implies that 1a x d c−= ⋅ ⋅  and b y= . 

Since d x< , the equality 1a x d c−= ⋅ ⋅  implies that a c> , which contradicts 
the assumption of statement (i). 

(ii). Assume that a c> . Then formula (2) implies that d x<  in A  and 

hence we have that 1( , ) ( , )a b x d c y−= ⋅ ⋅ . This implies the equalities 
1x a c d−= ⋅ ⋅  and y b= . 

(iii) follows from formula (2). 
The proofs of statements (iv), (v) and (vi) are dual to the proofs of (i), 

(ii), and (iii), respectively.   
Later we need the following proposition which follows from formula (2) 

and describes right and left principal ideals in the semigroup ( )B A  for a non-
empty shift-set A  in G . 

Proposition 4. Let G  be a linearly ordered group and A  be a non-empty 
shift-set in G . Then the following conditions hold: 

 (i) ( , ) ( ) ( , ) ( ) :a a B A x y B A x a= ∈ ≥{  in A} ; 

 (ii) ( )( , ) ( , ) ( ) :B A a a x y B A y a= ∈ ≥{  in A} . 

2. On topologizations of the semigroup ( )B A . It is obvious that every 
left (right) topological group G  with an isolated point is discrete. This implies 
that every countable 1T -Baire left (right) topological group is a discrete space, 
too. Later we shall show that the similar statement holds for Baire se-
mitopological semigroup ( )B A  over a non-empty shift-set A  of a countable 
linearly ordered group G . 

For an arbitrary element ( , )a b  of the semigroup ( )B A  we denote 

 ( , ) ( , ) ( ) : ( , ) ( , )a b x y B A a b x y≤↑ = ∈ °{ }  . 

Lemma 2. Let G  be a linearly ordered group, A  be a non-empty shift-set 
in G , and τ  be a shift-continuous topology on ( )B A  such that ( ( ), )B A τ  
contains an isolated point. Then the space ( ( ), )B A τ  is discrete. 

P r o o f.  Suppose that ( , )a b  is an isolated point of the topological space 
( ( ), )B A τ . Assume that for an arbitrary u A∈  there exists c A∈  such that 

u c> , which implies 1d c u b b−= ⋅ ⋅ < . By Proposition 3(v) the equation 
( , ) ( , )( , )a b x y c d=  has the unique solution 

 1 1 1( , ) ( , ) , ( )x y a b d c a b c u b c− − −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =( )  

 1 1( , ) ( , )a b b u c c a u− −= ⋅ ⋅ ⋅ ⋅ =  

in ( )B A . If u  is the smallest element of A , then by Proposition 3(vi), the 
equation ( , ) ( , )( , )a b x y u b=  has the unique solution ( , ) ( , )x y a u= . In both 

cases the continuity of right translations in ( ( ), )B A τ  implies that for arbitrary 
u A∈  the pair ( , )a u  is an isolated point of the topological space ( ( ), )B A τ .  

Fix an arbitrary element v  of A . Assume that there exists d A∈  such 

that d v< , which implies 1c d v a a−= ⋅ ⋅ < . Then by Proposition 3(ii), the 
equation ( , ) ( , )( , )a u c d x y=  has the unique solution 

 1 1 1( , ) ( , ) ( ) ,x y a c d u a d v a d u− − −= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =( )  

 1 1( , ) ( , )a a v d d u v u− −= ⋅ ⋅ ⋅ ⋅ =  
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in ( )B A . If v  is the smallest element of A , then by Proposition 3(iii), the 
equation ( , ) ( , )( , )a u a v x y=  has the unique solution ( , ) ( , )x y v u= . Since ( , )a u  

is an isolated point of ( ( ), )B A τ , in both cases the continuity of left translations 
in ( ( ), )B A τ  implies that for arbitrary u A∈  the pair ( , )v u  is an isolated point 

of the topological space ( ( ), )B A τ . This completes the proof of the lemma.  

Theorem 1. Let A  be a countable non-empty shift-set in a linearly 
ordered group G  and τ  be a 1T -Baire shift-continuous topology on ( )B A . 

Then the topological space ( ( ), )B A τ  is discrete. 

P r o o f.  By Proposition 1.30 from [36] every countable Baire 1T -space 

contains a dense subspace of isolated points, and hence the space ( ( ), )B A τ  

contains an isolated point. Then we apply Lemma 2.   
Theorem 1 implies the following 
Corollary 1. Let A  be a countable non-empty shift-set in a linearly 

ordered group G , and τ  be a shift-continuous Čech complete (locally compact) 

1T -topology on ( )B A . Then the topological space ( ( ), )B A τ  is discrete. 

Remark 1. Let R  be the set of reals with usual topology. It is obvious 
that S = ×R R R  with the semigroup operation 

 
( , ), ,

( , )( , ) ( , ), ,
( , ), ,

a b c d b c
a b c d a d b c

a b c d b c

− + <= =
 − + >

 

is isomorphic to the semigroup ( )B G , where G  is the additive group of reals 
( , )+R  with usual linear order ≤ . Then simple verifications show that S  with 

the product topology pτ  is a topological inverse semigroup (also, see [39, 40]). 

Then the subspace ( , ) :S x y S x= ∈Q R{  and y  are rational}  with the indu-

ced semigroup operation from S  is a countable non-discrete non-Baire 
topological inverse subsemigroup of ( , )pS τ . Also, the same we get in the case 

of subsemigroup ( , ) : 0S x y S x+ = ∈ ≥Q Q{  and 0y ≥ }  of ( , )pS τ  (see [4–8]). 

The above arguments show that the condition in Theorem 1 that τ  is a 1T -
Baire topology is essential.  

Recall that a linearly ordered group G  is said to be densely ordered if 
for every positive element g G∈  there exists a positive element h G∈  such 

that h g< . 

Remark 2. It is obviously that for a linearly ordered group G  the follo-
wing conditions are equivalent: 

 (i) G  is not densely ordered; 

(ii)  for every g G∈  there exists a unique g G+ ∈  such that 

( ) ( )G g G g g+ + + =\ { } ; 

(iii) for every g G∈  there exists a unique g G− ∈  such that 

( ) ( )G g G g g+ + + =\ { } , where ( )G g−  is the negative cone on the element 

g , i.e., ( ) :G g x G x g− = ∈ ≤{ } . 

In what follows, for a linearly ordered group G  which is not densely 

ordered and an arbitrary element g  of a non-empty shift-set A  in G  by g+  

(respectively, g− ) we denote the minimum (respectively, maximum) element 

of the set ( ) \G g g A+ ∩{ }  (respectively, ( ) \G g g A− ∩{ } ).  
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Theorem 2. Let G  be a linearly ordered group which is not densely orde-
red and A  be a non-empty shift-set in G . Then every shift-continuous 
Hausdorff topology τ  on the semigroup ( )B A  is discrete, and hence ( )B A  is a 
discrete subspace of any semitopological semigroup which contains ( )B A  as a 
subsemigroup. 

P r o o f.  We fix an arbitrary idempotent ( , )a a  of the semigroup ( )B A  
and suppose that ( , )a a  is a non-isolated point of the topological space 

( ( ), )B A τ . Since the maps ( , ) : ( ) ( )a a B A B Aλ →  and ( , ) : ( ) ( )a a B A B Aρ →  

defined by the formula ( , )( , ) ( , )( , )a ax y a a x yλ =  and ( , )( , ) ( , )( , )a ax y x y a aρ =  are 

continuous retractions, we conclude that ( , ) ( )a a B A  and ( )( , )B A a a  are closed 
subsets in the topological space ( ( ), )B A τ  (see [23, Exercise 1.5.C]). For an 
arbitrary element b  of the shift-set A  in the linearly ordered group G  we 
put 
 ( , ) ( , ) ( , ) ( ) : ( , )( , ) ( , )b bDL b b x y B A x y b b b b= ∈ =[ ] { } . 

Lemma 1 and Proposition 2 imply that 

 ( , ) ( , ) ( , ) ( , ) ( ) :b bDL b b b b x x B A x b≤=↑ = ∈ ≤[ ] {  in A}  

and since right translations are continuous maps in ( ( ), )B A τ  we get that 

( , ) ( , )b bDL b b[ ]  is a closed subset of the topological space ( ( ), )B A τ  for every 

b A∈ . Then there exists an open neighbourhood ( , )a aW  of the point ( , )a a  in 

the topological space ( ( ), )B A τ  such that 

 ( , ) ( ) \ ( , ) ( ) ( )( , ) ( , )a aW B A a a B A B A a a DL a a+ + + + − −⊆ ∪ ∪( ) . 

Since ( ( ), )B A τ  is a semitopological semigroup we conclude that there 

exists an open neighbourhood ( , )a aV  of the idempotent ( , )a a  in the topological 

space ( ( ), )B A τ  such that the following conditions hold: 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),     ( , ) ,     ( , )a a a a a a a a a a a aV W a a V W V a a W⊆ ⋅ ⊆ ⋅ ⊆ . 

Hence at least one of the following conditions holds: 
(a) the neighbourhood ( , )a aV  contains infinitely many points 

( , ) ( )x y B A∈  such that x y a< ≤  in the group A ;  
or 

(b) the neighbourhood ( , )a aV  contains infinitely many points 

( , ) ( )x y B A∈  such that y x a< ≤  in the group A . 
In the case (a) by Proposition 2 we have that 

 1
( , )( , )( , ) ( , ) a aa a x y a a x y W−= ⋅ ⋅ ∉ , 

because 1x y e− ⋅ ≥  in G , and in the case (b) by Proposition 2 we have that 

 1
( , )( , )( , ) ( , ) a ax y a a a y x a W−= ⋅ ⋅ ∉   

because 1y x e− ⋅ ≥  in G , which contradicts the separate continuity of the 

semigroup operation in ( ( ), )B A τ . The obtained contradiction implies that the 

set ( , )a aV  is a singleton, and hence the idempotent ( , )a a  is an isolated point of 

the topological space ( ( ), )B A τ . 
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Now, we apply Lemma 2 and get that the topological space ( ( ), )B A τ  is 

discrete.   
Theorem 2 implies the following three corollaries. 
Corollary 2. Let G  be a linearly ordered group which is not densely 

ordered and A  be a non-empty shift-set in G . Then every semigroup 
Hausdorff topology τ  on the semigroup ( )B A  is discrete. 

Corollary 3 [24]. Every shift-continuous Hausdorff topology τ  on the bi-
cyclic extended semigroup CZ  is discrete.  

Corollary 4 [15, 22]. Every shift-continuous Hausdorff topology τ  on the 
bicyclic monoid ( , )C p q  is discrete. 
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НАПІВТОПОЛОГІЧНІ БІЦИКЛІЧНІ РОЗШИРЕННЯ ЛІНІЙНО 
ВПОРЯДКОВАНИХ ГРУП 
 
Підмножину A G⊆  лінійно впорядкованої групи G  називають трансляційною, 

якщо для довільних , ,x y z A∈ , y x< , елемент 1x y z A−⋅ ⋅ ∈ . Описано природний 

частковий порядок і розв’язки рівнянь на півгрупі ( )B A  зсувів додатних конусів 

множини A . Вивчається топологізація півгрупи ( )B A . Зокрема, показано, що для 

довільної зліченної лінійно впорядкованої групи G  і непорожньої трансляційної 
множини A , A G⊆ , кожна берівська трансляційно неперервна 1T -топологія τ  

на ( )B A  є дискретною. Також доведено, що для довільної лінійно нещільно впоряд-

кованої групи G  і непорожньої трансляційної множини A  кожна трансляційно 
неперервна гаусдорфова топологія τ  на півгрупі ( )B A  є дискретною.  
 
ПОЛУТОПОЛОГИЧЕСКИЕ БИЦИКЛИЧЕСКИЕ РАСШИРЕНИЯ 
ЛИНЕЙНО УПОРЯДОЧЕННЫХ ГРУПП 
 
Подмножество A G⊆  линейно упорядоченной группы G  называют трансляци-

онным, если для произвольных , ,x y z A∈ , y x< , элемент 1x y z A−⋅ ⋅ ∈ . Описан 

естественный частичный порядок и решения уравнений на полугруппе ( )B A  

сдвигов положительных конусов множества A . Изучается топологизация полу-
группы ( )B A . В частности, показано, что для произвольной счётной линейно 

упорядоченной группы G  и непустого трансляционного  множества A , A G⊆ , 

каждая бэровская трансляционно непрерывная 1T -топология τ  на ( )B A  является 

дискретной. Также доказано, что для произвольной линейно неплотно упорядо-
ченной группы G  и непустого трансляционного  множества A  каждая трансля-
ционно непрерывная гаусдорфова топология τ  на полугруппе ( )B A  является 
дискретной.  
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