
156 ISSN 0130–9420. Мат. методи та фіз.-мех. поля. 2016. – 59, № 3. – С. 156-168. 

UDC 539.3 
 
M. Hashemi, Y. A. Zhuk 
 
THE INFLUENCE OF TEMPERATURE ON THE CYCLIC PROPERTIES OF THE 
TRANSVERSELY ISOTROPIC NANOCOMPOSITE SYSTEM UNDER 
KINEMATIC HARMONIC LOADING 
 

A micromechanical model is developed to determine effective inelastic properties 
of nanocomposite under monoharmonic deformation by taking into account de-
tailed micro-structural geometries and constitutive models of the constituents. By 
using the Correspondence Principle in Viscoelasticity and the modified Mori–Ta-
naka method, the effects of interface between inclusion and matrix is taken into 
account. By applying the presently developed model, a numerical analysis for de-
termination of complex moduli for polymeric nanocomposite reinforced by nano-
fibers composed from carbon nanotubes (CNTs) is conducted at the isothermal con-
ditions. Analysis of the complex moduli dependence on temperature and amplitude 
of strain intensity is performed. Composites reinforced with unidirectionally 
aligned nanofibers are considered. Results demonstrate a significant dependence of 
storage and loss moduli on the temperature within the wide range of it. The sto-
rage and loss moduli are found to increase monotonically with the increase of the 
nanofiber volume fraction while decrease with increasing temperature. The results 
show that, the strength of material decreases with increasing temperature in elastic 
and inelastic regions and the inelastic behavior occurs at lower strain amplitude 
with increase of temperature. 

 
 Introduction. The wide application of polymeric composites in enginee-
ring solutions, especially in aircraft, automotive, medical and ship-building 
industry, could be observed in the last decades. The desire to replace the 
structures made of metal alloys by nanofibre-reinforced polymeric composites 
was caused mainly by their high specific strength and stiffness properties 
with a simultaneous significant mass reduction. These properties of nanocom-
posite allow for the application of such materials in the most responsible en-
gineering constructions like bodies of vehicles, turbine blades etc. 
 A lot of structures and elements made of the composite materials are 
subjected to cyclic loading and vibrate with high stress/strain amplitudes, 
which may cause the time dependent or inelastic behavior and consequently 
the self-heating effect occurrence. Therefore, it is necessary to carry out a 
detailed analysis of an influence of the self-heating effect on evolution of ope-
rational properties and consequently fatigue of polymeric nanocomposites. 
Temperature has a significant influence on rates of inelastic strain response, 
and in practical work it is often necessary to adjust an inelastic analysis for 
varying temperature. To study the mechanical energy dissipation phenome-
non, it is necessary to characterize inelastic and time dependent behavior of 
material under different conditions such as temperature, amplitude of loading 
and frequency. This paper is devoted to survey the effects of temperature on 
complex moduli of transversely isotropic nanocomposite system with unidirec-
tionally aligned nanofibres at the wide range of amplitude of loading at con-
stant frequency. It is important to notice that, only the thermal effects on the 
complex moduli of pure matrix need to be determined since these effects on 
the nanofibers properties are negligible. Currently, there are two approaches 
to address the characterization problem for inelastic behavior of matrix (poly-
mer). In the frame of the first approach, the complex set of constitutive equ-
ations governing response of numerous internal parameters is introduced 
while within the second approach, the approximate amplitude relations are 
used to characterize the cyclic response of the material, i.e. the relations bet-
ween amplitudes of the main mechanical field parameters over the cycle are 
established [3, 6]. The key point of the amplitude theories is concept of com-
plex moduli [3]. For an inelastic (particularly viscoelastic) material, the relaxa-
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tion and creep compliance modulus which govern the relation between strain 
and stress amplitudes is represented by a complex quantity with real and 
imaginary parts referred to as storage and loss modulus, respectively [1, 2]. To 
accurately predict an overall performance and lifetime of polymer nanocom-
posites, it is necessary to model time dependent and inelastic responses of the 
constituents such as inclusions, polymer and interface by taking to account 
the micro-structural characteristics of nano-inclusion, such as size, shape, and 
compositions of the constituents. While micromechanical formulations that in-
clude detailed micro-structural characteristics can give good response charac-
teristics, it is often difficult to obtain exact closed form solutions especially 
when material nonlinearity is considered. Limited analytical and experimental 
studies have been done on understanding the nonlinear inelastic behavior of 
reinforced polymer composites by nano-inclusions under cyclic loading. 
 Some of the micromechanical models have been extended to predict in-
elastic or viscoplastic behaviors of polymer based composites [4, 7, 8, 14, 15, 
20]. Weng [27] used the self-consistent method for analyzing effective creep 
behavior of polycrystals. It was assumed that inclusion and matrix exhibit 
elastic and linear viscoelastic behavior, respectively. Levesque et al. [18] pro-
posed a linearized homogenization scheme for predicting nonlinear viscoelastic 
responses of nanocomposites. In this scheme, the homogenized micromecha-
nical model of the Mori and Tanaka [21] was used. The particle was modeled 
as linear elastic, while the Schapery nonlinear viscoelastic model [25] was ap-
plied for the matrix phase. Li and Gao [19] investigated viscoelastic responses 
of carbon nanotube particles embedded in polyamide. In their investigation, 
the viscoelastic responses of nanocomposites were obtained via the Mori–
Tanaka (MT) model while the matrix and inclusion were considered 
viscoelastic and elastic materials, respectively. It is important to notice that, 
some polymers used as constituents in composite systems exhibit combined 
viscoelastic-viscoplastic responses, e.g. high density polyethylene and polycar-
bonate and Epoxy resins. These combined responses can occur at early loading 
(small stress/ strain levels). According to these behavior of polymer, Aboudi 
[5] has developed a micromechanical model to predict the viscoelastic-
viscoplastic response of multiphase materials. Also, the viscoelastic-viscoplastic 
model for polymer developed by Frank and Brockman [10] is implemented in 
the multiphase composites. 

This investigation is devoted to the modeling and response characteriza-
tion of the Epoxy PR-520 reinforced with nanofiber composed of CNTs as 
transversely isotropic nanocomposite system with unidirectionally aligned 
nanofibres subjected to monoharmonic kinematic loading. To predict the 
nonlinear inelastic behavior of the polymeric matrix, the Goldberg 
constitutive model is used. To simulate the response in terms of amplitudes at 
different temperature, the relations between the amplitudes of main field 
variables are established with making use of complex moduli concept (the 
approximate amplitude relations). A micromechanical model to predict the 
inelastic response of multiphase nanocomposites by taking into account the 
effects of the interface properties is developed. 
 1. Mechanical behavior of constituents. The large application of polyme-
ric composites in engineering solutions, especially in aircraft, automotive, me-
dical and ship-building industries, could be observed in the last decades. The 
desire to replace of the structures made of metal alloys by nanofibre-reinfor-
ced polymeric composites was caused mainly by their high specific strength 
and stiffness properties with a simultaneous significant mass reduction. These 
properties of nanocomposite allow for the application of such materials in the 
most responsible engineering constructions like bodies of vehicles, turbine 
blades etc. 
 1.1 Mechanical response of nanofiber. Nanoinclusions are usually very 
stiff and their mechanical response can be assumed as predominantly elastic 
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[17]. According to reported effective elastic properties for nanofiber composed 
of unidirectionally oriented carbon nanotubes (CNTs), they are considered to 
be transversely isotropic. Consequently, the stress-strain relations are gover-
ned by five independent elastic constants. By using the Hill’s notation, sym-
metric fourth-order stiffness tensor for nanofiber can be represented by the 
equation [16]: 

 2 , , ,2 , 2P P
p p p p pk n m p=L L l( ) , (1) 

where PL  is the elastic stiffness tensor and pn , pk , pl , pm  and pp  are the 

Hill’s elastic moduli for particle, namely the uniaxial tension modulus, the 
plane-strain bulk modulus, the associated cross modulus, the transverse shear 
modulus and the axial shear modulus, respectively. It can be presented in 
terms of the common engineering constants as 

 23 12 11 23 122 , , ,2 ,2P P K C C G G=L L ( ) , 

when the CNTs are aligned in the direction 1x  [23]. Adopting this notation, all 

moduli and Poisson’s ratio, 12ν , are given by: 
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 The relation between Hill’s constants and components of elastic stiffness 

tensor, P
ijkL l , can be rearranged as follows: 
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Consequently, using these common engineering constants, the stress-
strain relations are derived. 
 1.2. Effects of the interface. In this investigation, the conditions of load 
transfer in interface of inclusion and matrix will be modeled by a displace-
ment jump that was proposed by Qu [24]. Though the interface has negligibly 
small volume concentration, the effects of interface can significantly increase 
the overall stiffness and properties of the nanocomposite at the high volume 
fraction of inclusions [9]. In this model, the interface can be introduced by 
using a layer of negligible thickness in which traction remains continuous and 
displacement becomes discontinuous. The second order compliance tensor, ijη , 

was proposed by Qu in [24]. According to equation (4), it is obvious that when 
the tensor ijη  tends to zero (infinite stiffness), the displacement jump is zero 

and continuity in displacements are recovered. This tensor is chosen to be 
symmetric and positive definite and components of second order compliance 
tensor can be expressed in the form [9]: 

 ( )ij ij i jn n= γδ + β − γη , (4) 

where ijδ  is the Kronecker delta. It is important to address the physical 

meaning of the parameters γ  and β . They are parameters that represent the 
compliance in the tangential and normal directions, respectively. 
 1.3. Constitutive equations for the polymer matrix. Nonlinear inelastic 
behavior of polymer matrix will be represented by Goldberg model under 
kinematic harmonic loading at different temperatures and wide range of 
amplitudes in constant frequency. Goldberg et al. [12] proposed a model for 
predicting the viscoplastic response of neat polymers, utilizing a set of state 



159 

variables as an indication of the resistance of polymeric chains against flow. It 
should also be mentioned that polymer’s mechanical properties and 
loading/strain rate are the two main parameters that govern the nonlinear 
response of the polymer. According to this model, the inelastic strain 
components can be expressed in terms of the deviatoric stress components as 
follows 
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& , (5) 

where in
ijε&  is the inelastic strain rate tensor which can be defined as a 

function of deviatoric stress and Z  and α  are the internal state variables; 2J  
is the second invariant of the deviatoric stress tensor that can be expressed as 
a function of ijσ ; the variable α  is a state variable which controls the level of 

the hydrostatic stress effects; 0D  and n  are material constants; 0D  

represents the maximum inelastic strain rate and n  controls the rate 
dependency of the material. The effective stress, eσ , also is defined as a 
function of the mean stress, such that the summation of the normal stress 
components kkσ  is three times of the mean stress. The evolution of the 

internal stress state variable Z  and the hydrostatic stress state variable α  
are defined by the equations 

 in in
1 1( ) ,      ( )e eZ q Z Z e q e= − α = α − α& && & , (6) 

where q  is a material constant representing the «hardening» rate, and 1Z  

and 1α  are material constants representing the maximum values of Z  and α , 

respectively. The initial values of Z  and α  are defined by the material 

constants 0Z  and 0α . The term in
ee&  in equation (6) represents the effective 

deviatoric inelastic strain rate. 

 2. Procedure of complex moduli derivation for matrix (linearization 
approach). In this investigation, the approximate model of nonlinear inelastic 
behavior developed in [3] for the case of proportional kinematic harmonic 
loading has been used. In this case, the cyclic properties of the polymer are 
described in terms of complex moduli. It is important to notice that the 
inelastic deformation is considered to be incompressible and thermal 
expansion is dilatational, it may be more convenient in some applications to 
separate the isotropic stress-strain relations into deviatoric and dilatational 
components that can be shown by equations as 

 in2 ,      3ij ij ij kk V kks G e K θ= − ε σ = ε − ε( ) ( ) , (7) 

where G  is the shear modulus, VK  is the bulk modulus, , , 1,2,3i j k =  and 
repeated index implies a summation over. Due to incompressibility of plastic 

deformation, 0in
kkε =& , the plastic strain rate is deviatoric, in in

ij ijeε =& & . According 

to approximate model, if a body as a system is subjected to harmonic 
deformation or loading, then its response is also close to harmonic law 

 ( ) cos sin ,      ( ) cos sinij ij ij ij ij ije t e t e t s t s t s t′ ′′ ′ ′′= ω − ω = ω − ω . (8) 

 The complex amplitudes of the deviator of total strain, ije% , inelastic 

strain, in
ije% , and the stress deviator, ijs% , are related in the Nth cycle by the 

complex shear modulus, NG% , and plasticity factor, Nλ% , as shown below 
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 in2 ,      ij N ij ij N ijs G e e e= = λ% %% % % % . (9) 

Here  

 ij ij ije e ie′ ′′= +% , ij ij ijs s is′ ′′= +% ,  

 in in in
ij ij ije e ie′ ′′= +% , N N Ni′ ′′λ = λ + λ% , N N NG G iG′ ′′= +% , 

and N  is the cycle number, 1,2,3,N = … ; ( )′⋅  and ( )′′⋅  denote the real and 
imaginary parts of complex quantities. The shear modulus and plasticity 
factor are functions of the intensity of the strain-range tensor, frequency and 
temperature 

 = ( , , ),      = ( , , )N N i N N iG G e eω θ λ λ ω θ% % % % , (10) 

where the square of the intensity of strain-range tensor is calculated as 
2
i ij ij ij ije e e e e′ ′ ′′ ′′= + . 

The imaginary parts of the complex moduli are determined from the 
condition of equality of the energies dissipated over a period and are 
calculated according to the formulas 
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where D′  is the rate of dissipation of mechanical energy, 0G  is the elastic 

shear modulus. The real parts are found with making use of the condition 
that generalized cyclic diagrams ( , )aN aN is s e= ω  and ( , )paN paN ie e e= ω , which 

relate the ranges of the stress and plastic-strain intensities in the Nth cycle, 
coincide in the frame of the complete and approximate approaches 

 
2

2
2

( , )
( , ) ( , )

4
aN i

N i N i
i

s e
G e G e

e

ω′ ′′ω = − ω , 

 
2

2
2

( , )
( , ) ( , )

4

paN i
N i N i

i

e e
e e

e

ω
′ ′′λ ω = − λ ω , (12) 

where NG′  and N
′λ  are the sought-for real parts of shear modulus and 

plasticity factor. 
 In spite of the fact that the single-frequency approximation based on 
harmonic linearization has a good agreement with precise model of nonlinear 
behavior, it’s necessary to analyze its practical accuracy for specific classes of 
problems. 

As mentioned at the beginning of this section, the second approach 
(approximate approach) is based on the concept of complex moduli, which are 
determined by standard and modified techniques of equivalent linearization. It 
is important to notice that the imaginary parts of complex moduli are defined 
by the exact expression for rate of dissipation averaged over the period of 
cyclic loading while to improve the accuracy of real parts of complex moduli 
the modified approach is proposed as shown in equation (12). According to 
equation (10), the complex moduli depend on the temperature and amplitude 
of kinematic loading at the constant frequency. The purpose of this 
investigation is to study the influence of these parameters on complex moduli 
of polymeric nanocomposites. 
 3. The viscoelastic response of nanocomposite and modified Mori–Tana-
ka (MT) approach. By utilizing the Correspondence Principle in Viscoelasticity 
the constitutive relations for the inelastic behavior of the viscoelastic material 
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can be represented by: ˆˆ ˆ( ) ( ) ( )w w w= L  , ˆˆ ˆ( ) ( ) ( )w w w= M  , where ˆ ( )wL  and 

ˆ ( )wM  are the stress relaxation stiffness and creep compliance tensors, 
respectively. Every symbol with hat indicates the transformed function in the 
transformed domain, and w  is the transform variable. It is important to 
notice that the feature of the Laplace transform is that it retains the physical 
dimension of the original function, which makes equations for relaxation 
stress and creep strain in transform domain mathematically similar to original 
Hooke law in time domain. As mentioned in section 3, by using the 
approximate amplitude relations, the complex shear moduli for matrix are 
derived at different temperatures for various strain amplitudes. Also, due to 
incompressibility of plastic deformation, the bulk modulus of polymer is 
considered constant and real. Then the stress relaxation stiffness tensor of 

polymer matrix, ˆML , is determined as function of temperature, frequency and 
stress and strain amplitude. 
 After taking into account the effect of interface into the equivalent 
inclusion method, a new expression for the Eshelby’s tensor will be found 
with slightly weakened interfaces. The new expression of Eshelby’s tensor is 
written as: 

 ˆ ˆ ˆ ˆˆ( ) ( )M M= + − −S S I S HL I S , (13) 

where Ŝ  is the original Eshelby’s tensor with the components given in [23]. I  

and ˆML  are the fourth order identity tensor and the matrix relaxation 
stiffness tensor of matrix, respectively. The second term in the right hand 
side of equation (13) is present to introduce the interface effects. The 
components of tensor H  is presented as 

 ( )ijk ijk ijkH P Q= γ + β − γl l l  (14) 

expressions for tensor P  and Q  are given in [23]. 
Once the modified Eshelby’s tensor based on equation (13) has been 

included into the analysis, the modified MT estimate is introduced. The new 
expression for the components of relaxation stiffness tensor of modified MT 
estimate for a two-phase aligned composite is obtained as 

 dil dil dilˆ ˆ 1
0 1 0 1 1

C M P PV V V V V −= + + +L L L A I A HL A( )( ) , (15) 

where 
0

V  and 
1

V  are volume fraction of matrix and inclusion, respectively. 

ˆCL  and PL  are the relaxation stiffness tensor of composite and nanoinclusion, 
respectively. Also the components of dilatation tensor are recalculated as 
below: 

 dil ˆ ˆ ˆ1 1
ijk ijk ijk P ijk
M M P M

ijkA I S L L L− −= + −l l l ll ( )[ ] . (16) 

It is worth mentioning that the expression for the effective inelastic 
properties in equation (15) depends on the nanoinclusion length in contrast to 
the original MT which is aspect ratio dependent. 

In particular, for a transversely isotropic nanocomposite system con-

taining unidirectionally aligned, identical nanoinclusions along the 
1

x  direction 

of a Cartesian coordinate system 
1 2 3

Ox x x , five independent paramerers in 

the transformed domain based on Hill’s notation can be obtained [19]. 
 4. Numerical technique and the material properties. In the present 
work, for the determination of the nonlinear inelastic response of matrix 
(polymer), the numerical integration of Goldberg equations was adopted. To 
solve the implicit equation (5), one should utilize an appropriate numerical 
integration technique. Three step scheme of attacking the problem of complex 
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moduli determination was designed. At the first step, the elastic-viscoplastic 
response of the material to harmonic deformation was numerically calculated 
for different amplitudes of loading strain at various temperatures. At the 
second step, the stabilized cyclic stress-strain and inelastic-strain-strain 
diagrams were obtained for the whole set of calculated data. At the final step, 
the complex moduli were calculated by the averaging over the period of 
vibration of the results of direct integration and making use of cyclic 
diagrams and formulae (11) and (12). The system of nonlinear ordinary 
differential equations that describes the polymer response to harmonic loading 
in the case of pure shear consists of the one-dimensional equations of 
Goldberg model comprising equation (5) and evolutionary equations (6) are 
rewritten as follow [13]: 
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The law of strain deviator variation 0 sine e t= ω , as well as Hooke law 

for shear stress in
12 12 122s G e= − ε( ) , should be added to the system. It is 

important to notice that the known relations between the complex-value 

moduli, E% , G%  and ν% , and real valued bulk modulus, VK , exist in the form: 
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According to the Correspondence Principle in Viscoelasticity the 

relaxation stiffness tensor of matrix, ˆML , can be derived using two 

determined independent constants G%  and ν% . The modified MT method is 
applied here to obtain the effective inelastic properties of the nanocomposite. 
To obtain reasonable values for the parameter γ , we used the values which 
were obtained by Namilae and Chandra [22] with application of molecular 
dynamics. 

The value for the parameter γ  is chosen for all cases in this section 

0 01. nm/GPa and β  is set to zero to prevent material interpenetration. In this 
investigation, computations for nancomposites reinforced by unidirectionally 
aligned nanofibers composed of the CNTs are presented. The values of 
material constants for RP-520 (Epoxy resin) that was chosen as matrix have 
been taken from [11] and used for calculations. The values of constants for 
matrix (at the different temperature) are given in Table 1. The material 
constants for CNTs have been taken from [26]. These values are listed below. 

Here 10
p

=l GPa, 30
p

k = GPa, 1
p

m = GPa, 450
p

n = GPa, 1
p

p = GPa, 

length and diameter of CNTs were chosen to be 6 and 1.7nm, respectively. 

 Table 1. The values of material constants for RP-520 

Temp, °C 0E  

MPa 
0D  

sec-1 
0Z  

MPa 
1Z  

MPa 
n  q  

0a  1a  ν  

25 3250 106 407.5 768.6 0.92 253.6 0.571 0.122 0.4 
50 2980 106 267.9 616.4 0.94 226.1 0.316 0.085 0.4 
80 2520 106 195.4 564.9 0.88 273.4 0.087 0.064 0.4 
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 5. Numerical results and discussion. In this section, the results of inves-
tigation for examining the inelastic behavior of the transversely isotropic na-
nocomposite system with unidirectionally aligned nanofibres under kinematic 
harmonic loading are presented. Controlling parameters include temperature, 
amplitude of loading and volume fraction of nanofiber. The values of tempe-
rature 25, 50 and 80°C, volume fraction 3, 5 and 10 percent at the constant 
frequency 1Hz are considered, respectively. According to microstructural geo-
metry of CNTs, the nanofiber aspect ratio for the transversely isotropic nano-
composites is chosen to be equal to 3.5. It is important to notice that, for the 
transversely isotropic nanocomposite system, five independent parameters, i.e., 
ˆ
11E , ˆ

22E , ˆ
12G , ˆ

12ν  and ˆ
23K , are used to illustrate their viscoelastic responses. 

The effects of volume fraction, 
f

V , and amplitude of harmonic loading on the 

complex axial Young’s modulus, ˆ
11E , complex transverse Young’s modulus, 

ˆ
22E , Poisson ratio, ˆ

12ν , and complex axial shear modulus, ˆ
12G , at the constant 

frequency and temperature ( 1f = Hz and 25°C) are displayed in Figs. 1–3. 
These figures show that nanofibers volume fraction has little effect on the 

complex axial shear modulus, ˆ
12G , and the transverse Young’s moduli, ˆ

22E , 

while its influence on the complex axial Young’s modulus, ˆ
11E , is profound. 

  
 а) b) 

Fig. 1  

  
 а) b) 

Fig. 2 
In Fig. 3a and 3b, the effect of volume fraction on real and imaginary 

parts of Poisson ratio, ˆ
12ν , are presented. These results indicate that the 

influence of 
f

V  for the unidirectionally aligned fibers on the Poisson ratio is 

small. The cyclic diagrams for neat polymer and nanocomposites with 
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different volume fractions at 1Hz at temperature 25°C are shown in Fig. 2a. 
The effect of nanofiber volume fraction is easily observable.  

The influences of temperature on behavior of transversely isotropic 
nanocomposite system with uniaxially oriented nanofibers are clearly 
observed in Figs. 4–6. 

  
 а) b) 

Fig. 3 
According to the procedure mentioned in section 2, dependency of the 

complex axial shear modulus (storage modulus, 12G′ , and loss modulus, 12G′′ ) 

on the amplitude of strain, ie , and temperature are shown in Fig. 4a for 5% 
of volume fraction of the nanofibers at 1Hz. As it is seen in this figure, the 
inelastic behavior occurs at lower strain amplitude with increasing of 
temperature. Also, the trend of storage and loss modulus behavior presented 
in Fig. 4a show that the values of storage modulus decrease with increase in 
temperature while the loss modulus increase slightly for the initial values of 
strain intensity at the beginning of the inelastic region (before the vicinity of 
3.5% of strain intensity). This behavior of material is completely observed in 
cyclic diagram for different temperatures (see Fig. 5a). These results show the 
loss modulus increase with increasing temperature until yield point of 
material at the various temperatures. For higher values of strain intensity, the 
loss modulus decreases with increasing temperature. The peak values of the 
loss modulus decrease and occur earlier with increasing temperature. Within 
the interval of interest between 25 and 80°C, the maximum in loss modulus 
occurs in the vicinity of 6% of strain intensity at 25°C. 

The effect of temperature on complex axial Young’s modulus, 11E , is 
shown in Fig. 4b. As it is seen in this figure, the trends of real and imaginary 
parts of the complex axial Young’s modulus with respect to amplitude of 
strain, 0e , and temperature are completely the same as for the complex axial 

shear modulus, 12G . It is important to notice as temperature approach to the 
glass transition value the effects of temperature become more pronounced. 
The sensitivity of the complex axial shear modulus and axial Young’s modulus 
on temperature are clearly observed in Fig. 4a and 4b. 

The cyclic diagrams for transversely isotropic nanocomposite system with 
different temperatures at 1Hz and 5% of volume fraction of the nanofibers 
are shown in Fig. 5a. The influence of temperature on strength of material is 
easily observable. This figure show that, the strength of material decreases 
with increasing temperature in elastic and inelastic regions and the inelastic 
behavior occurs at lower strain amplitude with increase of temperature. The 
variations of complex transverse Young’s modulus with respect to different 
temperature and wide range of strain amplitude of loading are presented in 
Fig. 5b. As it is seen the values of real and imaginary parts of transverse 
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Young’s modulus ( 22E′  and 22E′′ ) decrease with increasing temperature at the 
constant volume fraction and frequency. This figure shows that the sensitivity 
of transverse Young’s modulus to temperature variations at the high values is 
more profound than at the region of lower temperature. 

In Fig. 6a and 6b, the effect of temperature on real and imaginary parts 
of Poisson ratio, ˆ

12ν , are presented. These results indicate that the influence 

of temperature for the transversely isotropic nanocomposite system with 
unidirectionally aligned fibers on the Poisson ratio is small. Also, with 
increasing temperature, the values of Poission ratio increase in the inelastic 
region because this behavior is governed by the nonlinear response of matrix 
material (polymer). 

  
  а) b) 

Fig. 4 

  
  а) b) 

Fig. 5 

  
  а) b) 

Fig. 6 
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Conclusions. In the paper, the effect of temperature and amplitude of 
excitation strain on complex modulus of nanocomposite under kinematic 
harmonic loading has been investigated. A micromechanics model is developed 
to determine effective inelastic properties of nanocomposite under 
monoharmonic loading by taking into account detailed micro-structural 
geometries and constitutive models of the constituents. By using the 
Correspondence Principle in viscoelasticity, the modified Mori-Tanaka method 
and effects of interface between inclusion and matrix is extended to the 
transformed domain. By applying the presently developed model, a numerical 
analysis for determination of the complex moduli of polymeric nanocomposite 
reinforced with nanofibers is conducted under the different temperature and 
kinematic harmonic loading. Characterization of the complex moduli 
dependence on temperature and amplitude of strain intensity is performed. In 
this investigation, composites reinforced with unidirectionally aligned 
nanofibers is considered. The volume fraction and temperature are considered 
as the controlling parameters. Results demonstrate the significant dependence 
of loss moduli on the temperature within the wide interval of it before the 
glass transition temperature. For nanocomposites containing unidirectionally 
aligned nanofibers, numerical results indicate that the increase of the 
nanofibers volume fraction enhances significantly their axial complex moduli 
but has little influences on their transverse, shear complex moduli. In 
addition, the effect of the unidirectionally aligned nanofiber orientation on the 
shear complex moduli is negligibly small. Furthermore, for the transversely 
isotropic nanocomposite system with uniaxially aligned nanofibers, both the 
storage and loss moduli are found to increase monotonically with the increase 
of the nanofiber volume fraction while decrease with increasing temperature. 
The procedure presented in this paper for obtaining dependencies can be 
useful for estimation of the mechanical and thermal degradation of polymeric 
composites and can be subsequently applied for the determination of fatigue, 
crack growth and residual life of composite structures. 
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ВПЛИВ ТЕМПЕРАТУРИ НА ЦИКЛІЧНІ ВЛАСТИВОСТІ ТРАНСВЕРСАЛЬНО-ІЗОТРОПНОЇ 
НАНОКОМПОЗИТНОЇ СИСТЕМИ ПРИ ГАРМОНІЧНОМУ НАВАНТАЖЕННІ 
 
Розвинуто термомеханічну модель для визначення ефективних непружних влас-
тивостей нанокомпозита при моногармонічному навантаженні, яка враховує 
вплив геометричних параметрів мікроструктури та властивостей складових. За 
допомогою модифікованого методу Морі–Танака й принципу в’язкопружної відпо-
відності в моделі враховано наявність приповерхневої області взаємодії на межі 
контакту включення і матриці. Розвинуту методику застосовано до числового 
визначення комплексних модулів полімерного нанокомпозита, зміцненого наново-
локнами з вуглецевих нанотрубок, який знаходиться в ізотермічних умовах при 
заданій температурі. Проведено аналіз залежності комплексних модулів від тем-
ператури та інтенсивності деформації для композита, зміцненого однонаправ-
леними волокнами. Результати демонструють значну залежність модулів нако-
пичення і втрат від температури в широкій області її зміни. Модулі накопичен-
ня і втрат зростають монотонно при збільшенні об’ємного вмісту волокон і 
зменшуються при зростанні температури. Показано, що жорсткість наноком-
позита зменшується у пружній та непружній областях поведінки при збільшен-
ні температури. 
 
ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ЦИКЛИЧЕСКИЕ СВОЙСТВА ТРАНСВЕРСАЛЬНО-
ИЗОТРОПНОЙ НАНОКОМПОЗИТНОЙ СИСТЕМЫ ПРИ ГАРМОНИЧЕСКОМ НАГРУЖЕНИИ 
 
Развита термомеханическая модель для определения эффективных неупругих 
свойств нанокомпозита при моногармоническом нагружении, учитывающая влия-
ние геометрических параметров микроструктуры и свойств составляющих. При 
помощи модифицированного метода Мори–Танака и принципа вязкоупругого со-
ответствия, в модели учтено наличие приповерхностной области взаимодейст-
вия на границе контакта включения и матрицы. Развитая методика применя-
ется для численного определения комплексных модулей полимерного нанокомпози-
та упрочненного нановолокнами из углеродных нанотрубок, находящегося в изо-
термических условиях при заданной температуре. Проведен анализ зависимости 
комплексных модулей от температуры и интенсивности деформации для ком-
позита, упрочненного однонаправленными волокнами. Результаты демонстриру-
ют существенную зависимость модулей накопления и потерь от температуры в 
широкой области ее изменения. Модули накопления и потерь возрастают моно-
тонно при увеличении объемного содержания волокон и уменьшаются при возрас-
тании температуры. Показано, что жесткость нанокомпозита уменьшается в 
упругой и неупругой областях поведения при возрастании температуры. 
 
Taras Shevchenko Nat. Univ. of Kyiv, Kyiv Received 
 03.07.16 
 


