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THE INFLUENCE OF TEMPERATURE ON THE CYCLIC PROPERTIES OF THE
TRANSVERSELY ISOTROPIC NANOCOMPOSITE SYSTEM UNDER
KINEMATIC HARMONIC LOADING

A micromechanical model is developed to determine effective inelastic properties
of manocomposite under monoharmonic deformation by taking into account de-
tailed micro-structural geometries and constitutive models of the constituents. By
using the Correspondence Principle in Viscoelasticity and the modified Mori—Ta-
naka method, the effects of interface between inclusion and matrix is taken into
account. By applying the presently developed model, a numerical analysis for de-
termination of complex moduli for polymeric nanocomposite reinforced by nano-
fibers composed from carbon nanotubes (CNTs) is conducted at the isothermal con-
ditions. Analysis of the complex moduli dependence on temperature and amplitude
of strain intensity is performed. Composites reinforced with wunidirectionally
aligned manofibers are considered. Results demonstrate a significant dependence of
storage and loss moduli on the temperature within the wide range of it. The sto-
rage and loss moduli are found to increase monotonically with the increase of the
nanofiber volume fraction while decrease with increasing temperature. The results
show that, the strength of material decreases with increasing temperature in elastic
and inelastic regions and the inelastic behavior occurs at lower strain amplitude
with increase of temperature.

Introduction. The wide application of polymeric composites in enginee-
ring solutions, especially in aircraft, automotive, medical and ship-building
industry, could be observed in the last decades. The desire to replace the
structures made of metal alloys by nanofibre-reinforced polymeric composites
was caused mainly by their high specific strength and stiffness properties
with a simultaneous significant mass reduction. These properties of nanocom-
posite allow for the application of such materials in the most responsible en-
gineering constructions like bodies of vehicles, turbine blades etc.

A lot of structures and elements made of the composite materials are
subjected to cyclic loading and vibrate with high stress/strain amplitudes,
which may cause the time dependent or inelastic behavior and consequently
the self-heating effect occurrence. Therefore, it is necessary to carry out a
detailed analysis of an influence of the self-heating effect on evolution of ope-
rational properties and consequently fatigue of polymeric nanocomposites.
Temperature has a significant influence on rates of inelastic strain response,
and in practical work it is often necessary to adjust an inelastic analysis for
varying temperature. To study the mechanical energy dissipation phenome-
non, it is necessary to characterize inelastic and time dependent behavior of
material under different conditions such as temperature, amplitude of loading
and frequency. This paper is devoted to survey the effects of temperature on
complex moduli of transversely isotropic nanocomposite system with unidirec-
tionally aligned nanofibres at the wide range of amplitude of loading at con-
stant frequency. It is important to notice that, only the thermal effects on the
complex moduli of pure matrix need to be determined since these effects on
the nanofibers properties are negligible. Currently, there are two approaches
to address the characterization problem for inelastic behavior of matrix (poly-
mer). In the frame of the first approach, the complex set of constitutive equ-
ations governing response of numerous internal parameters is introduced
while within the second approach, the approximate amplitude relations are
used to characterize the cyclic response of the material, i.e. the relations bet-
ween amplitudes of the main mechanical field parameters over the cycle are
established [3, 6]. The key point of the amplitude theories is concept of com-
plex moduli [3]. For an inelastic (particularly viscoelastic) material, the relaxa-
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tion and creep compliance modulus which govern the relation between strain
and stress amplitudes is represented by a complex quantity with real and
imaginary parts referred to as storage and loss modulus, respectively [1, 2]. To
accurately predict an overall performance and lifetime of polymer nanocom-
posites, it is necessary to model time dependent and inelastic responses of the
constituents such as inclusions, polymer and interface by taking to account
the micro-structural characteristics of nano-inclusion, such as size, shape, and
compositions of the constituents. While micromechanical formulations that in-
clude detailed micro-structural characteristics can give good response charac-
teristics, it is often difficult to obtain exact closed form solutions especially
when material nonlinearity is considered. Limited analytical and experimental
studies have been done on understanding the nonlinear inelastic behavior of
reinforced polymer composites by nano-inclusions under cyclic loading.

Some of the micromechanical models have been extended to predict in-
elastic or viscoplastic behaviors of polymer based composites [4, 7, 8, 14, 15,
20]. Weng [27] used the self-consistent method for analyzing effective creep
behavior of polycrystals. It was assumed that inclusion and matrix exhibit
elastic and linear viscoelastic behavior, respectively. Levesque et al. [18] pro-
posed a linearized homogenization scheme for predicting nonlinear viscoelastic
responses of nanocomposites. In this scheme, the homogenized micromecha-
nical model of the Mori and Tanaka [21] was used. The particle was modeled
as linear elastic, while the Schapery nonlinear viscoelastic model [25] was ap-
plied for the matrix phase. Li and Gao [19] investigated viscoelastic responses
of carbon nanotube particles embedded in polyamide. In their investigation,
the viscoelastic responses of nanocomposites were obtained via the Mori—
Tanaka (MT) model while the matrix and inclusion were considered
viscoelastic and elastic materials, respectively. It is important to notice that,
some polymers used as constituents in composite systems exhibit combined
viscoelastic-viscoplastic responses, e.g. high density polyethylene and polycar-
bonate and Epoxy resins. These combined responses can occur at early loading
(small stress/ strain levels). According to these behavior of polymer, Aboudi
[5] has developed a micromechanical model to predict the viscoelastic-
viscoplastic response of multiphase materials. Also, the viscoelastic-viscoplastic
model for polymer developed by Frank and Brockman [10] is implemented in
the multiphase composites.

This investigation is devoted to the modeling and response characteriza-
tion of the Epoxy PR-520 reinforced with nanofiber composed of CNTs as
transversely isotropic nanocomposite system with unidirectionally aligned
nanofibres subjected to monoharmonic kinematic loading. To predict the
nonlinear inelastic behavior of the polymeric matrix, the Goldberg
constitutive model is used. To simulate the response in terms of amplitudes at
different temperature, the relations between the amplitudes of main field
variables are established with making use of complex moduli concept (the
approximate amplitude relations). A micromechanical model to predict the
inelastic response of multiphase nanocomposites by taking into account the
effects of the interface properties is developed.

1. Mechanical behavior of constituents. The large application of polyme-
ric composites in engineering solutions, especially in aircraft, automotive, me-
dical and ship-building industries, could be observed in the last decades. The
desire to replace of the structures made of metal alloys by nanofibre-reinfor-
ced polymeric composites was caused mainly by their high specific strength
and stiffness properties with a simultaneous significant mass reduction. These
properties of nanocomposite allow for the application of such materials in the
most responsible engineering constructions like bodies of vehicles, turbine
blades etc.

1.1 Mechanical response of manofiber. Nanoinclusions are usually very
stiff and their mechanical response can be assumed as predominantly elastic
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[17]. According to reported effective elastic properties for nanofiber composed
of unidirectionally oriented carbon nanotubes (CNTs), they are considered to
be transversely isotropic. Consequently, the stress-strain relations are gover-
ned by five independent elastic constants. By using the Hill’s notation, sym-
metric fourth-order stiffness tensor for nanofiber can be represented by the
equation [16]:

P P
L :L (zkp,gp;npvzmp72pp)’ (1)

where L is the elastic stiffness tensor and n,, Icp, Zp, m, and p, are the
Hill’s elastic moduli for particle, namely the uniaxial tension modulus, the
plane-strain bulk modulus, the associated cross modulus, the transverse shear
modulus and the axial shear modulus, respectively. It can be presented in
terms of the common engineering constants as

L= LP(2K237C12’C11’2G2372G12)’
when the CNTs are aligned in the direction x; [23]. Adopting this notation, all

moduli and Poisson’s ratio, v,,, are given by:

2 2
~ s ~ 4mp(kpmp—fp) ~
E,=n,--, E,, = , G, =p,,
P k 22 L —[2 N 12 P
p p"p p T Mphy
Gy = my, Viy = fp/ka, K, = kp. (2)

The relation between Hill’s constants and components of elastic stiffness

tensor, LI;M , can be rearranged as follows:

C,, +C c,, -C
o =22 23 5 23 m, =22 23 5 23 n, =Cy, {,=C,, p,=Cs. (3)

Consequently, using these common engineering constants, the stress-
strain relations are derived.

1.2. Effects of the interface. In this investigation, the conditions of load
transfer in interface of inclusion and matrix will be modeled by a displace-
ment jump that was proposed by Qu [24]. Though the interface has negligibly
small volume concentration, the effects of interface can significantly increase
the overall stiffness and properties of the nanocomposite at the high volume
fraction of inclusions [9]. In this model, the interface can be introduced by
using a layer of negligible thickness in which traction remains continuous and

displacement becomes discontinuous. The second order compliance tensor, 7,

k

was proposed by Qu in [24]. According to equation (4), it is obvious that when
the tensor mn,; tends to zero (infinite stiffness), the displacement jump is zero
and continuity in displacements are recovered. This tensor is chosen to be

symmetric and positive definite and components of second order compliance
tensor can be expressed in the form [9]:

nij = 781’]’ +(B - 'Y)ninj’ (4)
where Si]. is the Kronecker delta. It is important to address the physical

meaning of the parameters y and . They are parameters that represent the

compliance in the tangential and normal directions, respectively.

1.3. Constitutive equations for the polymer matrix. Nonlinear inelastic
behavior of polymer matrix will be represented by Goldberg model under
kinematic harmonic loading at different temperatures and wide range of
amplitudes in constant frequency. Goldberg et al [12] proposed a model for
predicting the viscoplastic response of neat polymers, utilizing a set of state
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variables as an indication of the resistance of polymeric chains against flow. It
should also be mentioned that polymer’s mechanical properties and
loading/strain rate are the two main parameters that govern the nonlinear
response of the polymer. According to this model, the inelastic strain
components can be expressed in terms of the deviatoric stress components as

follows
2n
i 12 Sij
& =2D exp(———) ( +(x8uj, (5)
ij 0 2 o, 9 J2 ij
where 81;1 is the inelastic strain rate tensor which can be defined as a

function of deviatoric stress and Z and o are the internal state variables; J,
is the second invariant of the deviatoric stress tensor that can be expressed as
a function of Gjis the variable o is a state variable which controls the level of
the hydrostatic stress effects; D, and n are material constants; D,
represents the maximum inelastic strain rate and n controls the rate
dependency of the material. The effective stress, c,, also is defined as a
function of the mean stress, such that the summation of the normal stress
components o,, is three times of the mean stress. The evolution of the
internal stress state variable Z and the hydrostatic stress state variable o
are defined by the equations

Z=q(Z, -2)e", a=qla, -a)”, (6)
where g is a material constant representing the «hardening» rate, and Z;
and o, are material constants representing the maximum values of Z and o,
respectively. The initial values of Z and o are defined by the material
constants Z; and «,. The term é;‘zn in equation (6) represents the effective
deviatoric inelastic strain rate.

2. Procedure of complex moduli derivation for matrix (linearization
approach). In this investigation, the approximate model of nonlinear inelastic
behavior developed in [3] for the case of proportional kinematic harmonic
loading has been used. In this case, the cyclic properties of the polymer are
described in terms of complex moduli. It is important to notice that the
inelastic deformation is considered to be incompressible and thermal
expansion is dilatational, it may be more convenient in some applications to
separate the isotropic stress-strain relations into deviatoric and dilatational
components that can be shown by equations as

sij =2G(e; — ), o = 3Ky (e — '), (7

ij
where G is the shear modulus, Ky is the bulk modulus, %,j,k=1,2,3 and
repeated index implies a summation over. Due to incompressibility of plastic
deformation, sgfc =0, the plastic strain rate is deviatoric, SZI = ei? According

to approximate model, if a body as a system is subjected to harmonic
deformation or loading, then its response is also close to harmonic law

’ "
e;(t) = e; coswt — e,

. ! ” .
i . sin ¢, sij(t) =8, COS®Ot — s;; Sin ®t . (8)

] ] ]

The complex amplitudes of the deviator of total strain, e, inelastic

ij
strain, éi}l, and the stress deviator, .§ij, are related in the N cycle by the

complex shear modulus, éN, and plasticity factor, XN , as shown below
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~ _ ! .n
e;=e; +ie
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ij S.. = Sij +'LSi]»,

i’ ]

’ A " ! . "
Ay =Ay +ihy, Gy =Gy +1Gy,

B = e el
and N is the cycle number, N =1,2,3,...; (-) and (-)" denote the real and

imaginary parts of complex quantities. The shear modulus and plasticity
factor are functions of the intensity of the strain-range tensor, frequency and
temperature

Gy = Gyle;,0,0), &y =hyle;,0,0), (10)

where the square of the intensity of strain-range tensor is calculated as
2 ror /AN
e; = e e, +e e

The imaginary parts of the complex moduli are determined from the
condition of equality of the energies dissipated over a period and are

calculated according to the formulas

oDy . G 1 2n
Gy =55 y=g" <(-)>N=TT(JI(-)dt, T=22, (1)

oe; Gy )

where D' is the rate of dissipation of mechanical energy, G, is the elastic
shear modulus. The real parts are found with making use of the condition
that generalized cyclic diagrams s, = s y(e;,®) and €paN = epaN(ei,co), which

relate the ranges of the stress and plastic-strain intensities in the Nt cycle,
coincide in the frame of the complete and approximate approaches

2
’ S (e7(’0) "
Gyle,0) = \/%_GNZ(%,@),
2
' e a (e-,co) "
xN(ei,oa)=\/’“i—;—x1€(ei,co), (12)
€;

where G;V and 7‘}\1 are the sought-for real parts of shear modulus and

plasticity factor.

In spite of the fact that the single-frequency approximation based on
harmonic linearization has a good agreement with precise model of nonlinear
behavior, it’s necessary to analyze its practical accuracy for specific classes of
problems.

As mentioned at the beginning of this section, the second approach
(approximate approach) is based on the concept of complex moduli, which are
determined by standard and modified techniques of equivalent linearization. It
is important to notice that the imaginary parts of complex moduli are defined
by the exact expression for rate of dissipation averaged over the period of
cyclic loading while to improve the accuracy of real parts of complex moduli
the modified approach is proposed as shown in equation (12). According to
equation (10), the complex moduli depend on the temperature and amplitude
of kinematic loading at the constant frequency. The purpose of this
investigation is to study the influence of these parameters on complex moduli
of polymeric nanocomposites.

3. The viscoelastic response of nanocomposite and modified Mori—Tana-
ka (MT) approach. By utilizing the Correspondence Principle in Viscoelasticity
the constitutive relations for the inelastic behavior of the viscoelastic material
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can be represented by: 6(w)=L(w)é(w), &(w)=M(w)6(w), where L(w) and

M(w) are the stress relaxation stiffness and creep compliance tensors,
respectively. Every symbol with hat indicates the transformed function in the
transformed domain, and w is the transform variable. It is important to
notice that the feature of the Laplace transform is that it retains the physical
dimension of the original function, which makes equations for relaxation
stress and creep strain in transform domain mathematically similar to original
Hooke law in time domain. As mentioned in section 3, by wusing the
approximate amplitude relations, the complex shear moduli for matrix are
derived at different temperatures for various strain amplitudes. Also, due to
incompressibility of plastic deformation, the bulk modulus of polymer is
considered constant and real. Then the stress relaxation stiffness tensor of

polymer matrix, LM , is determined as function of temperature, frequency and
stress and strain amplitude.

After taking into account the effect of interface into the equivalent
inclusion method, a new expression for the Eshelby’s tensor will be found
with slightly weakened interfaces. The new expression of Eshelby’s tensor is
written as:

SY =S +I-SHLM(1-S), (13)

where S is the original Eshelby’s tensor with the components given in [23]. I

and LY are the fourth order identity tensor and the matrix relaxation
stiffness tensor of matrix, respectively. The second term in the right hand
side of equation (13) is present to introduce the interface effects. The
components of tensor H is presented as

Hijee = YPijiee + (B = 1)@y (14)

expressions for tensor P and Q are given in [23].

Once the modified Eshelby’s tensor based on equation (13) has been
included into the analysis, the modified MT estimate is introduced. The new
expression for the components of relaxation stiffness tensor of modified MT
estimate for a two-phase aligned composite is obtained as

LE = (V,I" + vLP A (V 1+ VAT + VHLPAY) ! (15)
where V, and V, are volume fraction of matrix and inclusion, respectively.

L® and L¥ are the relaxation stiffness tensor of composite and nanoinclusion,
respectively. Also the components of dilatation tensor are recalculated as
below:
dil oM M -1(7P FMo\]-L
Az‘jlkz( =[I+Sijk€Lijkl (LijklP _Lijkf)] : (16)
It is worth mentioning that the expression for the effective inelastic
properties in equation (15) depends on the nanoinclusion length in contrast to
the original MT which is aspect ratio dependent.
In particular, for a transversely isotropic nanocomposite system con-

taining unidirectionally aligned, identical nanoinclusions along the x, direction

of a Cartesian coordinate system Ox x,x,, five independent paramerers in

the transformed domain based on Hill’s notation can be obtained [19].

4. Numerical technique and the material properties. In the present
work, for the determination of the nonlinear inelastic response of matrix
(polymer), the numerical integration of Goldberg equations was adopted. To
solve the implicit equation (5), one should utilize an appropriate numerical
integration technique. Three step scheme of attacking the problem of complex
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moduli determination was designed. At the first step, the elastic-viscoplastic
response of the material to harmonic deformation was numerically calculated
for different amplitudes of loading strain at various temperatures. At the
second step, the stabilized cyclic stress-strain and inelastic-strain-strain
diagrams were obtained for the whole set of calculated data. At the final step,
the complex moduli were calculated by the averaging over the period of
vibration of the results of direct integration and making use of cyclic
diagrams and formulae (11) and (12). The system of nonlinear ordinary
differential equations that describes the polymer response to harmonic loading
in the case of pure shear consists of the one-dimensional equations of
Goldberg model comprising equation (5) and evolutionary equations (6) are
rewritten as follow [13]:

.in 1( 2> \'| Si
€5 = 2D, exp ——( j } ,
" ’ [ 2 35122 2|S12|

o= 29D, (o —(x)exp{—l( 72 )n} Sio
‘/E ' 2 3S122 |S12|’

. 2qD0 |: 1( Zz jn:| S12
Z =220z - Zyexp| -+ 2 . (17)
TERR e R ST i I

The law of strain deviator variation e =e;sinwt, as well as Hooke law

for shear stress s, =2G(e}, —sif;), should be added to the system. It is
important to notice that the known relations between the complex-value
moduli, E, G and v , and real valued bulk modulus, K, exist in the form:

3K, - 2G
6K, +2G
According to the Correspondence Principle in Viscoelasticity the

E =2G(+V), V= (18)

relaxation stiffness tensor of matrix, LY, can be derived using two

determined independent constants G and V. The modified MT method is
applied here to obtain the effective inelastic properties of the nanocomposite.
To obtain reasonable values for the parameter y, we used the values which
were obtained by Namilae and Chandra [22] with application of molecular
dynamics.

The value for the parameter y is chosen for all cases in this section

0.01nm/GPa and B is set to zero to prevent material interpenetration. In this

investigation, computations for nancomposites reinforced by unidirectionally
alisned nanofibers composed of the CNTs are presented. The values of
material constants for RP-520 (Epoxy resin) that was chosen as matrix have
been taken from [11] and used for calculations. The values of constants for
matrix (at the different temperature) are given in Table 1. The material
constants for CNTs have been taken from [26]. These values are listed below.

Here fp =10 GPa, kp = 30GPa, m, = 1GPa, n, = 450 GPa, P, = 1GPa,
length and diameter of CNTs were chosen to be 6 and 1.7nm, respectively.
Table 1. The values of material constants for RP-520

E D, Z Z
Temp, < Mlga seco_1 Mlga MI;a " E ao “ v
25 3250 | 10° | 407.5 | 768.6 | 0.92 | 253.6 | 0.571 | 0.122 | 0.4
50 2980 | 10° | 267.9 | 616.4 | 0.94 | 226.1 | 0.316 | 0.085 | 0.4
80 2520 | 10° | 1954 | 564.9 | 0.88 | 273.4 | 0.087 | 0.064 | 0.4
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5. Numerical results and discussion. In this section, the results of inves-
tigation for examining the inelastic behavior of the transversely isotropic na-
nocomposite system with unidirectionally aligned nanofibres under kinematic
harmonic loading are presented. Controlling parameters include temperature,
amplitude of loading and volume fraction of nanofiber. The values of tempe-

rature 25, 50 and 80°C, volume fraction 3, 5 and 10 percent at the constant
frequency 1Hz are considered, respectively. According to microstructural geo-
metry of CNTs, the nanofiber aspect ratio for the transversely isotropic nano-
composites is chosen to be equal to 3.5. It is important to notice that, for the
transversely isotropic nanocomposite system, five independent parameters, i.e.,

E., E,, G Vv, and K,., are used to illustrate their viscoelastic responses.

11> 227 12 237

The effects of volume fraction, Vf, and amplitude of harmonic loading on the

complex axial Young’s modulus, E,,, complex transverse Young’s modulus,

11>

E‘22, Poisson ratio, \712, and complex axial shear modulus, G,,, at the constant
frequency and temperature (f =1Hz and 25°C) are displayed in Figs. 1-3.

These figures show that nanofibers volume fraction has little effect on the
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complex axial shear modulus, G,,, and the transverse Young’s moduli, E,,,

while its influence on the complex axial Young’s modulus, E’H, is profound.
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In Fig. 3a and 3b, the effect of volume fraction on real and imaginary
parts of Poisson ratio, V,,, are presented. These results indicate that the

influence of Vf for the unidirectionally aligned fibers on the Poisson ratio is
small. The cyclic diagrams for neat polymer and nanocomposites with
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different volume fractions at 1Hz at temperature 25°C are shown in Fig. 2a.
The effect of nanofiber volume fraction is easily observable.

The influences of temperature on behavior of transversely isotropic
nanocomposite system with uniaxially oriented nanofibers are clearly
observed in Figs. 4—6.
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According to the procedure mentioned in section 2, dependency of the
complex axial shear modulus (storage modulus, G;z, and loss modulus, Gf2)

on the amplitude of strain, e;, and temperature are shown in Fig. 4a for 5%

of volume fraction of the nanofibers at 1Hz. As it is seen in this figure, the
inelastic behavior occurs at lower strain amplitude with increasing of
temperature. Also, the trend of storage and loss modulus behavior presented
in Fig. 4a show that the values of storage modulus decrease with increase in
temperature while the loss modulus increase slightly for the initial values of
strain intensity at the beginning of the inelastic region (before the vicinity of
3.5% of strain intensity). This behavior of material is completely observed in
cyclic diagram for different temperatures (see Fig. 5a). These results show the
loss modulus increase with increasing temperature until yield point of
material at the various temperatures. For higher values of strain intensity, the
loss modulus decreases with increasing temperature. The peak values of the
loss modulus decrease and occur earlier with increasing temperature. Within
the interval of interest between 25 and 80°C, the maximum in loss modulus
occurs in the vicinity of 6% of strain intensity at 25°C.

The effect of temperature on complex axial Young’s modulus, E,, is
shown in Fig. 4b. As it is seen in this figure, the trends of real and imaginary
parts of the complex axial Young’s modulus with respect to amplitude of

strain, e;, and temperature are completely the same as for the complex axial

shear modulus, G,,. It is important to notice as temperature approach to the

glass transition value the effects of temperature become more pronounced.
The sensitivity of the complex axial shear modulus and axial Young’s modulus
on temperature are clearly observed in Fig. 4a and 4b.

The cyclic diagrams for transversely isotropic nanocomposite system with
different temperatures at 1Hz and 5% of volume fraction of the nanofibers
are shown in Fig. 5a. The influence of temperature on strength of material is
easily observable. This figure show that, the strength of material decreases
with increasing temperature in elastic and inelastic regions and the inelastic
behavior occurs at lower strain amplitude with increase of temperature. The
variations of complex transverse Young’s modulus with respect to different
temperature and wide range of strain amplitude of loading are presented in
Fig. 5b. As it is seen the values of real and imaginary parts of transverse
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Young’s modulus (E';2 and EgZ) decrease with increasing temperature at the

constant volume fraction and frequency. This figure shows that the sensitivity
of transverse Young’s modulus to temperature variations at the high values is
more profound than at the region of lower temperature.

In Fig. 6a and 6b, the effect of temperature on real and imaginary parts

of Poisson ratio, V,,, are presented. These results indicate that the influence

of temperature for the transversely isotropic nanocomposite system with
unidirectionally aligned fibers on the Poisson ratio is small. Also, with
increasing temperature, the values of Poission ratio increase in the inelastic
region because this behavior is governed by the nonlinear response of matrix
material (polymer).
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Conclusions. In the paper, the effect of temperature and amplitude of
excitation strain on complex modulus of nanocomposite under kinematic
harmonic loading has been investigated. A micromechanics model is developed
to determine effective inelastic properties of nanocomposite under
monoharmonic loading by taking into account detailed micro-structural
geometries and constitutive models of the constituents. By using the
Correspondence Principle in viscoelasticity, the modified Mori-Tanaka method
and effects of interface between inclusion and matrix is extended to the
transformed domain. By applying the presently developed model, a numerical
analysis for determination of the complex moduli of polymeric nanocomposite
reinforced with nanofibers is conducted under the different temperature and
kinematic harmonic loading. Characterization of the complex moduli
dependence on temperature and amplitude of strain intensity is performed. In
this investigation, composites reinforced with wunidirectionally aligned
nanofibers is considered. The volume fraction and temperature are considered
as the controlling parameters. Results demonstrate the significant dependence
of loss moduli on the temperature within the wide interval of it before the
glass transition temperature. For nanocomposites containing unidirectionally
aligned nanofibers, numerical results indicate that the increase of the
nanofibers volume fraction enhances significantly their axial complex moduli
but has little influences on their transverse, shear complex moduli. In
addition, the effect of the unidirectionally aligned nanofiber orientation on the
shear complex moduli is negligibly small. Furthermore, for the transversely
isotropic nanocomposite system with uniaxially aligned nanofibers, both the
storage and loss moduli are found to increase monotonically with the increase
of the nanofiber volume fraction while decrease with increasing temperature.
The procedure presented in this paper for obtaining dependencies can be
useful for estimation of the mechanical and thermal degradation of polymeric
composites and can be subsequently applied for the determination of fatigue,
crack growth and residual life of composite structures.
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BMNUB TEMIMEPATYPU HA LIUKIIYHI BTACTUBOCTI TPAHCBEPCAIIbHO-I30TPOIMHOI
HAHOKOMIMO3WUTHOI CACTEMU NPU FAPMOHIYHOMY HABAHTAXEHHI

Pozeunymo mepmomexaniuny moleab Ori 8U3HAUEHHA efeKMUBHUX HeNnPYICHUX 8adc-
mueocmell. HAHOKOMNOZUMA NMPU MOHOLAPMOHILHOMY HABAHMANCEHHE, AKA B6PAXOBYE
BNAUB 2COMEMPULHUL NAPAMEMPIE MIKPOCMPYKMYPU Ma saacmusocmell ckaadosux. 3a
donomozoto modugixosarozo memody Mopi—Tanaka 6 npuryuny 6 a3KonpydxicHoi 8i0no-
gl0HoCMI 8 MOOeal 8PAX0BAHO HAABHICMD NPUN0BEPIHE80T 00.4acmi 83A€MO0IT HA MeKHCT
KOHMAKMY 6KAUeHHS 1 mampuyl. Poseunymy memoduxy sacmocoeano 00 uuUCA08020
BU3HAUEHHA KOMNACKCHUX MOOYAL8 NOAIMEPHOZ0 HAHOKOMNO3UMA, 3MIYHEH020 HAHOB0-
NOKHAMU 3 8Y2neuyesuxr HaAHOMPYOOoK, AKUL 3HAXOOUMBCS 8 130MePMIYHUX YMO8AX NPU
3a0aniti memnepamypi. IIposedeno anania 3arercHOCMi KOMNACKCHUX MOO0YAi8 810 mem-
nepamypu ma inmencusHocmi Oeopmayli 04 Komnoduma, 3miyHernozo oOHOHANPAB-
NeHUMU 80A0KHAMU. Pe3ysvmamu 0emoHCMPYIOMb 3HAUHY 3AAeHCHICMD MOOYALE8 HAKO-
HA 1 empam 3pocmarms MOHOMOHHO NPU 30LAbULEHHT 00 EMHO20 8MICMY B0AO0KOH 1
3MEHWYOMbCA NPU 3POCMArHHT memnepamypu. Ilokasaro, wWo Hopcmricms HAHOKOM-
NO3UMA 3MEHULYEMDCS Y NPYHCHIU Ma HenPYHCHIU 004acmMAL NOeOTHKU NPU 30inbUeH-
HI memnepamypu.

BINUAHUE TEMIMEPATYPbI HA LIMKINTUYECKUE CBOWCTBA TPAHCBEPCAIIbHO-
M30TPONHOUN HAHOKOMMNO3UTHOU CUCTEMbI NPU TAPMOHUYECKOM HAIPYXEHUU

Pazeuma mepmomexanuuecrkas moleavb 0as onpedesenusi 3IPPHeKMUBHLLL HeYNPYzux
c8oticme HAHOKOMNO3UMA NPU MOHOLAPMOHUUECKOM HAZPYHCEHUU, YUUMDBLBAIOULAS BAUSL-
HUe 2e0MeMPULECKUL NAPAMEMPO8 MUKPOCMPYKMYPHL U C80UCME cocmasastowux. IIpu
nomowu moduguyuposarnozo memoda Mopu—Tanaka u NPUHYUNA 8A3KOYNpYyzoz0 CO-
omeemcmeus, 8 mo0eal YumeHo HAAUYUE NPUNOBEPLHOCMHOL obracmu 83aumodelicm-
8USL HA 2PAHUYE KOHMAKMA 8KAIOUEHUSL U MmampPpuysl. Pazsumasn memodukxa npumens-
emcs Onsl 4ucAeHH020 onpedeseHust KOMNALKCHBLL Mo0Yyrel NoAUMEPHO20 HAHOKOMNO3U-
ma YnpouHeHH0z0 HAHOBOAOKHAMU U3 Y2AePOOHBLX HAHOMPYOOK, HAXo0su,ezocs 8 U30-
MEePMULECKUL YCA0BUAX NPU 3a0aHHOU memnepamype. IIposeden anarus 3asucumocmu
KOMNACKCHBLL MO0Ysett om memmepamypsl U unmencushocmu Oeghopmayuu 04 KOM-
no3uma, YynpouHenHHozo 00HOHANPABACHHBLUU B0A0KHAMU. Pe3ysvmamut demoncmpupy-
0M CYWeCMEEeHHY0 3A8UCUMOCTD MOOYAeU HAKONAEHUS U NOMePb 0M Mmemnepamypst 8
wupokoll obaacmu ee usmererus. Modyau Haxonienus u nomepds 803PACMAOM MOHO-
MOHHO NPU YBeauyeHUlU 006eMH020 CO0ePHCAHUSL B0A0KOH U YMEHDULAIOMCS NPU 803PaAC-
manuu memnepamypst. Ilokasano, ¥mo jxecmrocms HAHOKOMNOZUMA YMEHBULALMCS 8
YNPY20U U Heynpyz2ou 06.1acmsx nogedeHus npu 803PACMAHUU MeMNePamypsbl.
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