O. V. Gutik¹, K. P. Pavlyk²

ON BRANDT λ^0 -EXTENSIONS OF SEMIGROUPS WITH ZERO

We introduce the Brandt λ^0 -extension $B^0_{\lambda}(S)$ of a semigroup S with zero and establish some algebraic properties of the semigroup $B^0_1(S)$ with respect to the se-

migroup S. Also we introduce the topological Brandt λ^0 -extension of a topological semigroup S with zero and study its topological properties with respect to the topological semigroup S. In particular we show that any topological Brandt λ^0 extension of an (absolutely) H-closed topological inverse semigroup S is (absolutely) H-closed in the class of topological inverse semigroups. Also we construct topologies on $B^0_{\lambda}(S)$ which preserve the absolute H-closedness and H-closedness.

Using the construction of topological Brandt λ^0 -extensions of topological semigroups we give an example of absolutely H-closed metrizable inverse topological semigroup S with an absolutely H-closed ideal I such that S/I is not a topological semigroup.

Introductions and preliminaries. In this paper all spaces are Hausdorff. A topological (inverse) semigroup is a topological space together with a continuous multiplication (and an inversion, respectively). Further we follow the terminology of [1, 2, 4]. If S is a semigroup, then by E(S) we denote the band (the subset of idempotents) of S, and by S^1 [S^0] we denote the semigroup S with the adjoined unit [zero] (see [2]). By ω we denote the first infinite ordinal. If Y is a subspace of a topological space X and $A \subseteq Y$, then by $cl_Y(A)$ we denote the topological closure of A in Y.

Let S be a semigroup with zero and I_{λ} be a set of cardinality $\lambda \ge 2$. On the set $B_{\lambda}(S) = I_{\lambda} \times S \times I_{\lambda} \bigcup \{0\}$ we define the semigroup operation as follows

$$(\alpha, a, \beta) \cdot (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{if } \beta = \gamma, \\ 0, & \text{if } \beta \neq \gamma, \end{cases}$$

and $(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0$, for all $\alpha, \beta, \gamma, \delta \in I_{\lambda}$ and $a, b \in S$. If $S = S^{1}$ then the semigroup $B_{\lambda}(S)$ is called the Brandt λ -extension of the semigroup S [7]. Obviously, $\mathcal{J} = \{0\} \cup \{(\alpha, 0_{S}, \beta) \mid 0_{S} \text{ is the zero of } S\}$ is an ideal of $B_{\lambda}(S)$. We put $B_{\lambda}^{0}(S) = B_{\lambda}(S) / \mathcal{J}$ and we shall call $B_{\lambda}^{0}(S)$ the Brandt λ^{0} extension of the semigroup S with zero. Further, if $A \subseteq S$ then we shall denote $A_{\alpha\beta} = \{(\alpha, s, \beta) \mid s \in A\}$ if A does not contain zero, and $A_{\alpha\beta} = \{(\alpha, s, \beta) \mid s \in$ $\in A \setminus \{0\}\} \cup \{0\}$ if $0 \in A$, for $\alpha, \beta \in I_{\lambda}$. If \mathcal{I} is a trivial semigroup (i.e. \mathcal{I} contains only one element), then by \mathcal{I}^{0} we denote the semigroup \mathcal{I} with the adjoined zero. Obviously, for any $\lambda \geq 2$ the Brandt λ^{0} -extension of the semigroup \mathcal{I}^{0} is isomorphic to the semigroup of $I_{\lambda} \times I_{\lambda}$ -matrix units and any Brandt λ^{0} -extension of a semigroup with zero contains the semigroup of $I_{\lambda} \times I_{\lambda}$ -matrix units. Further by B_{λ} we shall denote the semigroup of $I_{\lambda} \times I_{\lambda}$ matrix units and by $B_{\lambda}^{0}(1)$ the subsemigroup of $I_{\lambda} \times I_{\lambda}$ -matrix units of the Brandt λ^{0} -extension of a monoid S with zero. In our paper we establish some algebraic properties of the semigroup $B^0_{\lambda}(S)$ with respect to a semigroup S. Also we introduce a topological Brandt λ^0 -extension of a topological semigroup S with zero and study its topological properties with respect to the topological semigroup S. In particular, we show that any topological Brandt λ^0 -extension of an (absolutely) H-closed topological inverse semigroup S is (absolutely) H-closed in the class of topological inverse semigroups. Also we construct topologies on $B^0_{\lambda}(S)$ which preserve the absolute H-closedness and H-closedness. Using the construction of topological Brandt λ^0 -extensions of topological semigroups we give an example of an absolutely H-closed metrizable inverse topological semigroup S with an absolutely H-closed ideal I such that S/I is not a topological semigroup.

1. Algebraic properties of $B^0_{\lambda}(S)$. This section contains algebraic properties of the semigroup $B^0_{\lambda}(S)$ with respect to the semigroup S. We remark that a non-zero element (α, e, β) of the semigroup $B^0_{\lambda}(S)$ is idempotent if and only if e is an idempotent in S and $\alpha = \beta$. Obviously, a non-zero idempotent (α, e, α) of the semigroup $B^0_{\lambda}(S)$ is primitive if and only if e is a primitive idempotent of S.

Proposition 1. Let S be a semigroup with zero. Then the following conclusions hold:

- (i) S is regular if and only if $B^0_{\lambda}(S)$ is regular;
- (ii) S is orthodox if and only if $B^0_{\lambda}(S)$ is orthodox;
- (iii) S is inverse if and only if $B^0_{\lambda}(S)$ is inverse;
- (iv) S is 0-simple if and only if $B^0_{\lambda}(S)$ is 0-simple;
- (v) S is completely 0-simple if and only if $B^0_{\lambda}(S)$ is completely 0-simple.

P r o o f. Statement (*i*) follows from the fact that an element (α, x, β) of $B^0_{\lambda}(S)$ is regular if and only if x is regular in S.

(ii) If T is a subsemigroup of S, then $B^0_{\lambda}(T)$ as a subset of $B^0_{\lambda}(S)$ is a subsemigroup of $B^0_{\lambda}(S)$. Therefore if S is an orthodox semigroup then so is $B^0_{\lambda}(S)$. Conversely, suppose that $B^0_{\lambda}(S)$ be an orthodox semigroup and e and f are idempotents of S. Then the element $(\alpha, e, \alpha)(\alpha, f, \alpha) = (\alpha, ef, \alpha)$ is a non-zero idempotent of $B^0_{\lambda}(S)$ if $ef \neq 0$. Therefore ef is an idempotent of S and the semigroup S is orthodox.

Statement (ii) follows from the fact that the idempotents of the semigroup S commute if and only if the idempotents of the semigroup $B^0_{\lambda}(S)$ commute.

(*iv*) Suppose the contrary, i.e. there exists a 0-simple semigroup such that the semigroup $B^0_{\lambda}(S)$ contains a non-zero proper ideal I. Then there exist $\alpha, \beta \in I_{\lambda}$ and a non-empty subset $A \neq \{0\}$ of S such that $A_{\alpha\beta} \subseteq I$. Since $S_{\alpha\alpha}I \subseteq I$ and $S_{\alpha\alpha}A_{\alpha\beta} \subseteq S_{\alpha\beta}$, we have $S_{\alpha\alpha}A_{\alpha\beta} \subseteq A_{\alpha\beta}$. Therefore, A is a non-zero proper ideal of S and we obtain a contradiction. Since $B^0_{\lambda}(J)$ is a non-

zero proper ideal in $B^0_{\lambda}(S)$ where J is a non-zero proper ideal of S, we get that if the semigroup $B^0_{\lambda}(S)$ is 0-simple then so is S.

Since every completely 0-simple semigroup contains a primitive idempotent, statement (iv) implies (v).

A semigroup homomorphism $h: S \to T$ is called *annihilating* if there exists $c \in T$ such that h(a) = c for all $a \in S$.

A semigroup S is called *congruence-free* if it has only two congruences: identical and universal [11]. Obviously, a semigroup S is congruence-free if and only if any homomorphism h of S into an arbitrary semigroup T is an isomorphism «into» or is annihilating.

Theorem 1. A semigroup S with zero is congruence-free if and only if $B^0_{\lambda}(S)$ is congruence-free for all $\lambda \geq 2$.

Proof. (\Rightarrow) Suppose the contrary, i.e. let there exists a congruencefree semigroup S with zero such that the semigroup $B^0_{\lambda}(S)$ is not congruence-free for some $\lambda \geq 2$. Then there exists a semigroup homomorphism $g: B^0_{\lambda}(S) \rightarrow T$ into a semigroup T which is neither an isomorphism nor annihilating. Therefore there exist $x, y \in B^0_{\lambda}(S)$ such that $x \neq y$ and g(x) = g(y). We consider the following cases.

1°. Let x = 0, $y = (\alpha, s, \beta)$ for some $s \in S \setminus \{0\}$ and $\alpha, \beta \in I_{\lambda}$. Let (γ, t, δ) be any nonzero element of $B_{\lambda}^{0}(S)$. Since the semigroup S is congruence-free and hence is 0-simple, there exist $a, b \in S \setminus \{0\}$ such that t = asb and therefore we get $g((\gamma, t, \delta)) = g((\gamma, a, \alpha) \cdot (\alpha, s, \beta) \cdot (\beta, b, \delta)) = g((\gamma, a, \alpha)) \cdot g((\alpha, s, \beta)) \cdot g((\beta, b, \delta)) = g((\gamma, a, \alpha)) \cdot g(0) \cdot g((\beta, b, \delta)) = g((\gamma, a, \alpha) \cdot 0 \cdot (\beta, b, \delta)) = g(0)$ for any nonzero element (γ, t, δ) of $B_{\lambda}^{0}(S)$.

2°. Let $x = (\alpha, s, \beta)$, $y = (\alpha, t, \beta)$ for some $\alpha, \beta \in I_{\lambda}$ and $s, t \in S \setminus \{0\}$ such that $s \neq t$. Since the semigroup S is congruence-free, the restriction homomorphism $g|_{S} : S \to T$ is annihilating and therefore g(x) = g(y) = g(0). Then case **1°** implies that g is an annihilating homomorphism.

3°. Let $x = (\alpha, s, \beta)$, $y = (\gamma, t, \delta)$ for some $s, t \in S \setminus \{0\}$ and $\alpha, \beta \in I_{\lambda}$ such that $\alpha \neq \gamma$ or $\beta \neq \delta$. Since the semigroup S is 0-simple, there exist $a, b \in S \setminus \{0\}$ such that s = atb and we have $g((\alpha, s, \beta)) = g((\alpha, atb, \beta)) =$ $= g((\alpha, a, \gamma) \cdot (\gamma, t, \delta) \cdot (\delta, b, \beta)) = g((\alpha, a, \gamma)) \cdot g((\gamma, t, \delta)) \cdot g((\delta, b, \beta)) = g((\alpha, a, \gamma)) \cdot$ $\cdot g((\alpha, s, \beta)) \cdot g((\delta, b, \beta)) = g((\alpha, a, \gamma) \cdot (\alpha, s, \beta) \cdot (\delta, b, \beta)) = g(0)$. Therefore by case **1°** the homomorphism g is annihilating. We thus showed that in all three cases **1°-3°** the homomorphism g is annihilating. The derived contradiction shows, that $B_{\lambda}^{0}(S)$ is congruence-free and justifies the implication.

 (\Leftarrow) Suppose there exists a non-congruence-free semigroup S with zero such that $B^0_{\lambda}(S)$ is congruence-free semigroup for some $\lambda \ge 2$. Then there exists a semigroup T with zero and a surjective homomorphism $h: S \to T$ such that h(s) = h(t) for some different $s, t \in S$. We extend the homomorphism h up to homomorphism $\tilde{h}: B^0_{\lambda}(S) \to B^0_{\lambda}(T)$ by the formulae $\tilde{h}((\alpha, s, \beta)) = (\alpha, h(s), \beta)$ and $\tilde{h}(0_S) = 0_T$, where 0_S and 0_T are the zeros of the semigroups $B^0_{\lambda}(S)$ and $B^0_{\lambda}(T)$, respectively. Therefore, we get $\tilde{h}((\alpha, s, \beta)) = \tilde{h}((\alpha, t, \beta))$, which contradicts the assumption that the semigroup $B^0_{\lambda}(S)$ is congruence-

28

free. The obtained contradiction implies that S is a congruence-free semigroup. \Diamond

Proposition 2. Let S be a semigroup with zero. Let $h: B^0_{\lambda}(S) \to T$ be a homomorphism such that $h((\alpha, x, \beta)) = h(0)$ for some $x \in S$, $\alpha, \beta \in I_{\lambda}$. Then $h((\gamma, y, \delta)) = h(0)$ for all $y \in SxS$, $\gamma, \delta \in I_{\lambda}$.

P r o o f. Assume that $y \in SxS$. Then y = axb for some $a, b \in S$. Therefore $h((\gamma, y, \delta)) = h((\gamma, a, \alpha) \cdot (\alpha, x, \beta) \cdot (\beta, b, \delta)) = h((\gamma, a, \alpha)) \cdot h((\alpha, x, \beta)) \cdot h((\beta, b, \delta)) = h((\gamma, a, \alpha)) \cdot h(0) \cdot h((\beta, b, \delta)) = h((\gamma, a, \alpha) \cdot 0 \cdot (\beta, b, \delta)) = h(0) \cdot \delta$

Corollary 1. Let S be a monoid with zero. A homomorphism $h: B^0_{\lambda}(S) \to T$ is annihilating if and only if the homomorphism $h|_{B_{\lambda}}: B_{\lambda} = B^0_{\lambda}(1) \to T$ is annihilating.

Proposition 3. Let S be a monoid with zero. Let $h: B_{\lambda}^{0}(S) \to T$ be a homomorphism and $h((\alpha_{1}, a, \beta_{1})) = h((\alpha_{2}, b, \beta_{2}))$ for some $a, b \in S$, $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in I_{\lambda}$. If $\alpha_{1} \neq \alpha_{2}$ or $\beta_{1} \neq \beta_{2}$ then $h((\alpha_{1}, a, \beta_{1})) = h(0)$.

P r o o f. Assume that $\alpha_1 \neq \alpha_2$. Then $h((\alpha_1, a, \beta_1)) = h((\alpha_1, 1, \alpha_1)(\alpha_1, a, \beta_1)) = h((\alpha_1, 1, \alpha_1)) \cdot h((\alpha_1, a, \beta_1)) = h((\alpha_1, 1, \alpha_1)) \cdot h((\alpha_2, b, \beta_2)) = h((\alpha_1, 1, \alpha_1) \cdot (\alpha_2, b, \beta_2)) = h(0)$. The proof of the case $\beta_1 \neq \beta_2$ is similar. \diamond

Proposition 4. Let $\lambda \geq 2$, S be a monoid with zero and T be a semigroup. Let $h: B_{\lambda}^{0}(S) \to T$ be a homomorphism, A and B be disjoint subsets of $h(B_{\lambda}^{0}(S))$. If the sets A and B intersect at least two different subsets of the type $h(S_{\alpha\beta})$, $\alpha, \beta \in I_{\lambda}$, then $h(0) \in A \cdot B$ or $h(0) \in B \cdot A$.

Proof. The cases $h(0) \in A$, or $h(0) \in B$ are trivial. Otherwise, for i = 1, 2, 3, 4 we fix $\alpha_i, \beta_i \in I_{\lambda}$ such that $A \cap h(S_{\alpha_1\beta_1}) \neq \emptyset$, $A \cap h(S_{\alpha_2\beta_2}) \neq \emptyset$, $B \cap h(S_{\alpha_3\beta_3}) \neq \emptyset$ and $B \cap h(S_{\alpha_4\beta_4}) \neq \emptyset$. By Proposition 3 the sets $h(S_{\alpha_1\beta_1}) \setminus h(0)$ and $h(S_{\alpha_2\beta_2}) \setminus h(0)$ are disjoint in $h(B^0_{\lambda}(S))$, hence $\alpha_1 \neq \alpha_2$ or $\beta_1 \neq \beta_2$. Let x_1, x_2, x_3, x_4 be elements of the semigroup S such that $h((\alpha_1, x_1, \beta_1))$, $h((\alpha_2, x_2, \beta_2)) \in A$ and $h((\alpha_3, x_3, \beta_3))$, $h((\alpha_4, x_4, \beta_4)) \in B$. If $\alpha_1 \neq \alpha_2$, then $\alpha_1 \neq \beta_3$ or $\alpha_2 \neq \beta_3$, and hence $h(0) = h((\alpha_3, x_3, \beta_3) \cdot (\alpha_1, x_1, \beta_1)) = h((\alpha_3, x_3, \beta_3)) \cdot h((\alpha_2, x_2, \beta_2)) \in B \cdot A$, or $h(0) = h((\alpha_3, x_3, \beta_3) \cdot (\alpha_2, x_2, \beta_2)) = h((\alpha_3, x_3, \beta_3)) \cdot h((\alpha_1, x_1, \beta_1) \cdot (\alpha_3, x_3, \beta_3)) = h((\alpha_1, x_1, \beta_1)) \cdot h((\alpha_3, x_3, \beta_3)) \in A \cdot B$, or $h(0) = h((\alpha_2, x_2, \beta_2)) \cdot (\alpha_3, x_3, \beta_3)) = h((\alpha_2, x_2, \beta_2)) \cdot h((\alpha_3, x_3, \beta_3)) = h((\alpha_3, x_3, \beta_3)) = h((\alpha_3, x_3, \beta_3)) \in A \cdot B$.

2. Topological Brandt λ^0 -extensions of topological semigroups with zero. ro. Further, by \mathscr{S} we denote some class of topological semigroups with zero. *Definition* 1. Let λ be a cardinal ≥ 2 , and $(S, \tau) \in \mathscr{S}$. Let τ_B be a topo-

logy on $B^0_{\lambda}(S)$ such that

 $\boldsymbol{a}) \ (B^0_{\lambda}(S),\boldsymbol{\tau}_B) \in \mathcal{S} \ ; \qquad \qquad \boldsymbol{b}) \ \boldsymbol{\tau}_B \mid_{(\alpha,S,\alpha) \cup \{0\}} = \boldsymbol{\tau} \ \text{ for some } \alpha \in I_{\lambda} \, .$

Then $(B^0_{\lambda}(S), \tau_B)$ is called a topological Brandt λ^0 -extension of $(S, \mathbf{\tau})$ in S. If S coincides with the class of all topological semigroups, then $(B^0_{\lambda}(S), \tau_B)$ is called a topological Brandt λ^0 -extension of $(S, \mathbf{\tau})$.

Lemma 1. Let $\lambda \geq 2$ and $B^0_{\lambda}(S)$ be a topological λ^0 -extension of a topological monoid S with zero. Let T be a topological semigroup and $h: B^0_{\lambda}(S) \rightarrow T$ be a continuous homomorphism. Then the sets $h(A_{\alpha\beta})$ and $h(A_{\gamma\delta})$ are homeomorphic in T for all $\alpha, \beta, \gamma, \delta \in I_{\lambda}$, and all $A \subseteq S$.

Proof. If h is an annihilating homomorphism, then the statement of the Lemma is trivial. Otherwise, we fix arbitrary $\alpha, \beta, \gamma, \delta \in I_{\lambda}$ and define the maps $\varphi_{\alpha\beta}^{\gamma\delta}: T \to T$ and $\varphi_{\gamma\delta}^{\alpha\beta}: T \to T$ by the formulae $\varphi_{\alpha\beta}^{\gamma\delta}(s) = h((\gamma, 1, \alpha)) \cdot s \cdot h((\beta, 1, \delta))$ and $\varphi_{\gamma\delta}^{\alpha\beta}(s) = h((\alpha, 1, \gamma)) \cdot s \cdot h((\delta, 1, \beta))$, $s \in T$. Obviously $\varphi_{\gamma\delta}^{\alpha\beta}(\varphi_{\alpha\beta}^{\alpha\beta}(h((\alpha, x, \beta)))) = h((\alpha, x, \beta))$ and $\varphi_{\alpha\beta}^{\gamma\delta}(\varphi_{\gamma\delta}^{\alpha\beta}(h((\gamma, x, \delta)))) = h((\gamma, x, \delta))$, for all $\alpha, \beta, \gamma, \delta \in I_{\lambda}$, $x \in S^{1}$, and hence $\varphi_{\alpha\beta}^{\gamma\delta}|_{A_{\alpha\beta}} = (\varphi_{\gamma\delta}^{\alpha\beta})^{-1}|_{A_{\alpha\beta}}$. Since the maps $\varphi_{\alpha\beta}^{\gamma\delta}$ and $\varphi_{\gamma\delta}^{\alpha\beta}$ are continuous on T, the map $\varphi_{\gamma\delta}^{\alpha\beta}|_{h(A_{\alpha\beta})}: h(A_{\alpha\beta}) \to h(A_{\gamma\delta})$ is a homeomorphism. \diamond

Proposition 5. Let $\lambda \geq 2$ and let $B^0_{\lambda}(S)$ be a topological λ^0 -extension of a topological monoid S with zero. Let T be a topological semigroup and $h: B^0_{\lambda}(S) \to T$ be a continuous homomorphism. Assume that a set $A \subseteq h(B^0_{\lambda}(S))$ is such that A intersects at least two different subsets of the type $h(S_{\alpha\beta})$. Then $h(0) \in A \cdot A$.

Proof. The case $h(0) \in A$ is trivial. Assume that $h(0) \notin A$, $A \cap \cap h(S_{\alpha_1 \alpha_2}) \neq \emptyset$ and $A \cap h(S_{\beta_1 \beta_2}) \neq \emptyset$ for some $\alpha_1, \alpha_2, \beta_1, \beta_2 \in I_\lambda$, i.e. there exist $x, y \in S^1$ such that $h((\alpha_1, x, \alpha_2)) \in A$ and $h((\beta_1, y, \beta_2)) \in A$. If $\alpha_1 \neq \alpha_2$ or $\beta_1 \neq \beta_2$, then $h(0) = h((\alpha_1, x, \alpha_2)) \cdot h((\alpha_1, x, \alpha_2)) \in A \cdot A$ or $h(0) = h((\beta_1, y, \beta_2)) \cdot h((\beta_1, y, \beta_2)) \in A \cdot A$. If $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$, then $\alpha_2 \neq \beta_1$, and hence $h(0) = h((\alpha_1, x, \alpha_2)) \cdot h((\beta_1, x, \alpha_2)) \cdot h((\beta_1, y, \beta_2)) \in A \cdot A$. \Diamond

Lemma 2. Let $\lambda \geq 2$, $B^0_{\lambda}(S)$ and T be topological semigroups and $h: B^0_{\lambda}(S) \to T$ be a continuous homomorphism. Let $h(B^0_{\lambda}(S))$ be a dense subsemigroup of T and $h(S_{\alpha\beta})$ be a closed subset in T for some $\alpha, \beta \in I_{\lambda}$. Then $a \cdot a = h(0)$ for all $a \in T \setminus h(B^0_{\lambda}(S))$, and h(0) is the zero of T.

Proof. Since $h(B^0_{\lambda}(S))$ is a dense subsemigroup of T, by Proposition 2 [7], h(0) is the zero of T. Assume that $a \cdot a = b \neq h(0)$ for some $a \in T \setminus h(B^0_{\lambda}(S))$. Then for any open neighborhood $U(b) \supseteq h(0)$ there exists an open neighborhood $V(a) \supseteq h(0)$ such that $V(a) \cdot V(a) \subseteq U(b)$. By Lemma 1 the set $h(S_{\gamma\delta})$ is closed for each $\gamma, \delta \in I_{\lambda}$. Therefore the neighborhood V(a) intersects infinitely many sets of the type $h(S_{\alpha\beta})$, $\alpha, \beta \in I_{\lambda}$. Then by Proposition 5 we have $h(0) \in V(a) \cdot V(a) \subseteq U(b)$, a contradiction with the choice of U(b). \diamond

Theorem 2. Let S be a topological inverse monoid with zero. Let $\lambda \geq 2$, $B^0_{\lambda}(S)$ and T be topological inverse semigroups, $h: B^0_{\lambda}(S) \to T$ be a continuous homomorphism such that the set $h(S_{\alpha\beta})$ is closed in T for some $\alpha, \beta \in I_{\lambda}$. Then $h(B^0_{\lambda}(S))$ is a closed subsemigroup of T. P r o o f. In the case $2 \leq \lambda < \omega$ the statement of the Theorem follows from Lemma 1.

Let $\lambda \geq \omega$. We denote $G = cl_T(h(B^0_{\lambda}(S)))$. By Proposition II.2 [3], G is a topological inverse semigroup. Let $b \in G \setminus h(B^0_{\lambda}(S))$. Then by Lemma 1, $b, b^{-1} \in G \setminus E(G)$. We remark that $b \cdot b^{-1} \neq h(0)$ and $b^{-1} \cdot b \neq h(0)$. Indeed, if we assume that $b \cdot b^{-1} = h(0)$ or $b^{-1} \cdot b = h(0)$, then since h(0) is the zero of G, we would get $b = b \cdot b^{-1} \cdot b = h(0) \cdot b = h(0)$ or [

=h(0), which would contradict the inclusion $b \in G \setminus h(B^0_{\lambda}(S))$.

Therefore there exist $e, f \in E(G) = E(h(B^0_{\lambda}(S)))$, such that $b \cdot b^{-1} = e$ and $b^{-1} \cdot b = f$. We consider first the case $e \neq f$. Let $W(e) \not\supseteq h(0)$ and $W(f) \not\supseteq h(0)$ be disjoint open neighborhood s of e and f in T, respectively. Then there exist disjoint open neighborhood s $U(b) \not\supseteq h(0)$ and $U(b^{-1}) \not\supseteq h(0)$ in T such that $U(b) \cdot U(b^{-1}) \subseteq W(e)$ and $U(b^{-1}) \cdot U(b) \subseteq W(f)$. By Lemma 1 the set $h(S_{\alpha\beta})$ is closed in T for each $\alpha, \beta \in I_{\lambda}$, and hence the sets U(b) and $U(b^{-1})$ intersect infinitely many different sets of the type $h(S_{\gamma\delta}) \setminus h(0), \gamma, \delta \in I_{\lambda}$. Thus by Proposition 5 we get $h(0) \in U(b) \cdot U(b^{-1}) \subseteq W(e)$ or $h(0) \in U(b^{-1}) \cdot U(b) \subseteq W(f)$, a contradiction with the choice of the neighborhoods W(e) and W(f). In the case e = f we similarly derive a contradiction. The obtained contradictions imply the statement of the theorem. \diamond

Definition 2 [12]. Let \mathscr{S} be a class of topological semigroups. A semigroup $S \in \mathscr{S}$ is called *H*-closed in \mathscr{S} , if *S* is a closed subsemigroup of any topological semigroup $T \in \mathscr{S}$ which contains *S* as subsemigroup. If \mathscr{S} coincides with the class of all topological semigroups, then the semigroup *S* is called *H*-closed.

Definition 3 [13]. Let \mathcal{S} be a class of topological semigroups. A topological semigroup $S \in \mathcal{S}$ is called *absolutely* H-closed in the class \mathcal{S} if any continuous homomorphic image of S into $T \in \mathcal{S}$ is H-closed in \mathcal{S} . If \mathcal{S} coincides with the class of all topological semigroups, then the semigroup S is called *absolutely* H-closed.

Lemma 1 and Theorem 2 imply

Theorem 3. For any cardinal $\lambda \geq 2$, every topological Brandt λ^0 -extension $B^0_{\lambda}(S)$ of an absolutely H-closed topological inverse monoid S with zero in the class of topological inverse semigroups, is absolutely H-closed in the class of topological inverse semigroups.

Corollary 2. For any cardinal $\lambda \ge 2$, every topological Brandt λ^0 -extension $B^0_{\lambda}(S)$ of a compact topological inverse semigroup S with zero in the class of topological inverse semigroups, is absolutely H-closed in the class of topological inverse semigroups.

Theorem 4. Let S be a topological inverse monoid with zero. Then the following conditions are equivalent:

- (i) S is an absolutely H-closed semigroup in the class of topological inverse semigroups;
- (ii) there exists a cardinal $\lambda \ge 2$ such that any topological Brandt λ^0 -extension $B^0_{\lambda}(S)$ of the semigroup S is absolutely H-closed in the class of topological inverse semigroups;

(iii) for each cardinal $\lambda \ge 2$, every topological Brandt λ^0 -extension $B^0_{\lambda}(S)$ of the semigroup S is absolutely H-closed in the class of topological inverse semigroups.

P r o o f. The implication $(iii) \Rightarrow (ii)$ is trivial, and Theorem 3 claims the implications $(i) \Rightarrow (ii)$ and $(i) \Rightarrow (iii)$.

We shall show that the implication $(ii) \Rightarrow (i)$ holds. Suppose the contrary, i.e. that there exists a non-absolutely H-closed topological inverse monoid Swith zero in the class of topological inverse semigroups, and for some cardinal $\lambda^* \geq 2$ every topological Brandt λ_0^* -extension $B_{\lambda^*}^0(S)$ is absolutely H-closed in the class of topological inverse semigroups. Then there exist a topological inverse semigroup T and a continuous homomorphism «into» $h: S \to T$ such that h(S) is not a closed subsemigroup of T.

Let $\mathbf{\tau}_S$ and $\mathbf{\tau}_T$ be direct sum topologies on $B^0_{\lambda^*}(S)$ and $B^0_{\lambda^*}(T)$, respectively (see [5, p. 129]). Then $(B^0_{\lambda^*}(S), \mathbf{\tau}_S)$ and $(B^0_{\lambda^*}(T), \mathbf{\tau}_T)$ are topological inverse semigroups, S and T^1 are homeomorphic to $S_{\alpha\beta}$ and $T_{\alpha\beta}$, for all $\alpha, \beta \in I_{\lambda}$ (see [5, p. 129]). We define the map $\tilde{h} : B^0_{\lambda^*}(S) \to B^0_{\lambda^*}(T)$ as follows: $\tilde{h}(0) = 0$ and $\tilde{h}((\alpha, s, \beta)) = (\alpha, h(s), \beta)$ for all $\alpha, \beta \in I_{\lambda}$, $s \in S \setminus \{0\}$. Obviously, the homomorphism $\tilde{h} : (B^0_{\lambda^*}(S), \mathbf{\tau}_S) \to (B^0_{\lambda^*}(T), \mathbf{\tau}_T)$ is continuous and $\tilde{h}(B^0_{\lambda^*}(S))$ is not a closed subsemigroup of $(B^0_{\lambda^*}(T), \mathbf{\tau}_T)$. Therefore there exists a topological Brandt λ^*_0 -extension $(B^0_{\lambda^*}(S), \mathbf{\tau}_S)$, which is not absolutely H-closed in the class of topological inverse semigroups. The obtained contradiction implies the statement of the theorem. \diamond

Taking $h: B^0_{\lambda}(S) \to T$ is a topological isomorphism «into» in Lemma 1 and Theorem 2, we get

Theorem 5. For any cardinal $\lambda \geq 2$, every topological Brandt λ^0 -extension $B^0_{\lambda}(S)$ of a H-closed topological inverse monoid S with zero in the class of topological inverse semigroups is H-closed in the class of topological inverse semigroups.

The proof of the next theorem is similar that of Theorem 4.

Theorem 6. Let S be a topological inverse monoid with zero. Then the following conditions are equivalent:

- (i) S is an H-closed semigroup in the class of topological inverse semigroups;
- (ii) there exists a cardinal $\lambda \ge 2$ such that any topological Brandt λ^0 -extension $B^0_{\lambda}(S)$ of the semigroup S is H-closed in the class of topological inverse semigroups;
- (iii) for each cardinal $\lambda \ge 2$, every topological Brandt λ^0 -extension $B^0_{\lambda}(S)$ of the semigroup S is H-closed in the class of topological inverse semigroups.

Let $(S, \mathbf{\tau})$ be a topological semigroup with zero 0_S and $\lambda \ge \omega$. Let $V(0_S)$ be an open neighborhood of the zero of the semigroup $(S, \mathbf{\tau})$. For all $\alpha, \beta \in I_{\lambda}$ we put

$$V_{\alpha}(V(0_{S})) = B^{0}_{\lambda}(S) \setminus \left\{ (\alpha, s, \gamma) \mid \gamma \in I_{\lambda}, \ s \in S \setminus V(0_{S}) \right\}$$

and

$$H_{\beta}(V(0_{S})) = B_{\lambda}^{0}(S) \setminus \{(\gamma, s, \beta) \mid \gamma \in I_{\lambda}, s \in S \setminus V(0_{S})\}$$

We define

$$\begin{split} U^{\alpha_{1},...,\alpha_{n}}(V(0_{S})) &= \bigcap_{i=1}^{n} V_{\alpha_{i}}(V(0_{S})), \qquad U_{\beta_{1},...,\beta_{m}}(V(0_{S})) = \bigcap_{j=1}^{m} H_{\beta_{j}}(V(0_{S})), \\ U^{\alpha_{1},...,\alpha_{n}}_{\beta_{1},...,\beta_{m}}(V(0_{S})) &= U^{\alpha_{1},...,\alpha_{n}}(V(0_{S})) \cap U_{\beta_{1},...,\beta_{m}}(V(0_{S})), \end{split}$$

where $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m \in I_{\lambda}, m, n \in \mathbb{N}$.

Let $\Omega(s)$ be a base of the topology ${\boldsymbol{\tau}}$ at the point $s\in S$. Further, we define the following families

$$\begin{split} \Omega_v &= \left\{ U^{\alpha_1,\ldots,\alpha_n}(V(0_S)) \mid \alpha_1,\ldots,\alpha_n \in I_\lambda, n \in \mathbb{N}, V(0_S) \in \Omega(0_S) \right\} \bigcup \\ & \bigcup \left\{ (\alpha,V(s),\beta) \mid V(s) \in \Omega(s), \ s \in S \setminus \{0_S\}, \ \alpha,\beta \in I_\lambda \right\}, \\ \Omega_h &= \left\{ U_{\beta_1,\ldots,\beta_m}(V(0_S)) \mid \beta_1,\ldots,\beta_m \in I_\lambda, m \in \mathbb{N}, V(0_S) \in \Omega(0_S) \right\} \cup \\ & \bigcup \left\{ (\alpha,V(s),\beta) \mid V(s) \in \Omega(s), \ s \in S \setminus \{0_S\}, \ \alpha,\beta \in I_\lambda \right\}, \\ \Omega_i &= \left\{ U^{\alpha_1,\ldots,\alpha_n}_{\beta_1,\ldots,\beta_m}(V(0_S)) \mid \alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m \in I_\lambda, n, m \in \mathbb{N}, V(0_S) \in \\ & \in \Omega(0_S) \right\} \cup \left\{ (\alpha,V(s),\beta) \mid V(s) \in \Omega(s), \ s \in S \setminus \{0_S\}, \ \alpha,\beta \in I_\lambda \right\}. \end{split}$$

Obviously, the conditions (BP1)–(BP3) [4] hold for the families Ω_v , Ω_h and Ω_i , and hence Ω_v , Ω_h and Ω_i are the bases of topologies $\mathbf{\tau}_v(S)$, $\mathbf{\tau}_h(S)$ and $\mathbf{\tau}_i(S)$ on the semigroup $B^0_{\lambda}(S)$, respectively.

Definition 4. Let S be a topological semigroup with zero 0. Then S is called a *left* [*right*] 0-bounded semigroup if for any open neighborhood U(0) of zero there exists an open neighborhood V(0) such that $V(0) \cdot S \subseteq U(0)$ [$S \cdot V(0) \subseteq U(0)$]. A left and right 0-bounded topological semigroup is called 0-bounded.

Theorem 7. Every compact topological semigroup with zero is 0 -bounded.

Proof. Let S be a compact topological semigroup with zero 0 and U(0) be an open neighborhood of 0. Since the multiplication in S is continuous, for any $s \in S$ there exist open neighborhoods V(s) and $V_s(0)$ of s and 0, respectively, such that $V(s)V_s(0) \subseteq U(0)$ and $V_s(0)V(s) \subseteq U(0)$. The compactness of S implies that the open cover $\gamma = \{V(s) \mid s \in S\}$ contains a finite subcover $\gamma_0 = \{V(s_j) \mid s_j \in S, j = 1, ..., k\}$. Put $V(0) = \bigcap_{j=1}^k V_{s_j}(0)$. Therefore, we get

$$SV(0) = (V(s_1) \bigcup \dots \bigcup V(s_k))V(0) \subseteq V(s_1)V(0) \bigcup \dots \bigcup V(s_k)V(0) \subseteq U(0)$$

and

$$V(0)S = V(0)(V(s_1) \bigcup \ldots \bigcup V(s_k)) \subseteq V(0)V(s_1) \bigcup \ldots \bigcup V(0)V(s_k) \subseteq U(0). \land (0) \subseteq V(0) \subseteq V(0)$$

Proposition 6. Let $\lambda \geq \omega$ and (S, τ) be a topological semigroup with zero. Then the semigroup (S, τ) is left [right] 0-bounded if and only if $(B^0_{\lambda}(S), \tau_v(S))$ $[(B^0_{\lambda}(S), \tau_h(S))]$ is a topological semigroup.

P r o o f. (\Rightarrow) We consider only the case $(B^0_{\lambda}(S), \mathbf{\tau}_v(S))$. The proof of the statement for the semigroup $(B^0_{\lambda}(S), \mathbf{\tau}_h(S))$ is similar.

33

It is sufficient to consider the following cases.

1°. Let $ab = c \neq 0$ in S and $U(a)U(b) \subseteq U(c)$. If $\beta \neq \gamma$, then

$$(\alpha, U(a), \beta)(\gamma, U(b), \delta) = \{0\} \subseteq U^{\alpha_1, \dots, \alpha_n}(U(0))$$

for any $\alpha_1, \ldots, \alpha_n \in I_{\lambda}$ and any open neighborhood U(0) of the zero 0, and $(\alpha, U(a), \beta)(\beta, U(b), \delta) \subseteq (\alpha, U(c), \delta).$

2°. Let ab = 0 in S and $U(a)U(b) \subseteq U(0)$. If $\beta \neq \gamma$, then

$$(\alpha, U(a), \beta)(\gamma, U(b), \delta) = \{0\} \subseteq U^{\alpha_1, \dots, \alpha_n}(U(0))$$

and

 $(\alpha, U(a), \beta)(\beta, U(b), \delta) \subseteq U^{\alpha_1, \dots, \alpha_n}(U(0))$

for any $\alpha_1, \ldots, \alpha_n \in I_\lambda$ and any open neighborhood U(0) of the zero 0.

3°. If V(0) and U(0) are open neighborhoods of zero in S such that $V(0)S \subset U(0)$, then $U^{\alpha_1,\ldots,\alpha_n}(V(0))U^{\alpha_1,\ldots,\alpha_n}(V(0)) \subset U^{\alpha_1,\ldots,\alpha_n}(U(0))$.

4°. If V(a), V(0) and U(0) are open neighborhoods of a and zero in S such that $V(a)V(0) \subseteq U(0)$ and $V(0)V(a) \subseteq U(0)$, then

 $(\alpha, V(a), \beta)U^{\alpha_1, \dots, \alpha_n, \beta}(V(0)) \subset U^{\alpha_1, \dots, \alpha_n}(U(0))$

and

$$U^{\alpha_1,\ldots,\alpha_n}(V(0))(\alpha,V(a),\beta) \subseteq U^{\alpha_1,\ldots,\alpha_n}(U(0)).$$

 (\Leftarrow) Suppose the contrary, i.e. that $(B^0_{\lambda}(S), \mathbf{\tau}_v(S))$ is a topological semigroup and $(S, \mathbf{\tau})$ is a non-left 0-bounded topological semigroup. Then there exists an open neighborhood U(0) of zero in $(S, \mathbf{\tau})$ such that $V(0)S \not\subseteq U(0)$ for any open neighborhood V(0) of the zero 0 in $(S, \mathbf{\tau})$. Therefore for every open neighborhood W(0) of zero in $(S, \mathbf{\tau})$ and any $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_k \in I_{\lambda}$, $m, k \in \mathbb{N}$, the following condition holds $U^{\beta_1, \ldots, \beta_k}(W(0))U^{\beta_1, \ldots, \beta_k}(W(0)) \not\subseteq U^{\alpha_1, \ldots, \alpha_m}(U(0))$, which contradicts the assumption that $(B^0_{\lambda}(S), \mathbf{\tau}_v(S))$ is a topological semigroup. \diamond

Proposition 7. Let $\lambda \geq \omega$ and let $(S, \mathbf{\tau})$ be a topological (inverse) semigroup with zero. Then $(B^0_{\lambda}(S), \mathbf{\tau}_i(S))$ is a topological (inverse) semigroup.

The proof of Proposition 7 is similar to the one of Proposition 6. Proposition 2 [7] implies the following

Lemma 3. Let $\lambda \ge \omega$, $B^0_{\lambda}(S)$ and T be topological semigroups and $h: B^0_{\lambda}(S) \to T$ be a continuous homomorphism such that $h(B^0_{\lambda}(S))$ is a dense subset in T. Then $0_T = h(0)$ is the zero of the semigroup T.

Theorem 8. Let $\lambda \geq \omega$ and $(S, \mathbf{\tau})$ be an absolutely H-closed topological (inverse) monoid with zero. Then $(B^0_{\lambda}(S), \mathbf{\tau}_i(S))$ is an absolutely H-closed topological (inverse) semigroup.

Proof. Suppose the contrary, i.e. that $(B^0_{\lambda}(S), \mathbf{\tau}_i(S))$ is not an absolutely *H*-closed topological semigroup. Then there exists a continuous homomorphism $h: B^0_{\lambda}(S) \to T$ from $B^0_{\lambda}(S)$ into a topological semigroup *T* such that $h(B^0_{\lambda}(S))$ is not a closed subset in *T*. Without loss of generality we can suppose that the set $h(B^0_{\lambda}(S))$ is dense in *T* and $h(B^0_{\lambda}(S)) \neq T$. Then there exists $x \in \overline{h(B^0_{\lambda}(S))} \setminus h(B^0_{\lambda}(S)) \subseteq T$. By Lemma 3, $h(0) = 0_T$ and hence $x \cdot 0_T =$ $= 0_T \cdot x = 0_T$. Since *T* is a topological semigroup, for any open neighborhood $W(0_T)$ of 0_T in *T* there exist open neighborhoods $V(0_T)$ and $U(0_T)$ of 0_T in *T* and an open neighborhood V(x) of *x* in *T* such that $V(0_T) \cap V(x) = \emptyset$, $U(0_T) \cap V(x) = \emptyset$, $V(0_T) \subseteq W(0_T)$, $U(0_T) \subseteq W(0_T)$, $V(0_T) \cdot V(x) \subseteq U(0_T)$, and $V(x) \cdot V(0_T) \subseteq U(0_T)$.

Since $0 \in h^{-1}(U(0_T))$ and $h^{-1}(U(0_T))$ is an open subset in $(B^0_{\lambda}(S), \mathbf{\tau}_i(S))$, there exist $\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m \in I_{\lambda}$ such that $U^{\alpha_1, \dots, \alpha_n}_{\beta_1, \dots, \beta_m}(V(0_S)) \subseteq h^{-1}(U(0_S))$.

By Lemma 1 the sets $h(S_{\alpha\beta})$ and $h(S_{\gamma\delta})$ are homeomorphic in T, and hence are closed subsets of T for all $\alpha, \beta, \gamma, \delta \in I_{\lambda}$. Therefore at least one of the following conditions holds:

(i) for some $i_0 \in \{1, 2, ..., n\}$, the set $B_{i_0} = h^{-1}(V(x)) \cap \{(\alpha_{i_0}, s, \gamma) \mid s \in S^1, \gamma \in I_{\lambda}\}$ intersects infinitely many subsets $S_{\alpha\beta}$;

(*ii*) for some $j_0 \in \{1, 2, ..., m\}$, the set $B^{j_0} = h^{-1}(V(x)) \cap \{(\gamma, s, \alpha_{j_0}) \mid s \in S^1, \gamma \in I_{\lambda}\}$ intersects infinitely many subsets $S_{\alpha\beta}$.

Indeed, suppose that for any $\alpha_{i_0} \in I_{\lambda}$ the set B_{i_0} intersects finitely many subsets $S_{\alpha\beta}$, i.e. $S_{\alpha\beta} \cap S_{\alpha_i\beta_i} \neq \emptyset$ only for i = 1, 2, ..., n. By Lemma 1 the set $h(S_{\alpha_i\beta_i})$ is closed in T and hence $h(S_{\alpha_1\beta_1}) \cup ... \cup h(S_{\alpha_n\beta_n})$ is a closed subset of T. Therefore x is not a limit point of the set $h(B^0_{\lambda}(S))$ in the topological space T. This contradicts the choice of α . Therefore the set B_{i_0} intersects infinitely many subsets $S_{\alpha\beta}$ for some $i_0 \in \{1, 2, ..., n\}$.

Taking i_0 as in (**i**), we define

 $\Gamma_{i_0} = \left\{ \gamma \in I_{\lambda} \mid \text{ there exists } s \in S \text{ such that } (\alpha_{i_0}, s, \gamma) \in h^{-1}(V(x)) \right\}.$

For any element $U_{\delta_1,...,\delta_k}^{\delta_1,...,\delta_k}(V(0_S))$ of the base of the topology $\mathbf{\tau}_i(S)$ at zero, where $\delta_1,...,\delta_k \in I_{\lambda}$ and $U_{\delta_1,...,\delta_k}^{\delta_1,...,\delta_k}(V(0_S)) \subseteq h^{-1}(V(x))$ we have that the set $\{(\gamma, s, \gamma) \mid \gamma \in \Gamma_{i_0}, s \in S\} \cap U_{\delta_1,...,\delta_k}^{\delta_1,...,\delta_k}(V(0_S))$ contains infinitely many subsets $S_{\alpha\alpha}$ and hence the set Γ_{i_0} is infinite. Since $(\alpha_{i_0}, s, \gamma) \cdot (\gamma, s, \gamma) \neq (\alpha, s, \beta)$, for $\alpha \notin \notin \{\alpha_1,...,\alpha_n\}$, $\beta \notin \{\beta_1,...,\beta_m\}$ and $i_0 \in \{1, 2, ..., n\}$ we have

 $B_{i_0} \cdot U^{\delta_1,\ldots,\delta_k}_{\delta_1,\ldots,\delta_k}(V(0_S)) \nsubseteq U^{\alpha_1,\ldots,\alpha_n}_{\beta_1,\ldots,\beta_m}(V(0_S))\,,$

which contradicts the inclusion $V(x) \cdot V(0_T) \subseteq U(0_T)$.

Let $j_0 \in \{1, 2, ..., m\}$ be such that the set $B^{j_0} = h^{-1}(V(x)) \cap \{(\gamma, s, \alpha_{j_0}) \mid s \in S^1, \gamma \in I_{\lambda}\}$ intersects infinitely many subsets $S_{\alpha\beta}$. We define

 $\Gamma^{j_0} = \left\{ \gamma \in I_\lambda \mid \text{ there exists } s \in S \text{ such that } (\gamma, s, \alpha_{j_0}) \in h^{-1}(V(x)) \right\}.$

For any element $U_{\delta_1,...,\delta_k}^{\delta_1,...,\delta_k}(V(0_S))$ of the base of the topology $\mathbf{\tau}_i(S)$ at zero, where $\delta_1,...,\delta_k \in I_\lambda$ and $U_{\delta_1,...,\delta_k}^{\delta_1,...,\delta_k}(V(0_S)) \subseteq h^{-1}(V(x))$ we have that the set $\{(\gamma, s, \gamma) \mid \gamma \in \Gamma^{j_0}, s \in S\} \cap U_{\delta_1,...,\delta_k}^{\delta_1,...,\delta_k}(V(0_S))$ contains infinitely many subsets $S_{\alpha\alpha}$ and hence the set Γ^{j_0} is infinite. Since $(\gamma, s, \gamma) \cdot (\gamma, s, \alpha_{j_0}) \neq (\beta, s, \alpha)$ for $\alpha \notin \{\alpha_1, \dots, \alpha_n\}$, $\beta \notin \{\beta_1, \dots, \beta_m\}$ and $j_0 \in \{1, 2, \dots, m\}$ we have

$$U_{\delta_1,\ldots,\delta_k}^{\delta_1,\ldots,\delta_k}(V(0_S)) \cdot B^{j_0} \nsubseteq U_{\beta_1,\ldots,\beta_m}^{\alpha_1,\ldots,\alpha_n}(V(0_S)),$$

which contradicts the inclusion $V(0_T) \cdot V(x) \subseteq U(0_T)$.

Therefore, the contradictions derived show that $(B^0_{\lambda}(S), \mathbf{\tau}_i(S))$ is an absolutely *H*-closed topological (inverse) semigroup. \diamond

Theorem 8 implies

Corollary 3. Let $\lambda \geq \omega$ and let $(S, \mathbf{\tau})$ be a compact topological (inverse) monoid with zero. Then $(B^0_{\lambda}(S), \mathbf{\tau}_i(S))$ is an absolutely H-closed topological (inverse) semigroup.

The proof of next Theorem is similar that of Theorem 8.

Theorem 9. Let $\lambda \geq \omega$ and let $(S, \mathbf{\tau})$ be a left [right] 0-bounded absolutely H-closed topological monoid with zero. Then $(B^0_{\lambda}(S), \mathbf{\tau}_h(S))$ $[(B^0_{\lambda}(S), \mathbf{\tau}_v(S))]$ is an absolutely H-closed topological semigroup.

Theorem 9 implies

Corollary 4. Let $\lambda \geq \omega$ and let $(S, \mathbf{\tau})$ be a compact topological (inverse) monoid with zero. Then $(B^0_{\lambda}(S), \mathbf{\tau}_h(S))$ and $(B^0_{\lambda}(S), \mathbf{\tau}_v(S))$ are absolutely H-closed topological semigroups.

If in the proof of Theorem 8 we suppose that the homomorphism $h: B^0_{\lambda}(S) \to T$ is an embedding, then we get Theorem 10, and similarly Theorem 11.

Theorem 10. Let $\lambda \ge \omega$ and let $(S, \mathbf{\tau})$ be a H-closed topological (inverse) monoid with zero. Then $(B^0_{\lambda}(S), \mathbf{\tau}_i(S))$ is a H-closed topological (inverse) semigroup.

Theorem 11. Let $\lambda \geq \omega$ and let $(S, \mathbf{\tau})$ be a left [right] 0-bounded Hclosed topological monoid with zero. Then $(B^0_{\lambda}(S), \mathbf{\tau}_h(S))$ [$(B^0_{\lambda}(S), \mathbf{\tau}_v(S))$] is a H-closed topological semigroup.

A. D. Wallace in [14] proved that if S is a compact topological semigroup and ρ is a closed congruence on S, then S/ρ is a compact topological semigroup. As a consequence of this result we have that if I is a closed ideal of a compact topological semigroup S, then S/I is a compact topological semigroup. J. D. Lawson and B. L. Madison in [10] generalized this Wallace's result and showed that if S is a locally compact σ -compact topological semigroup and ρ is a closed congruence on S, then S/ρ is a topological semigroup. As an immediate corollary of the Lawson – Madison Theorem, we have a topological version of the Rees quotient semigroup: if S is a locally compact σ compact topological semigroup and I is a closed ideal of S, then S/I is a topological semigroup.

The next theorem is a generalization of the Wallace Theorem on the Rees quotient semigroup.

Theorem 12. Let S be a topological semigroup and I be a compact ideal in S. Then S/I is a topological semigroup.

Proof. Let $\pi: S \to S/I$ be a natural homomorphism. By Proposition 2.1 [10] it is sufficient to prove that the map $\pi \times \pi: S \times S \to S/I \times S/I$ is quotient. We shall show that the map $\pi: S \to S/I$ is perfect. Since for any $\tilde{a} \in S/I$ the set $\pi^{-1}(\tilde{a})$ is compact in S, it is sufficient to prove that π is a closed map. Let A be a closed subset in S. We remark that the restriction

 $\pi \mid_{S \setminus I} : S \setminus I \to (S/I) \setminus \pi(I)$ of the map π is a homeomorphism. Hence, if $A \cap I = \emptyset$ then $\pi(A)$ is a closed subset of S/I. Suppose that $A \cap I \neq \emptyset$ and $\pi(A)$ is not a closed subset in S/I. Since the map π is quotient, $\pi^{-1}(\pi(A))$ is a nonclosed subset of S. But the set $\pi^{-1}(\pi(A))$ is closed in S as a union of the closed subset A and the compactum I, a contradiction. The obtained contradiction implies that π is a closed map. Then by Theorem 3.7.7 [4] the map $\pi \times \pi : S \times S \to S/I \times S/I$ is perfect and hence by Corollary 2.4.8 [4] is quotient. Therefore S/I is a topological semigroup. \diamond

In [9] O. Hryniv constructed an example of a locally compact metrizable topological semigroup S with a closed ideal I such that S/I is not a topological semigroup. In our paper we construct an example of an absolutely H-closed countable metrizable topological semigroup S with an absolutely H-closed ideal I such that S/I is not a topological semigroup.

Example 1 [6]. Let \mathbb{N} be the set of positive integers. Let $\{x_n\}$ be an increasing sequence in \mathbb{N} . Put $\mathbb{N}^* = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$. We define the semilattice operation on \mathbb{N}^* as follows: $ab = \min\{a, b\}$, for $a, b \in \mathbb{N}^*$. Obviously, 0 is the zero of \mathbb{N}^* . We put $U_n(0) = \{0\} \cup \{\frac{1}{x_k} \mid k \ge n\}$, $n \in \mathbb{N}$. A topology \mathfrak{r} on \mathbb{N}^* is defined as follows:

a) all nonzero elements of \mathbb{N}^* are isolated points in \mathbb{N}^* ;

b) $\mathcal{B}(0) = \{ U_n(0) \mid n \in \mathbb{N} \}$ is the base of the topology τ at the point $0 \in \mathbb{N}^*$.

It is easy to see that $(\mathbb{N}^*, \mathbf{\tau})$ is a countable linearly ordered σ -compact locally compact metrizable topological semilattice and if $x_{k+1} > x_k + 1$ for any $k \in \mathbb{N}$ then $(\mathbb{N}^*, \mathbf{\tau})$ is a non-compact semilattice. \triangleright

By Proposition 1 [6] $(\mathbb{N}^*, \mathbf{\tau})$ is an *H*-closed topological semilattice and hence by Theorem 1 [6] the semilattice $(\mathbb{N}^*, \mathbf{\tau})$ is an absolutely *H*-closed.

Let $0 \notin \mathbb{N}^*$. We extend the semilattice operation from \mathbb{N}^* to $\widetilde{\mathbb{N}}^* = \mathbb{N}^* \bigcup 0$ as follows: 0x = x0 = 00 = 0. We define the topological space $\widetilde{\mathbb{N}}^*$ to be a topological sum of the space (\mathbb{N}^*, τ) and the single space 0.

Proposition 8. $\widetilde{\mathbb{N}}^*$ is an absolutely H-closed metrizable topological semilattice.

Theorem 13. Let $\lambda = \omega$. Then $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$ and $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_v(\widetilde{\mathbb{N}}^*))$ are metrizable topological semigroups.

Proof. We consider only the case $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \boldsymbol{\tau}_h(\widetilde{\mathbb{N}}^*))$. In the case $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \boldsymbol{\tau}_n(\widetilde{\mathbb{N}}^*))$ the proof is similar.

Obviously, the topological semilattice $\widetilde{\mathbb{N}}^*$ is a zero-dimensional topological space, i.e. there exists a base of $\widetilde{\mathbb{N}}^*$ which consists from clopen subsets. Hence by the definition of the topology $\mathbf{\tau}_h(\widetilde{\mathbb{N}}^*)$ every non-zero element of the topological semigroup $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$ has a base which contains clopen subsets. Since **0** is an isolated point in $\widetilde{\mathbb{N}}^*$, every element $U_{\beta_1,\dots,\beta_m}(\mathbf{0})$ of the base Ω_h of the topology $\mathbf{\tau}_h(\widetilde{\mathbb{N}}^*)$ has an open complement in $B^0_{\lambda}(\widetilde{\mathbb{N}}^*)$ and hence

 $U_{\beta_1,\ldots,\beta_m}(\mathbf{0})$ is a closed subset of $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$. Therefore the topological space $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$ is 0-dimensional and hence is regular. Since $\lambda = \omega$, the definition of the base Ω_h implies that $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$ is a second countable space, and hence by Theorem 4.2.9 [4] the topological space $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$ is metrizable. \diamond

The set $\mathcal{J}(\widetilde{\mathbb{N}}^*) = \{0\} \cup \{(\alpha, \mathbf{0}, \beta) \mid \mathbf{0} \in \widetilde{\mathbb{N}}^*, \alpha, \beta \in I_\lambda\}$ is an ideal of $B^0_\lambda(\widetilde{\mathbb{N}}^*)$. By Theorem 6 [8] the semigroup $\mathcal{J}(\widetilde{\mathbb{N}}^*)$ with the induced topology $\mathbf{\tau}_h$ from $(B^0_\lambda(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$ is an absolutely *H*-closed topological semigroup and hence is a closed ideal of $(B^0_\lambda(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))$. Similarly we get that $\mathcal{J}(\widetilde{\mathbb{N}}^*)$ with the induced topology $\mathbf{\tau}_v$ from $(B^0_\lambda(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_v(\widetilde{\mathbb{N}}^*))$ is an absolutely *H*-closed topological semigroup and hence is a closed ideal of $(B^0_\lambda(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_v(\widetilde{\mathbb{N}}^*))$.

Obviously, the Rees quotient semigroup $B^0_{\lambda}(\widetilde{\mathbb{N}}^*)/\mathcal{J}(\widetilde{\mathbb{N}}^*)$ is algebraically isomorphic to the semigroup $B^0_{\lambda}(\mathbb{N}^*)$.

Lemma 4. The topological semilattice (\mathbb{N}^*, τ) is 0-bounded if and only if it is compact.

Proof. (\Rightarrow) Suppose there exists an increasing sequence $\{x_n\}$ in \mathbb{N} such that $(\mathbb{N}^*, \mathbf{\tau})$ is a 0-bounded non-compact topological semilattice. Then there exists $k_0 \in \mathbb{N}$ such that $x_{k+1} > x_k + 1$ for all $k > k_0$, $k \in \mathbb{N}$. Then $U_i(0)\mathbb{N}^* = \mathbb{N}^*U_i(0) \nsubseteq U_j(0)$ for any $i, j \in \mathbb{N}$, a contradiction. The obtained contradiction implies the implication.

The implication (\Leftarrow) follows from Theorem 7. Lemma 4 implies

Theorem 14. Let $\lambda \geq \omega$ and $\{x_n\}$ be an increasing sequence in \mathbb{N} such that $x_{k+1} > x_k + 1$ for any $k \in \mathbb{N}$ and define the topological semigroup $(\mathbb{N}^*, \mathbf{\tau})$ as above. Then the semigroup operations in $(B^0_{\lambda}(\mathbb{N}^*), \mathbf{\tau}_h(\mathbb{N}^*))$ and $(B^0_{\lambda}(\mathbb{N}^*), \mathbf{\tau}_v(\mathbb{N}^*))$ are discontinuous.

Theorem 15. Let $\lambda \geq \omega$ and $\{x_n\}$ be an increasing sequence in \mathbb{N} such that $x_{k+1} > x_k + 1$ for any $k \in \mathbb{N}$ and define the topological semigroup $(\mathbb{N}^*, \mathbf{\tau})$ as above. Then the topological Rees quotient semigroups $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*))/\mathcal{J}(\widetilde{\mathbb{N}}^*)$ and $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_n(\widetilde{\mathbb{N}}^*))/\mathcal{J}(\widetilde{\mathbb{N}}^*)$ are not topological semigroups.

Proof. We consider only the case $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \boldsymbol{\tau}_h(\widetilde{\mathbb{N}}^*)) / \mathcal{J}(\widetilde{\mathbb{N}}^*)$. The proof of the statement for the semigroup $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \boldsymbol{\tau}_n(\widetilde{\mathbb{N}}^*)) / \mathcal{J}(\widetilde{\mathbb{N}}^*)$ is similar.

At first we determine a base of the topology of the quotient space $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*)) / \mathcal{J}(\widetilde{\mathbb{N}}^*)$. Since for any $n \in \mathbb{N}$ the point $\frac{1}{n}$ is isolated in the topological space (\mathbb{N}^*, τ) , Proposition 2.4.3 [4] implies that any non-zero element of the semigroup $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*)) / \mathcal{J}(\widetilde{\mathbb{N}}^*)$ is isolated.

By $\Phi_{I_{\lambda},\mathbb{N}}$ we denote the set of maps from I_{λ} into the set of positive integers \mathbb{N} . Let $n \in \mathbb{N}$ and let $U_n(0)$ be the set defined in Example 1. We define $M_n = \mathbb{N} \setminus U_n(0)$ for any $n \in \mathbb{N}$. For all $\varphi_1, \dots, \varphi_k \in \Phi_{I_{\lambda},\mathbb{N}}$ and all $\alpha_1, \dots, \alpha_k \in I_{\lambda}$, $k \in \mathbb{N}$ we put $M_{\varphi_1,\dots,\varphi_k}^{\alpha_1,\dots,\alpha_k} = B_{\lambda}^0(\widetilde{\mathbb{N}}^*) \setminus \left(\bigcup_{i=1}^k \bigcup_{\gamma \in I_{\lambda}} (\gamma, M_{\varphi_i(\gamma)}, \alpha_i)\right)$. Proposition 2.4.3 [4] implies that the family $\widetilde{\mathcal{B}}(0) = \{M_{\varphi_1,\dots,\varphi_k}^{\alpha_1,\dots,\alpha_k} \mid \alpha_1,\dots,\alpha_k \in I_{\lambda}, \varphi_1,\dots,\varphi_k \in \Phi_{I_{\lambda},\mathbb{N}}, k \in \mathbb{N}\}$ is a base at zero of the topology of the space $(B_{\lambda}^0(\widetilde{\mathbb{N}}^*), \mathbf{\tau}_h(\widetilde{\mathbb{N}}^*)) / \mathcal{J}(\widetilde{\mathbb{N}}^*)$.

Since the topological semigroup $(\mathbb{N}^*, \mathbf{\tau})$ is not compact, there exists $n_0 \in \mathbb{R}$ such that $\mathbb{N}^* U_k(0) = U_k(0)\mathbb{N}^* \not\subseteq U_{n_0}(0)$ for all $k \in \mathbb{N}$. We consider $\Psi_0 \in \mathbb{R} = \Phi_{I_{\lambda},\mathbb{N}}$ such that $\Psi_0(\gamma) = n_0$ for all $\gamma \in I_{\lambda}$ and fix $\alpha_0 \in I_{\lambda}$. Obviously, $M_{\Psi_0}^{\alpha_0} \in \widetilde{\mathcal{B}}(0)$. We remark that $(\gamma, \mathbb{N}, \beta)(\beta, U_{\phi(\beta)}(0) \setminus \{0\}, \alpha) = (\gamma, \mathbb{N}(U_{\phi(\beta)}(0) \setminus \{0\}), \alpha) \not\subseteq \mathcal{I}$ $(\gamma, U_{n_0}(0), \alpha)$ for all $\alpha, \beta, \gamma \in I_{\lambda}$ and all $\phi \in \Phi_{I_{\lambda},\mathbb{N}}$. Therefore, for every $\alpha_1, \ldots, \alpha_j \in I_{\lambda}$ and every $\phi_1, \ldots, \phi_j \in \Phi_{I_{\lambda},\mathbb{N}}$, where $j \in \mathbb{N}$, we have $M_{\phi_1,\ldots,\phi_j}^{\alpha_1,\ldots,\alpha_j} \not\subseteq M_{\Psi_0}^{\alpha_0}$, and hence the semigroup operation in the semigroup $\alpha_1 \in \mathbb{R}$.

 $(B^0_{\lambda}(\widetilde{\mathbb{N}}^*), \boldsymbol{\tau}_h(\widetilde{\mathbb{N}}^*)) / \mathcal{J}(\widetilde{\mathbb{N}}^*)$ is discontinuous at zero. \diamond

- Carruth J. H., Hildebrant J. A., Koch R. J. The theory of topological semigroups. New York and Basel: Marcell Dekker, Inc., 1983. – Vol. 1. – 244 p.; 1986. – Vol. 2. – 196 p.
- 2. Clifford A. H., Preston G. B. The algebraic theory of semigroups. Providence: Amer. Math. Soc., 1961. Vol. 1. 288 p.; 1972. Vol. 2. 424 p.
- Eberhart C., Selden J. On the closure of the bicyclic semigroup // Trans. Amer. Math. Soc. - 1969. - 144. - P. 115-126.
- 4. Engelking R. General Topology. Warsaw: PWN, 1986. 752 p.
- Gutik O. V. On Howie semigroup // Mat. Metody Phis.-Mech. Polya. 1999. 42, No. 4. - P. 127-132 (in Ukrainian).
- 6. Gutik O. V. On linearly ordered H-closed topological semilattices. Preprint.
- Gutik O. V., Pavlyk K. P. The H-closedness of topological inverse semigroups and topological Brandt λ-extensions // XVI Open Sci. and Techn. Conf. of Young Scientists and Specialists of the Karpenko Physico-Mechanical Inst. of NASU (Lviv, May 16-18, 2001): Materials. – Lviv, 2001. – P. 240–243.
- Gutik O. V., Pavlyk K. P. Topological semigroups of matrix units // Algebra and Discrete Math. - 2005. - No. 3. - P. 1-17.
- Hryniv O. Quotient topologies on topological semilattices // Mat. Studii. 2005. -23, No. 2. - P. 136-142.
- Lawson J. D., Madison B. On congruences and cones // Math. Z. 1971. 120. -P. 18-24.
- Schein B. M. Homomorphisms and subdirect decompositions of semigroups // Pacific J. Math. - 1966. - 24, No. 3. - P. 529-547.
- Stepp J. W. A note on maximal locally compact semigroups // Proc. Amer. Math. Soc. - 1969. - 20, No. 1. - P. 251-253.
- Stepp J. W. Algebraic maximal semilattices // Pacific J. Math. 1975. 58, No. 1. - P. 243-248.
- Wallace A. D. On the structure of topological semigroups // Bull. Amer. Math. Soc. - 1955. - 61. - P. 95-112.

ПРО λ^0 -РОЗШИРЕННЯ БРАНДТА НАПІВГРУП З НУЛЕМ

Вводиться λ^0 -розширення Брандта $B^0_{\lambda}(S)$ напівгрупи S з нулем і встановлено деякі алгебраїчні властивості напівгрупи S, які зберігаються напівгрупою $B^0_{\lambda}(S)$. Також введено топологічне λ^0 - розширення Брандта топологічної напівгрупи S з нулем і встановлено його топологічні властивості в залежності від топологічної напівгрупи S. Зокрема, доведено, що топологічне λ^0 -розширення Брандта (абсолютно) H -замкненої топологічної інверсної напівгрупи $S \in$ (абсолютно) H-замкненою напівгрупою у класі топологічних інверсних напівгруп. Побудовано топології на напівгрупі $B^0_{\lambda}(S)$, які зберігають абсолютну H -замкненість і H-замкненість. За допомогою топологічного λ^0 -розширення Брандта побудовано приклад абсолютно H -замкненої метризовної інверсної топологічної напівгрупи S з абсолютно H -замкненим ідеалом I такої, що фактор-напівгрупа Ріса S/I не є то-

О λ^0 -РАСШИРЕНИЯХ БРАНДТА ПОЛУГРУПП С НУЛЁМ

пологічною напівгрупою.

Вводится λ^0 -расширение Брандта $B^0_{\lambda}(S)$ полугруппы S с нулём и установлены некоторые алгебраические свойства полугруппы S, которые сохраняются полугруппой $B^0_{\lambda}(S)$. Также введено топологическое λ^0 -расширение Брандта топологической полугруппы S с нулём и установлено его топологические свойства в зависимости от топологической полугруппы S. В частности, доказано, что топологическое λ^0 -расширение Брандта (абсолютно) H-замкнутой топологической инверсной полугруппы S есть (абсолютно) H-замкнутая полугруппа в классе топологических инверсных полугрупп. Построено топологии на $B^0_{\lambda}(S)$, которые сохраняют абсолютную H-замкнутость и H- замкнутость. С помощью конструкции топологического λ^0 -расширения Брандта построен пример абсолютно H-замкнутой метризуемой инверсной топологической полугруппы S с абсолютно H-замкнутым идеалом I такой, что фактор-полугруппа Рисса S/I не является топологической полугруппой.

Received 19.04.06

¹ Ivan Franko L'viv nat. univ., L'viv,

² Pidstryhach Inst. of Appl. Problems of Mech. and Math. NASU, L'viv