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D. V. PORTNYAGIN

BOUNDEDNESS OF WEAK SOLUTIONS OF NONDIAGONAL
SINGULAR PARABOLIC SYSTEM EQUATIONS

The boundedness of weak solutions of a mondiagonal parabolic system of singular
quasilinear differential equations with matriz of coefficients, satisfying to special
structure conditions, is studied. Thus, the technique, basing on estimating the linear
combinations of unknowns, is employed.

1. Introduction. As it is well-known, the De Giorgi-Nash—Moser estimates
in the elliptic system case, in general, are no valid. The example of an unbound-
ed solution of a linear elliptic system with bounded coefficients was built up by
De Giorgi in [3]. Due to J. Netas and J. Soudek, there is also another example of
a nonlinear elliptic system with sufficiently smooth coefficients, which the weak
solution not belongs to W?22. Since the elliptic system can be interpretive as a
special case of the parabolic version, these examples concern also to the parabolic
case.

Using in this work the technical equipment has been earlier applied to the
case of weakly nonlinear systems in [6] (see also [4, 7] and [5]). The main idea of
our approach is as follows: we receive estimations of solution w*, p=1,...,N
from estimations of their certain linear combinations

H' = oMyl 4o oV N

or, in general, of certain functions H(t,z,u!,... , u™).

2. Basic notations and hypotheses. We shall be concerned of the following
system of N equations

0
uy (A(-l)(x,ul,...,uN,ul ...,uN)):

C Ox \U v “
—B(l)(a: ut ,uN,uglc, ,uiv),
.................. (2)
0
N (N) 1 N 1 N
a_ A ) ) 9 ) 9 ) ):
U 8$i(1 (z,u u', uy, uy )
:B(N)(a:,u1 culVoul ol T € Q.

with the Dirichlet type boundary conditions of the form

(u" — g")(z,t) € WyP(Q) a.e. te(0,7), 3)

ut(z,0) = up ().

We assume that (u!,...,u") € C(0,T;L*(Q))NLP(0,T;WP(Q)) and a

solution of the system (2) with Dirichlet data (3) we understand in the weak sense,
asin [2].

Definition. Let Q be a domain in R" (n € N), 9Q be a path of its

boundary and W () be a Sobolev space in Q. By W(9Q) we denote the space of
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functions u defined on 9 with the finite norm ||ully (a0) = iﬁf 1¥llw (), where
the infimum is taken by all functions ¥ € W(Q) such that ¥ = u a. e. on 9.

Let Q is a bounded domain in R™. We use the following notations: Q =
= (0,T] x Q S =090x(0,T]; 9Q = {Q x {0}}U{9Q x (0,T]}; =z
te (0, 7], (T > 0); 1<p<2 p<mn 4,5=1,.,n wuv=1.,N;
w,v,w € C(0,T; L2(Q)) (N LP(0, T; WhP());  WyP(Q) is the subspace of func-
tions in W1P(Q) vanishing on 9Q (in the sense of traces for a.e t € (0,7]).
Throughout in the paper, we briefly denote by |s| and |s;| the distance in (Nn) -
dimensional and n —dimensional Euclidean space respectively, i.e

v=1i=1

where s and s; denote some (Nn)-component and n—component vector respec-
tively.

The parabolicity property of system (2) means that its part without deriva-
tives by time is elliptic. Thus, inheriting to [1], the ellipticity property of a system
of differential equations is understood in the following sense:

IN>0,0< F=F(z)e LPPV(Q)| Vs¥ cR"", vrt e RY, Yz € R™;
n N
Z AY(x,r,8)sY > A|s|P — F. (5)

1=1rv=1

Concerning Al (z,r,s), we assume that these are measurable functions of the form
0 x R? x R3™ — R, satisfying the ellipticity condition and the following growth
conditions: JAy>0] Vst e RV wrt e RN Vz e R", i=1,..,n;

|Af (@, 7, 5)| < Aals["™", (6)

and the following structure conditions:

all .. gIN

Jor € RYY;  Det # 0 such that

oVl . oNN

Vs e RN Wt e RN Wz eR™; p=1,..,N;

N N
Z a“”Agy)(x, r,s) — M(x, 1 s) (Z a“”sé—’)
v=1 v=1
N

E atsy

v=1

<

(7)

<n"(z,r,s) + & (@, 8) + F,

where A\ = M (z,r,s) >0, nt =nH(x,rs) >0, & = E&H(x,r,s) > 0 are some
measurable functions of z, u”, uf, of the form €2 x RY x RV" — R, satisfying
the following growth conditions:

FA,L, A >0 Vs RV Wt e R, Yz €R™; p=1,..,N;

N p=2 N p=2
0< A Za“”si” < M(x,r,s) < Ag Za“”si” ; (8)
v=1 v=1
pp—=1)(1 = 1)
K s Iy < wv 0< = ) > 0, 9
ans) < Glsl, 0<w=PETDUZm) g )

118



(p+n)

FH e LU(Q)a 0= m, K1 € (071)7 (10)
art > 1; (11)

o <1 for p#v; (12)

N max{1/p, Ao max[(a') .., (@) '] < Ay/(27p); (13)
3N max[no, &) < Ay /(2P ). (14)

(p+n)
Remark. It is uneasy for checking up that, as F* € L®-D0=+1) the struc-
ture conditions (7) together with (8) and (9)-(14) imply the ellipticity condition
N p/p—1
(5) with A = A1/(2P*p) and F = C; (Z |F”> + Cy, where C72 are

v=1
numbers depending only on the data.

Concerning right-hand members B*(x,r,s), we assume that these are mea-
surable functions of the form Q x RN x RV" — R, satisfying the conditions:

P2(1—'€1) N N
Jdee (0,] , A3 >0 Vsl e RY™, Vr, e RY, Vz e R"; p=1,...,N;
(n+p)

|B*(x,r,s)| < Ass|®. (15)

In sequel, we use the notations:

~ uf(z), =€, t=0,
U =
0 gt(x,t), €9, te(0,T).

Let W(Q) = L¥ (WY (0,T): Q) L?(0, T; W'»()), p' = Ll; i. e. the functi-
-

on u belongs to W(Q) if the integral //(|ut|p/ + [Vul? + |ul? + [ul”) is finite.

0 Q
At last, we suppose that the functions g¢*(z,t), uf(z) in boundary data (3)
satisfy the assumptions: uff € W(9Q); g*(x,t) € L>=(S), ul(x) € L>=(2 x {0}).
3. One integral estimate of the sum of squares. For the subsequent
considerations we need an integral estimate of the problem (2), (3) solution.

Theorem 1. Let (u',...,u") be a solution of the problem (2), (3) and the
assumptions (7),(8), (9)- ( ) (15) are satisfied. Then there exits a constant C,

dependmg Ole on f? F? HUOHW(QQ)? p, n, & Mo, 507 K1, Ala AQ’ meSQ
and independent of u" such that

N N T
su u’ —uf|? + // Vi’ —uf)|?) <C,
S o [l >/ (Ve — )
N T
Z//WU”V’KC,
v=1lp

where Eg denotes the values of a function on the parabolic boundary 0Q, belonging
to W(Q).
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P r o o f. Multiplying each equation of (2) by (u* —ufj) and adding its, after
integrating over the domain Q x (0,¢), we obtain

Nt
Z/ u” —u02—|—2// AV (0" —uf) <
V:lo

L)
N t

//|B o~ g+ [ [ 1l — gl 0
0 =10 0

Above the initial condition is taken into account. Using the ellipticity condition
(5) and the growth conditions of A* (6), we have

Mz

v=1

N

zo/tg/;x@]vu —ap)| > //cp, (ZIVUOI”>—

Here we also use the Young’s inequality and the following inequality
la+b|” < C(p)(la]” +[b]") Va,beR. (17)

The first group of terms on the right in (16) by Young’s and Sobolev’s inequalities,
using the condition (15), can be estimated, like as:

V:lo Q 0O v=1 v=1
s&//(ZN:W(u"—Egn) +C.

0 o =l

Here it has been taken into account that ¢/p+1/p < 1/2+41/p < 1. Taking into
account our assumptions and applying Holder’s and Young’s inequalities, the last
group of integrals in the right—hand side of (16) can be estimated as:

t

/!i@nuv_@ < //(ﬁm”) (VZA_’IW_%;')S

0
/ <2N: |V (u” — ﬁ%”) +C (mesQ,ég,;g) .

N t N
/3 [Zw?g)? w5 (Dvw"us)v’) <
@ =L 0 Q v=1
[/(s
< 85 <Z|V(u”—u )P ) + C(mesQ, F*, 63, uf).
0 o W=l i
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1
Putting §3 = 1)\, we get

+O/t!fg (iww—u”z)p) <

< C (mesQ, ¥, dg,uf) . (18)

Taking the supremum by ¢ in the left-hand side of (18), we obtain

wn [ [ | (e ) <c

0<t<T
Q

where the constant C' depends from n, p, ¢, A, F, mesQ, ||“g||W(aQ)' Hence,
the second statement of Theorem 1 is true.

4. L°° —morm estimates. Let us now turn our attention to the question
of boundedness of the solutions to a system whose coefficients satisfy structure

hypotheses (7)—(14) and whose right-hand sides satisfy (15). Our main result is
the following.

Theorem 2. Let (u',...,u") be a solution of system (2). If there are the
numbers o, satisfying the assumptions (7), then for the N linearly independent

functions H', ..., HY, defining by (1), there exist constants C*,... . CN such
that the following estimates hold

1H L@ <O ooy IIHY L@ < OF,
where the constants C',...,CN are depended of the constants in the embedding

theorems and Of p, n, g, )‘7 Mo, 507 g, w, Ala A27 fu7 F'u; |9“|oo,(S);
[uh oo, (), @, and these are independent of ut.
For the components of the solution the same estimates also hold, namely

lulleo@ <CY oo @) < CV.

To prove of Theorem 2 we need the following well-known Stampacchia’s lem-
ma [1, p.8, lemmad4.1].

Lemma 1. Let ¥(y) be a nonnegative nondecreasing function defined on
[lo, 00) which satisfies the condition

P(m) < (m?l)ﬂ {1&([)}67 forall m>12>ly,

where ¥ >0 and § > 1. Then
¥(lo +d) =0,
where d = CY?{1)(1y)}0—1)/928/(5=1),
We also use the following lemma (see [2, p.7,prop. 3.1]):

Lemma 2. If u € L>=(0,T; L*(Q)) N LP(0,T; W, *(2)) then there holds the
following inequality

T T p/n
//uq <C //|Vu|p ess sup /\u|2 ,
. 0<t<T
0 Q 0 Q Q

n 4+ 2
where ¢ =1p

and the constant C' depends only of p and n.
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P roofof Theorem 2. Let o', ..., o¥! satisfy the assumptions (7). Let
us multiply each p-th equation of (2) by o*! and add all together. Choosing the
testing function, as

N N
sign (Z a"lu"> (
v=1 v=1

N N
E aulgu E aulug
v=1 Le(s) =1 Lo ()

and by z over the domain €. Using the assumptions (7),

—l) = sign(Hl) (|H1| —l)+

, we integrate by ¢

where [ > lg = max {
)

N ~ N N
— // < [ZaulA(y) _ )\1 <Z al/lvuu> + )\1 (Z l/lvu ) 1> >
0 0 v=1 v=1 v=1
t N t
2//)\1 <Za”1Vu”,VH1>—//(§1|VH1|+|F1||VH1|).
0O v=1

0 Q

From here it follows the inequality

/ //)\1<Za”1Vu VH1> / (|F'+ &) |[VH"| +c//BH1

Q(t)

N
where B := Zoz”lB”, C = C(a't,...,a™N p,n) is a constant and ), & are
v=1
functions from (7). Since t € (0,7] is arbitrary, taking supremum and using the
assuptions, we obtain

T T T
sup /(H1)2+Cl//IVH1V’§//(IF1|+€1) |VH1\+O//BH1, (19)
O<t<TQ 0 Q 0 Q 0 Q

where ) = C1(A, o't ...,a™, p,n) and the assumption (8) concerning the func-
tion A; has been used. Consequently applying to the terms on the right the gen-
eralized Holder’s inequality, we have

T T 1-1/p—1/c
/ / FYVHY < [VH [0l F' 00 / / YAt , (20)
0 Q 0 Q
T T 1 1/P_W/P
/ / SIVH < [VE | oll€ w0 / / XA . (200)
0 Q 0 Q
T T 1*1/‘1*5/17
[t <1l Bl | [ [ o S e
0 Q 0 Q
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where x4¢) is the characteristic function of the set A(l). From the conditions
(10), (9), (15) and Theorem 1 imply that

IF' o < C2y 1€ lpjw@ £ C3, |IBllpje@ < Ca (21)

Collecting (20)-(20b) and taking into account the (21), from (19) we obtain the
inequality

T
sup /(H1)2+//|VH1\1’§C'1HVH1|
0<t<T g 0 Q

+ Cy||VH!

p { Y Py

p@ LY TP L Oy HY g DY TP (22)

T
where it is denote (l) := /mesA{H1 > 1}(l,t)dt. From Lemma 2 it follows
0

ptn
T an
1o < | s [tz [ [rvap) (23)
0<t<T
Q 0 Q
From the relation (22) and the previous inequality, we get
T
sup /(H1)2+//|VH1\1)§
0<t<T
Q 0 Q
T 1/p
<o furys [ fremy) oy
0<t<T
Q 0 Q
T 1/p
woo( aw furpe [ [iwmte) oy
0<t<T
Q 0 Q
T (n+p)/nq
veu| sw [arpy [ [ivmp WY 2
0<t<T
Q 0 Q
Applying Young’s inequality to the right-hand side of (24), we get
T
sup [+ [ [9mpP < 03wy
0<t<T )

1+ {w(l)}(l—l/p—w/p)(ﬁ) 4Oy {w(l)}u—l/q_a/p)(n%)# ;

nq
n-+p

# -1
(( nq ) ) + n;qp = 1. Applying again (23), we have

#
where Cia3 = C (ug, 0o, Wo, F,o,w, A1, A2, p,n) and ( ) is such that

n-+p

(1H 0.0)" " < 0y @y =)

ngq )#

+ Oy {u (VPG oy )Y (95)



Let us use the estimation
1/q

T 1/q T
(m — D (m)} 1= (m — 1) / / Yaom | < / / HY x| <1 oo,
0Q 0Q

where m > [ > ly. Substituting this into (25), we come to the inequality

wim) € L W)+ i Y+ = w0) (9

o= (22 (). - (13)(529).

and 63 = (1 — n - L n
p(n+2) p n+p  pn+2)
(10) on F*, it follows that

. From the assumptions

1 1 -1
1———7>M, thus 67 > 1.
p o pn+p)

From the assumptions (9) on ¢;, it follows that

ol e np=1

, thus d, > 1.
p p  pn+p)

From the assumptions (15) on B*, it follows that

n 9 n n

- > — s
pn+2) p n+p pn+2)

thus 93 > 1.

Without loss of generality, we can assume that ¥ (l) < 1. In fact, from the first
statement of Theorem 1 and (23) it follows that

T 1/‘1 T 1/q
(- =00 | [ [xo] <[ [E -] <
0 Q 0 Q
ptn
T qn
<H' ~byllgg < | sup /(Hl—zo>2+ / v | <6
O<t<TQ 0 Q

where [ > lo. Hence (1) < C1/(1 — 1p)?, and it is easy to see that w(l) < 1,
whenever [ > C +lo. Since () is non-increasing function, ¥(I) <1 is true for
all { > C +1y. Due to this, from (26) it follows

C

vm) < o ) (27)

where § := min[d1, 02, 3] and C := max[C, Ca, Cs]. Using Lemma 1, the relation
(27) implies ¥ (lp + d) = 0 for some sufficiently large finite number d, depending
only of the constants in the embedding theorems and of p, n, €, A, 9, &, o,
w, A1, Az, F*) 9" (), Ul @), @ and independent of uw*. Analogously,

N N
it is done to the rest linear combinations H? = g a”?u’, ..., HN = g a’Nuv.
v=1 v=1
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As it is easy to see, from the previous reasonings immediately follows that the
same estimates hold for the components u',...,u" of the solution. In fact,

4 ]loo = [IDet ()] [(Det(4)) ™| < € (@™, oo™ I H ooy -, V1)

where C* denotes the matrix, obtained from A, by replacing of the p—th column
and H',...,HY, ie.

all o oD gL DL AN

O‘u' = .
alN “en a(u_l)N HN a(/t""l)N e aNN

Hence, from here the statement follows.
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OBMEXKEHICTBH CJIABKHNX PO3B’SA3KIB HEJIIATOHAJIbHOI
CUHI'YJISIPHOI IIAPABOJIIYHOI CUCTEMU PIBHAHbBb

Busuaembea 00medHcenicms caabrkux po3s’askie 0is Hedia2onasbHoi napabosiunoi cucme-
MU CUHRYAAPHUL KEG3IATHITGHUT JUPEPEHUIAADHUT PIBHAND 3 MAMPUUEI Koediyienmis,
U0 3a00BOALHAE CNEULANDHT CPYKMYPHE YMOBU. J[AA Ub020 3GCMOCOBYEMBCA METHIKG,
wo 6a3Yemvbea Ha 0UIHYL ATHITHUT KOMOTHAUIT HEeBI00MUT.

OrPAHUYEHHOCTB CJIABBIX PEIIIEHUN HEANATOHAJIbBHON
CHUHI'VJISIPHOWM IIAPABOJINYECKOW CUCTEMBI YPABHEHU

H3zywaemea ozpanuvennocms caabox pewenutl Heduazonasvrol napabosuveckoli cucme-
MBL CUHLYAAPHOLET K6a3usuheldnur Juddepenyuasvros ypasrenul ¢ mampuyet koaph-
Puyuenmos, ydosaemeoparoulets CNEYUALLHBLM CPYKMYPHOLM YCAOBUAM. [As 3M020
NPUMEHAECTNCA MEMOD, 0CHOBBLEAWUTCA HA OUueHKe AUHETHBT KoMOUHAUUL Heu36ecm-
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