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RECIPROCITY THEOREM FOR MECHANICAL PROBLEM IN BRITTLE
DAMAGED BODY WITH THERMAL DISTORTION

The initial-boundary problem of mechanics is formulated in the paper in an in-
cremental version for a wviscoelastic-brittle damaged medium with thermal dis-
tortion. Next, the reciprocity theorem is derived for the stated problem. A way of
calculation of the global damage parameter for the body is formulated on the basis
of a special case of the theorem. The problem is also illustrated by the numerical
example.

1. Introduction. The reciprocity theorem for a brittle damaged body with
thermal distortion is formulated in the paper. The considerations are made
under the following assumptions:

— damage in the body is considered as a continuous field described by the
damage tensor [9] of rank two;

— a field of temperature in the body is treated as a known function;

— the undamaged body is treated as a linear viscoelastic one.

Further, the special case of the theorem is presented, which allows for a
definition of the global scalar damage parameter of the body. This approach
makes possible to connect a local damage evolution in engineering building
structure with an averaging description of its global stiffness change. This is a
very important problem in a diagnostics of building structures. Finally, a nu-
merical example is discussed, which shows a relation between a scalar-global
description of damage in concrete and a local-tensor one.

2. Equations of the problem — general form of the reciprocity theorem.
Let us consider a body, which is isotropic in the initial moment and occupies
the area V restricted by the surface F (Fig. 1). The body is subjected to an
action of mass forces pF;, a known increment of temperature 0 in the area

V and static external mechanical load P,. The body has brittle properties so

the microcracks evolution in structure of the body is taken under considera-
tion. The damage evolution causes an anisotropic stiffness change of the body.
The unknown of the problem — displacement, strain and stress fields — u,,

&y and G, — must be determined from the following system of equations:

equation of equilibrium, geometrical equation and physical equation (they are
given in an incremental form because of the physical non-linearity of the
problem):

Ao, +pAF, =0, 1)
1
Aeyy =5 (Au, ; + A ), (2)
Ao = tcijkl(t) *d(Aey, - Aggz)’ Cija () = Ejjp (1) = C:jkl(t)’
0 0
Ej(t) = 20(0)3,8, + A (1)8,8,,, e =0a%0,  08=T-T. (3)
In the equations above the symbols Cijkl(t), Eijkl(t), wt), At), Sij, T, Ty, a?,

]

g, t A, “- denote respectively: anisotropic and isotropic relaxation

functions tensor, relaxation functions, Kronecker delta, current and initial
temperature, coefficient of thermal expansion, thermal strain tensor, time,
increment and tangent of a function. The damage evolution in material is
taken into account here by an introduction of the anisotropic relaxation
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functions tensor ijkl [4]. Components of this tensor are equal to zero in the
initial moment and depend on the damage measure — the damage effect ten-
sor Dij [6]

C;jkl(xi’t =0)=0, C:jkl = C:jkl(Dmn)' (4)

The damage measure must be determined form the damage evolution equa-
tion [1-3, 6—9, 11] formulated so as to be a time non-decreasing function
because of the thermomechanical limitations [1, 3, 8, 11]

D, = D,(o;) or  D;=Dy(c;) and D;>0. (5)

The presented system of equations must be complemented by the follo-
wing initial-boundary conditions:

u;(x;,t) = ul(x;,1), x; €V, t=0, (6)
Acn; = AP,(x;,1), x, eF_, t>0, (7
Au,(x;,t) = Au,(x;,t), x;, €F,, t>0, (8)

where F, UF, =F, F,NF, =J, n; — normal vector to the surface F.

Now, we can give a derivation of the reciprocity theorem for the stated
problem. Let us consider two sets of increments of the following fields
satisfying the equations (1)—(3) and the initial-boundary conditions (4), (6)—(8):

Set 1. Au;, Asij, As%, AGi]" ApF;, AP, — tCijkl(t), 9)

Set 21 Ad;, A&y, AE), AG, ApF,, AP, — 'Cy(t). (10)

1,

i

X
Cijlcl

Fig. 1

Then, different tangent tensors tCijkl and téijkl are present in the phy-

sical equations for each of the sets. Finally, an analysis of a reciprocal sym-
metry of the physical equations

AGy; * dAE;; = By (1) * d(Agy, — Agyy ) * dAZ,; —
—'Cly (1) * d(Agy, — Aep) ) * AR, (11)
AGy; *dAgy; = By (8) * d(AE,, — AZ)) ) * dAg,; —
—'Cla (1) * d(Agyy — Ay * dAe, (12)
leads to the following identity
E,q(t) * dAgy * dAE, = By, (1) * dAE, * dAe,, . (13)

The expression (13) is a basis for a formulation of the reciprocity theorem
in a local form
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AGy; *dAE,; — AG; * dAg,; + By, () * dAey, * dAE,; -
—E, (1) * dAg), * dAg,, + tC:jkl(t) *d(Agy; —Aepy) * dAg,; —

—'Clg (O *d(AE,, — A))) *dAe,; =0 (14)
and a global form

j (AP, *dA%Q, — AP, * dAw, )dF + j (ApF, * dAdL, — ApF, *dAw,) dV +
F A%

+ j () * Ay, ¥ AR, — By (t)* dAE), *dAe,;)dV +
+ j( tcijkl *d(Ag, — Asgl) * dAéij -
\%4

— 1Cl * (A& — Ay ) *dAe,; )dV =0. (15)

3. A particular case of the theorem — definition of the global damage
parameter. A particular case of the theorem makes possible to get a formula
describing a global stiffness change of the body. Let us consider a situation, in
which the damage filed takes place in the first set of the fields (9)—(10) and
doesn’t take place in the second one. In order to facilitate the problem we can
analyse here an elastic-brittle case, in which increments of external mechani-
cal load and mass forces are neglected and increments of thermal strains are
the same in both of the sets

Ciq =0, pF, =pF, =P, =P, =0, Ag,; = A&y,
Cijia (1) = Cyg H(2), E;(t) = E; H(2), (16)

where H(t) — Hevyside’s function.
In this case, we are able to obtain an expression

[ (B (A2, = Agy;)Aey)) dV+j i (Mg — Ag)AE, )V =0. (17)
v
Then, it is possible to 1ntroduce into considerations the global damage
parameter Q on the basis of the definition
A 6
_[(Eijkl (Asij —Ag; )Askl)dv
Q=Y o . (18)
j(Eijkl (Agy; - Agyy )Agij )dv
v
4. Numerical example and conclusions. Simulations of the damage evo-
lution in concrete based on the local and global approaches were compared
in the example. The global approach was based on the formula (18) defining
the damage parameter (). The local approach used a definition of the da-
mage tensor Qij formulated by Litewka [7] with taking into account the limi-

tation (5)

Q= Csyy s 8;+D C1owh G:-'j, Q,; €[0,1), (19a)
= laelal)-Lecas-ah, e, (10)
AQi]. > (0, when Acij >0, Gy > 0 or Acij <0, G < 0, (19¢)
AQij =0, when Acij <0, G, > 0 or A% >0, G, < 0. (19d)

Performance of the operation (...)" according to the notation (19b) means here

a transformation of the stress tensor o, and the stress deviator s, to its
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principal directions and a reduction of their principal negative components
proportionally to the cons- The first failure
tant £ [8]. This operation is 3 \\\ B c
introduced because of the ' —

fact the microcracks evolu- j¥*2 0 | 7 D
tion takes place mainly in 3 [Ild 7 "
L i

c

the planes which are per-
pendicular to directions of
the principal tensile stresses.
To simplify the considerati-
ons, one analysed a case of —_ a/b=1,a/c=20,b/d=2
plane stress in a rectangular Fig. 2
area with a gap according to
the Fig. 2.

The system was subjected to

7|

7

A Macro-defect F

Failure in the first Destruction

cyclic heating and cooling uni- 6,K _element of the system
formly in a whole volume with a 25 :/ ¢
run shown on the Fig. 3. One used T TN T T T/ T T ;
in the problem the following phy- JAANAATAAN AN AN
sical relation formulated by Litew- /Y } VARVERVARVERVAR E
ka [6] , :
0 15 t, 1
€5 = Ay (D )01y + 8455 0 5 Fig. 3 10 5 hLeyce
Vo 1+v,
Ay = _E_OsijSkl + W(Sikésjl +8,8,,) +
+ a(aijDkl + Di].éikl) + Y(Siijl + Silek + SjkDﬂ + ajZDik)’
C = Ail, (20)
D 2 1,2,3 21
p 1 _ Q ’ p et Bt ( )

P
The components of the damage effect tensor D, in the equation (20)

were determined here on the basis of the relations (21) between principal va-
lues of the tensors €, and D, . A rest of conditions necessary for a definition

of the example was formulated according to the notations (4) and (16).
So defined system is double symmetric for which the stress, strain and
damage tensors have a form

Gy, O 0 gy &9 0 Q, Qp 0
Gy =[O O 0f, € = |[€21 €a2 0, Qij =19, Q, 0 |. (22)
0 0 0 0 0 & 0 0 Q

In the equations above the symbols C, A, E;, v,, o, 7, C, D, { denote

respectively: stiffness and compliance matrixes, Young’s modulus, Poisson’s
ratio, material parameters expressing an influence of stresses on the damage
evolution in concrete.

The presented example was solved with the help of own computer-prog-
ram written in the Matlab environment. Computations were based on the
incremental formulation of FEM. An analysis of the damage evolution requi-
red in this case taking into consideration the failure criterions for concrete.
Two criterions complementing themselves mutually were used here:

- Kupfer’s failure criterion [5];

- criterion of positively definite tangent stiffness matrix C [11].
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Satisfying the mentioned criterions meant a formation of macro-defect in
material. This fact was simulated in the numerical procedure by a reduction
of stiffness in an adequate finite element to zero [11]. Computations were
ended in the moment, when the system became a mechanism or it had to be
represented by the other initial-boundary problem.

During solving the problem the following material parameters for
concrete C30 were used [7, 8, 10]:

E, =30800MPa, v,=0.19, (=01, o=-1457-10"°MPa™’,

Yy =6.205-10"° MPa™!, C/C* =1.845-107° MPa ™2,
D/C* =2979-107* MPa 2, a® =107 K™,
fum = 2.22 MPa, f. =28.14 MPa, (23)

where f. ~— tensile strength, f,  — compression strength.

On the basis of numerical simulations it was found that during the follo-
wing cycles of heating and cooling the failure criterion was satisfied in the
elements starting form the top of the gap D—E—F (see Fig. 2). A macro-defect
was made this way. The defect grew stable and slantly in comparison with a
direction of the gap. This situation was caused by a concentration of stresses
(see Fig. 4) and microdamage (see Fig. 5) in that area of the system. The cu-
mulation of microdamage at the top of the gap caused that tangent stiffness
matrix in the elements placed there stopped satisfying the criterion of positive
definition.
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Fig. 4 Fig. 5
After a solution of the brittle-elastic problem presented above one solved
an equivalent elastic problem — (also Failure in the first element&
with help of FEM). The comparison of € Y
these two solutions made possible to 4
compute a run of the global damage Heating Hedting

parameter Q according to the formula Cooling
(18). It was found that just before the °*
first failure detected in the element at o2
the top of the gap, the parameter had
been equal about to 0.1-0.2. A full run © 05 1 15 2 tcycle
of this parameter till first failure is Fig. 6

shown on the Fig. 6.

The obtained results give a conclusion that a prediction of damage of
engineering structure with help of global measures should be used with some
limitations. On the other hand, it is very useful and it simplifies the consi-
derations but the maximal allowable value of the global damage parameter
should be restricted. The presented approach give also a chance for detecting
damaged areas in structures on the basis of thermal strain measurements.
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TEOPEMA B3AEMHOCTI 3A0AYI MEXAHIKU ANA KPUXKO MOLWKOOAXEHOIO
TIIA 3 TEPMIYHUMU OUCTOPCIAMU

Y mepminax npupocmie posaasHYmMO KPAU08Yy 3a0auy MexXanixu Oas 6 A3KONPYHCHOZO
mina 3 KPULKUMU NMOWKOONCEHHAMU U mepmidHumu Oucmopciamu. Jas maxuxr mia
cPopMYAb08AHO Meopemy e83aemHocmi podim. Ha ocHosl uacmkogoeo eunadxy ubozo
meepoHCeH s OMPUMAHO PoPMYAY, AKa 0038045€ 00UUCAI08AMU 2A00AABHUYL NAPAMEM]D
nowxoldxcenus. Hasedeno uucnosuili npuxaad po3sumky MmiKPONOULKOOHCEHb 8 NPAMO-
KYMHUKY 3 YeHMParbHum Maxpodeekxmom 3a YuKAiuH020 Ha2PI8AHHS.

TEOPEMA B3SAUMHOCTU 3AO0AYU MEXAHUKKU OANA XPYNKO NOBPEXAEHHOIO
TENA C TEPMUYECKUMU OUCTOPCUAMMU

B mepmunaxr npupaweHruil paccmompera xpaesas 3adaua MexraHuru Oas 8a3KOYNpPY-
2020 Mead ¢ TPYNKUMU nogpexcleHuimu u mepmuveckumu oucmopcusmu. Jas maxkux
mea copmyauposara meopema g3aumrocmu padom. Ha ocrose wacmuozo cayuas amo-
20 ymeeprcOenus moayuena @Gopmyaa, no3eossUaAs onpedesums 2400a4bHBLL NAPA-
memp nospedxcOenus. IIpuseden UuUCA080U NpPuMep PA3BUMUL MUKPONOBPeHcOeHUl 8
NPAMOY20AbHUKE C YeHMPAALHBLM MAKPOOeeKmom NPU YUKAULECKOM HAZPesAHUU.
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