
130 ISSN 0130–9420. Ìàò. ìåòîäè òà ô³ç.-ìåõ. ïîëÿ. 2007. – 50, ¹ 4. – Ñ. 130-139. 

UDK 517.983.54 
 
O. P. Piddubniak, N. G. Piddubniak 
 
AXIALLY SYMMETRIC SOUND RADIATION BY  
ELASTIC HOLLOW CYLINDER ROTATING IN THE AIR 
 

Sound radiation from an elastic circular, empty inside, cylindrical tube of infinite 
length rotating with non-uniform angular velocity in the air is studied. The exact 
solutions of equations describing the aeroelastic interaction are obtained using the 
Fourier-transform over time. Numerical examples show that spectral structure of 
the sound radiation from an elastic tube is more complicated than that of a solid 
cylinder. In particular, the resonances of this structure are essentially dependent 
on the thickness of the rotating object and are subjected to the phenomena of 
dispersion. 

 
1. Introduction. In the techniques a good few of the objects or its parts 

rotate with variable angular velocity. The examples of these bodies are the 
rotors or shafts as the main elements in most power, electric and transport 
machines, as well as in many devices [6]. Various aspects of the corresponding 
problems attracted attention of many authors long ago [5]. In general, re-
searchers studied the electromagnetic, thermal, mechanical and other charac-
teristics of these objects, very rarely taking into consideration the fact that 
these bodies are often surrounded by an acoustical medium. At the same 
time, mechanical objects radiate sounds during rotation. The spectrum of 
sound radiation may vary greatly. On the one hand, it permits to know about 
the inner state of the rotated body. On the other hand, the rotors are the 
main source of vibrations, dangerous intensity of which depends on a whole 
number of factors [6]. In addition, inconstancy of the angular velocity can 
bring about an essential re-distribution of the strain-stress state in the elastic 
body and lead even to the destruction on the resonance frequencies. The cor-
respondent information is contained in the acoustical field, too. Thus, sound 
radiation by the rotating objects is an up to date problem. For its understan-
ding it is necessary make a careful study of the structure of wave field both 
inside sounding elastic object and outside it.  

Complexity of the problem consists in that the several interdependent 
mechanisms take part during the process of sound generation by a rotating 
bodies in the real conditions. Often this process is studied without taking into 
account an elastic strain of radiator (see e.g. [12]). One of the sources of noise 
is the boundary layer, which is formed around rotating cylinder thanks to 
viscosity of acoustic medium. Recent experiments on the sound radiation by 
the turbulent boundary layer were performed [9], where generator of noise 
was an elastic cylindrical shell rotating in a water. Since the shell is thin-
walled, the influence of inner wave processes in the thickness of body on the 
sound radiation is hard to investigate.  

In papers [5, 10] we make an attempt to estimate sound field, which is 
formed exceptionally on account of the strain elastic waves in cylinder rota-
ting with time-varying angular velocity. To simplify problem it was assumed 
that outer space is filled by an ideal (non-viscous) compressible liquid (gas). 
Corresponding numerical calculations were fulfilled for the case of elastic cy-
linder rotating in water.  

Now we continue our investigation and give detailed analysis of sound 
field radiated in the air. The model object is an infinitely long elastic circular 
hollow cylinder rotating inconstancy about its axis of symmetry. We again 
concentrate main attention on the wave field excited by the cylinder in the 
surrounding medium. First, we investigate the spectral characteristics of the 
radiated sound. In the numerical examples for the case of the Armco iron – air 
interaction, the dependence of the sound pressure amplitude on frequency 
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and cylindrical tube thickness is studied. It turned out that the sound field 
consists of the series of resonances. In addition, the resonance dependence on 
the cylinder thickness is subjected to powerful dispersion. This effect is also 
illustrated by numerical calculations.  

The non-constant angular velocity of the cylinder rotation causes the first 
and double sound harmonic excitations if the constant value of this velocity is 
modulated by the small sinusoidal amplitude over time oscillation. It is well 
illustrated by the numerical calculations for the intensity of the radiated aco-
ustical wave obtained for different values of the frequency of disturbance an-
gular velocity and tube thickness. We found two series of the amplitude re-
sonances, one on the fundamental frequencies corresponding to the resonances 
of the spectrum, other on the frequencies two times smaller than the main 
one. 

2. Spectral characteristics. Consider the case of non-uniform rotation of 
the elastic hollow cylinder of the infinite length around its axis of symmetry 
in the compressible ideal gas (air). The cylinder is empty inside. As a conse-
quence of the rotation the centrifugal force arises. This force varies over time. 
Then in the material of the body, axially symmetric converging and diverging 
cylindrical elastic waves of the longitudinal and shear types are generated. 
Simultaneously, in the surrounding air sound waves excited by the radial vib-
ration of the outer cylindrical surface are radiated. The intensity of these wa-
ves depends on the frequency and relative amplitude of the oscillation of the 
angular velocity.  

The equation of the dynamical equilibrium of the elastic hollow cylinder 
rotating about its unmoved axis of symmetry at variable angular velocity is in 
the form [4, 11] 

 
2 2

2
2 2 2
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r rr r t
∂ ∂ ∂ λ + µ + − + ρ Ω = ρ ≤ ≤ ∂ ∂ ∂

, (1) 

where ( , )u u r t≡  is the radial displacement; ( )tΩ  is the time-variable angular 

velocity of the axial rotation of the body; ,λ µ  are the Lamé parameters; sρ  is 
the density of the elastic material; r  is the radial co-ordinate with the origin 
on the axis of symmetry; t  is the time; a  and b  are the outer and inner radii 
of the tube, respectively. 

The pressure in the acoustical medium ( , )p p r t≡  is defined by the wave 
equation [8]  
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where c  is the sound velocity.  
 On the surfaces of the cylinder the following boundary conditions are 
satisfied [10]: 

 ( 2 ) 0,          u u p r a
r r

∂λ + µ + λ + = =
∂

, (3) 

 
2

2
1 0,                     

pu r a
rt

∂∂ + = =
ρ ∂∂

, (4) 

 ( 2 ) 0,              u u r b
r r

∂λ + µ + λ = =
∂

, (5) 

where ρ  is the fluid density. 
 To study the spectral characteristics of the radiated sound waves in the 
air we apply the integral Fourier transformation over time to Eqs (1)–(5), 
taking into account that all input and unknown functions satisfy the causality 
principle [8]. 
 Then, in the Fourier-transforms space (steady-state regime) we obtain 
the exact solution of problem (1)–(5). In particular, for the Fourier-transform 
of acoustical pressure in the air we have following expression [10]:  
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Lp r X P r a rω = λ + µ ω ω ≤ < ∞ , (6) 

where  
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  Here and further index «F » denotes the Fourier-transform; ( )nJ z , n =  

0,1,2= , are the Bessel functions; ( )nN z , 0,1,2n = , are the Neimann func-

tions; (1)( ),  0,1nH z n = , are the Hankel functions of the first kind; ω  is the 

Fourier-transform parameter (the circular frequency for 0ω ≥ ); /k c= ω  is 

the wave number for the acoustical medium; 2 2/T Lc cα = , 2 ( 2 )/L sc = λ + µ ρ , 
2 /T sc = µ ρ , where Lc  and Tc  are the velocities of the longitudinal and shear 

waves in the cylinder, respectively; /L Lk c= ω  is wave number for the elastic 

material and L Lx k a= , L Ly k b= . 
Similarly, the spectral distribution of the particle velocity in the acousti-

cal medium 1( , ) ( ) ( / )F Fv r i p r−ω = − ρω ∂ ∂  can be expressed by the formula 

 2( , ) ( ) ( , ),        F
L Lv r c X V r a rω = ω ω ≤ < ∞ , (9) 

where 
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Solutions (6) and (9) are obtained using the Sommerfeld conditions of the 
wave radiation at r → ∞  [8]. 

In other limiting case 0ω →  was shown [10] that  

 ( , ) 0,            ( , ) 0P r V rω → ω → . (11) 

In partial case of the solid cylinder when 0b →  we obtain the results of 
the paper [5]. 

3. The time characteristics. If the oscillation of the angular velocity ( )tΩ  
have form 

 0 0 0( ) (1 sin ),        t t tΩ = Ω + ε ω − ∞ < < ∞ , (12) 

where 0Ω  is the constant angular velocity of the cylinder rotation; 0ε  is the 

small non-dimensional parameter characterizing the amplitude of the distur-
bance of this velocity; 0ω  is the circular frequency, then from the Fourier-

transform for 2 ( )tΩ  we obtain [1] 

 2 2 2
0 0 0 0 0( ) 2 (1 0.5 ) ( ) ( ) ( )L LX X iω = π + ε δ ω − ε δ ω + ω − δ ω − ω −[ ]{  

 2
0 0 00.25 ( 2 ) ( 2 )− ε δ ω + ω + δ ω − ω[ ]} , (13) 

where ( )zδ  is the Dirac function and 0 0 /L LX a c= Ω .  
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 Applying the inverse Fourier-transform to Eqs (6), (9) and taking into ac-
count asymptotic properties (11), we obtain following formulas for the acous-
tical pressure and particle velocity generated by the rotating motion of the 
hollow cylinder at the modulated angular velocity:  

 0 02
0
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( 2 ) L

p r t P r i t
X

= − ε ω − ω −
λ + µ

[ ]  

 2
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 0 0 02
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 2
0 0 00.5 Re ( ,2 ) exp ( 2 ) ,       V r i t a r− ε ω − ω ≤ < ∞[ ] . (15) 

For the estimation of the sound energy radiated in the acoustical medium 
let calculate the time average of the power over period 0 02 /T = π ω : 

 
0
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 Then, taking into account Eqs (14) and (15), we obtain 

 2 1 4
0 0 0 02 ( ) Re ( , ) ( , )s LI c a P r V r− ∗= ε ρ Ω ω ω +[  

 2
0 0 0( /4) ( , 2 ) ( ,2 ) ,         P r V r r a∗+ ε ω ω ≥] . (17) 

Here asterisk is a sign of complex conjugation. 
 4. The numerical results. The numerical calculations are carried out for 
the case of the Armco iron hollow cylinder ( 7700sρ = kg/m3, 5960Lñ = m/s, 

3240Tñ = m/s [2]), immersed in the air ( 1.293ρ = kg/m3, 331ñ = m/s [7]). 

 Fig. 1 shows the function ( , )P r ω  (in dB) of the non-dimensional frequ-

ency x ka=  (the wave outer radius of the cylinder) and the geometrical pa-
rameter /b aε =  
(the relative inner 
radius of the cylin-
der) at / 1r a = . On 
account of the wa-
ve reflections bet-
ween the cylindri-
cal surfaces the 
frequency spect-
rum of the sound 
generated in the 
surrounding air has 
an explicitly ex-
pressed resonance character. Therefore, the resonance locations are sufficient-
ly dependent on the thickness of the cylindrical objects. Namely, the sound 
waves on the resonance 
frequencies are subjec-
ted to geometrical dis-
persion when the tube 
becomes thinner. That 
is, the resonance loca-
tions in general are the 
non-monotonic function 
of the parameter ε .  
 This effect is well 
illustrated by Fig. 2, 
where curves of the 

 
Fig. 1 

 
Fig. 2 
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identical levels of the sound spectrum amplitudes are plotted. It is shown that 
the first, low frequency resonance moves in the lower frequency range if the 
parameter ε  decreases.  
 Additionally, Fig. 3 shows a thin structure of the spectral lines of first re-
sonance for the discrete values of ε  (the results are obtained with the non-di-
mensional frequency step 0.0005x∆ = ). Dispersion is also observed for the re-
sonances of the higher orders but only for not very great values of ε . The 
range of parameter ε , in which the resonance lines are moved to the lower 
frequencies side, narrows quickly with an increasing of the resonance order. 
Moreover, there are values of the cylindrical tube thickness for which a direc-
tion of the resonance curves motion is changed. That is, for continuously in-
creasing ε , the resonances speedily move to the high frequencies side (Fig. 2). 
As a matter of fact, we observe radiating sound waves formed with the ne-
gative group velocity. These plots also show that the resonance amplitudes 
decrease rapidly with an increasing of the resonance order. 
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Fig. 4 

 In the pulse situation we can see from Eq. (14) that the acoustical waves 
radiate at two frequencies, 0ω  and 02ω . Fig. 4a demonstrates the time depen-

dence of the sound pressure ( , )p r t  for different values of the thickness para-

meter ε  and 0 90x =  ( 0 0x k a= , 0 0/k c= ω , /ct aτ = ). The calculations are 

carried out for the pressure far from the cylindrical surface, / 10r a = . The 

cylinder of the outer radius 0.457a = m carries out 0 50N =  revolutions per 

second ( 0 02 NΩ = π rad/s) with the relative amplitude of the angular velocity 

modulation 0 0.1ε = . These plots illustrate the space resonances. Indeed, till 
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the values of ε  are contained outside of resonance positions (cf. Figs 1 and 2) 
the acoustical signals are with the low sinusoidal amplitudes. The picture 
changes significantly if the parameter ε  crosses the dispersive curves. Then 
oscillations of the signals become well noticeable although for small 0ε  these 

amplitudes scarcely reach 400 Pa. Fig. 4b is obtained only for the second term 
of expression (14), that is for the component with double frequency. Here, the 
above mentioned effect of the space resonance is also demonstrated, but, na-
turally, it arises for another values of the ε . The amplitudes of these oscilla-
tions are by two order lower, because again the parameter 0ε  is small. In fact, 

such additional signal is masked by the signal background with the frequency 

0ω , but its existence gives the evidence that the nature of the sound radiation 

in our case has the character of the wave field with the second harmonic.  
 It is well illustrated in Fig. 5a for the sound radiation intensity depen-
dence [3] 

 12
0 010 lg ( / ),      10N I I I −= = W/m2, (18) 

on different 0x  and ε . Here 0I  is zero level of sound intensity. The value N  

is calculated on the basis of Eq. (17) with / 1r a = , 0 0.3ε = . Fig. 5a depicts the 

total intensity and Fig. 5b represents only that which is defined by the second 
component of the expression for power I .  

  

Fig. 5 

     

     
Fig. 6 

 These plots also discover both the resonances of the radiation amplitudes 
and the dispersive character of the wave formation. In more detail the struc-
ture of the radiation intensity as the function of the frequency is displayed in 
Fig. 6 (also in dB) for the discrete values of ε  (all other parameters are as in 
Fig. 5). These illustrations show that the resonances are of high quality with 
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the fairly intensive amplitudes. The resonances of the double frequency are 
fairly good visible, especially for the low frequency range. For comparison, in 
the case of cylinder rotating in a water [10] we note that corresponding low-
level spectral lines are practically masked. The plots describe very well the 
motion of the resonance locations with a change of the geometrical parameter 
ε . It is shown that the first resonance line moves, extending and decreasing, 
to the low frequency range. All other resonance lines diverged quickly and 
move to the high frequencies. It is connected with the re-reflection of the 
elastic waves on the boundary surfaces of the hollow cylinder.  

      

      
Fig. 7 

 In Fig. 7 the analogous curves for the intensity are shown for several 
cases of the solid cylinder-surrounded medium interface: Armco iron – water 
[10], water – air, Armco iron – air, and air – air. A last case simulates sound 
radiation from air vortex. The structure of the frequency dependencies of 
sound wave intensity radiated by the water and air hollow cylinders in air for 
the different geometrical parameter ε  is demonstrated in Fig. 8. It is shown 
that sound generation by the air cylinders (in the frame of our model) is 
without resonances. In the other cases the resonances of the first and second 
harmonics form a quasi-periodical structure. 

 

Fig. 8 

 Finally, in Fig. 9 the distributions of the sound wave intensity of the 
Armco iron cylinder in the air near the cylindrical surface, 1 / 2r a≤ ≤ , are 
shown when the elastic tube thickness is a continuous variable. The pictures 
are obtained for 0 5, 10, 25, 50, 75, 100, 200x =  and 400 . These plots are in-

teresting because in this case both the primary resonances (with 0x ) and the 

secondary resonances (with 02x ) are expressed explicitly. In other words, it is 



137 

demonstrated that continuous variation of the parameter ε  causes to the 
consequence of the visible sound intensity splash for the arbitrary frequencies 
of the radiation.  

   

   

  

  

Fig. 9 
 4. Conclusions. The rotation of the hollow circular elastic cylinder with 
an inconstant angular velocity is a cause of the sound wave radiation in sur-
rounded acoustical medium. More precisely, a source of the wave propagation 
in the cylinder and air is variable over time centrifugal force excited by the 
rotating elastic body. A result of the time modulation of this rotating motion 
is the complicated spectral structure of the generated sound waves with 
clearly expressed resonance character. The resonance properties are also re-
flected on the stationary excited sound signals. As a result of the fact that 
centrifugal force is proportional to the second power of the angular velocity, 
the generated sound contains the first and second oscillation harmonics.  
 The investigation of the thin structure of frequency characteristics is a 
necessary precondition for the sound radiation control and diagnostic of the 
work of rotating cylindrical elements of the machines. From other hand, the 
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rotating elastic cylinder can be considered as low powerful all-directional 
transducer of the acoustic signals in air on the basic and double frequencies.  

The analysis of the numerical calculations shows that the major peculiari-
ties of the sound wave structure are following:  

• The amplitudes of the radiated acoustical pressure and wave intensity 
in the air posses the sequence of the resonances caused by the superposition 
of the outgoing and ingoing cylindrical waves in the elastic material of the 
rotated elastic tube. 

• The resonances locations are connected with the phase velocities ph
jv =  

res/ ( ),  1,2,jcx x x j= =  , of the resonance wave propagation. The phase velo-

cities as well as the group velocities gr ph/ ,  1,2,j jv dv dx j= =  , of these waves 

are subjected to the dispersion phenomenon caused by the varying cylinder 
thickness parameter.  

• The resonance lines are of good quality and high intensity.  
• The resonances corresponding to the solid cylinder case [5] are of the 

constructive type. For the hollow cylinder the resonances are divided into the 
constructive and destructive classes. This effect is visible very well for the 
thin elastic cylindrical shells. 

• The first resonance is particular in the sense that its location in contrast 
to the positions of all rest the resonances, is low mobile with a change of the 
cylindrical wall thickness.  

• The series of the low-level resonances presented in the sound wave 
intensity slightly masked on the background of the high-amplitude resonances 
are good discovered by the cylindrical tube thickness changing at the fixed 
frequencies of the angular velocities oscillation. However, this masking for the 
cylinder in the air is not so strong as for the cylinder in the water [10]. 
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ОСЕСИМЕТРИЧНЕ ВИПРОМІНЮВАННЯ ЗВУКУ ПРУЖНИМ ПОРОЖНИСТИМ 
ЦИЛІНДРОМ, ЩО ОБЕРТАЄТЬСЯ В ПОВІТРІ 
 
Âèâ÷àºòüñÿ âèïðîì³íþâàííÿ çâóêó ïðóæíîþ êðóãîâîþ, ïóñòîþ âñåðåäèí³ öèë³íä-
ðè÷íîþ òðóáîþ áåçìåæíî¿ äîâæèíè, ùî îáåðòàºòüñÿ ç íåñòàëîþ êóòîâîþ øâèä-
ê³ñòþ â ïîâ³òð³. Òî÷í³ ðîçâ’ÿçêè ð³âíÿíü, ùî îïèñóþòü àåðîïðóæíó âçàºìîä³þ ñå-
ðåäîâèù, îäåðæàí³ ç âèêîðèñòàííÿì ³íòåãðàëüíîãî ïåðåòâîðåííÿ Ôóð’º çà ÷àñîì. 
×èñëîâ³ ïðèêëàäè ïîêàçóþòü, ùî ñïåêòðàëüíà ñòðóêòóðà çâóêîâîãî âèïðîì³íþ-
âàííÿ â³ä ïðóæíî¿ òðóáè, íàáàãàòî ñêëàäí³øà, í³æ ó âèïàäêó ñóö³ëüíîãî ïðóæíîãî 
öèë³íäðà. Çîêðåìà, ðåçîíàíñè ö³º¿ ñòðóêòóðè ñóòòºâî çàëåæàòü â³ä òîâùèíè 
îáåðòàëüíîãî îá’ºêòó ³ ï³äëÿãàþòü ÿâèùó äèñïåðñ³¿.  
 
ОСЕСИММЕТРИЧНОЕ ИЗЛУЧЕНИЕ ЗВУКА УПРУГИМ ПОЛЫМ ЦИЛИНДРОМ, 
ВРАЩАЮЩИМСЯ В ВОЗДУХЕ 
 
Èçó÷àåòñÿ èçëó÷åíèå çâóêà óïðóãîé êðóãîâîé, ïóñòîé èçíóòðè öèëèíäðè÷åñêîé 
òðóáîé áåñêîíå÷íîé äëèíû, âðàùàþùåéñÿ ñ ïåðåìåííîé óãëîâîé ñêîðîñòüþ â âîç-
äóõå. Òî÷íûå ðåøåíèÿ óðàâíåíèé, îïèñûâàþùèõ àýðîóïðóãîå âçàèìîäåéñòâèå ñðåä, 
ïîëó÷åíû ñ èñïîëüçîâàíèåì èíòåãðàëüíîãî ïðåîáðàçîâàíèÿ Ôóðüå ïî âðåìåíè. ×èñ-
ëîâûå ïðèìåðû ïîêàçûâàþò, ÷òî ñïåêòðàëüíàÿ ñòðóêòóðà çâóêîâîãî èçëó÷åíèÿ 
îò óïðóãîé òðóáû, íàìíîãî ñëîæíåå, ÷åì â ñëó÷àå ñïëîøíîãî óïðóãîãî öèëèíäðà. Â 
÷àñòíîñòè, ðåçîíàíñû ýòîé ñòðóêòóðû ñóùåñòâåííî çàâèñÿò îò òîëùèíû âðà-
ùàþùåãîñÿ îáúåêòà è ïîäâåðãàþòñÿ ÿâëåíèþ äèñïåðñèè.  
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