UDK 517.983.54

O. P. Piddubniak, N. G. Piddubniak

AXIALLY SYMMETRIC SOUND RADIATION BY
ELASTIC HOLLOW CYLINDER ROTATING IN THE AIR

Sound radiation from an elastic circular, empty inside, cylindrical tube of infinite
length rotating with non-uniform angular velocity in the air is studied. The exact
solutions of equations describing the aeroelastic interaction are obtained using the
Fourier-transform over time. Numerical examples show that spectral structure of
the sound radiation from an elastic tube is more complicated than that of a solid
cylinder. In particular, the resonances of this structure are essentially dependent
on the thickness of the rotating object and are subjected to the phenomena of
dispersion.

1. Introduction. In the techniques a good few of the objects or its parts
rotate with variable angular velocity. The examples of these bodies are the
rotors or shafts as the main elements in most power, electric and transport
machines, as well as in many devices [6]. Various aspects of the corresponding
problems attracted attention of many authors long ago [5]. In general, re-
searchers studied the electromagnetic, thermal, mechanical and other charac-
teristics of these objects, very rarely taking into consideration the fact that
these bodies are often surrounded by an acoustical medium. At the same
time, mechanical objects radiate sounds during rotation. The spectrum of
sound radiation may vary greatly. On the one hand, it permits to know about
the inner state of the rotated body. On the other hand, the rotors are the
main source of vibrations, dangerous intensity of which depends on a whole
number of factors [6]. In addition, inconstancy of the angular velocity can
bring about an essential re-distribution of the strain-stress state in the elastic
body and lead even to the destruction on the resonance frequencies. The cor-
respondent information is contained in the acoustical field, too. Thus, sound
radiation by the rotating objects is an up to date problem. For its understan-
ding it is necessary make a careful study of the structure of wave field both
inside sounding elastic object and outside it.

Complexity of the problem consists in that the several interdependent
mechanisms take part during the process of sound generation by a rotating
bodies in the real conditions. Often this process is studied without taking into
account an elastic strain of radiator (see e.g. [12]). One of the sources of noise
is the boundary layer, which is formed around rotating cylinder thanks to
viscosity of acoustic medium. Recent experiments on the sound radiation by
the turbulent boundary layer were performed [9], where generator of noise
was an elastic cylindrical shell rotating in a water. Since the shell is thin-
walled, the influence of inner wave processes in the thickness of body on the
sound radiation is hard to investigate.

In papers [5, 10] we make an attempt to estimate sound field, which is
formed exceptionally on account of the strain elastic waves in cylinder rota-
ting with time-varying angular velocity. To simplify problem it was assumed
that outer space is filled by an ideal (non-viscous) compressible liquid (gas).
Corresponding numerical calculations were fulfilled for the case of elastic cy-
linder rotating in water.

Now we continue our investigation and give detailed analysis of sound
field radiated in the air. The model object is an infinitely long elastic circular
hollow cylinder rotating inconstancy about its axis of symmetry. We again
concentrate main attention on the wave field excited by the cylinder in the
surrounding medium. First, we investigate the spectral characteristics of the
radiated sound. In the numerical examples for the case of the Armco iron — air
interaction, the dependence of the sound pressure amplitude on frequency
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and cylindrical tube thickness is studied. It turned out that the sound field
consists of the series of resonances. In addition, the resonance dependence on
the cylinder thickness is subjected to powerful dispersion. This effect is also
illustrated by numerical calculations.

The non-constant angular velocity of the cylinder rotation causes the first
and double sound harmonic excitations if the constant value of this velocity is
modulated by the small sinusoidal amplitude over time oscillation. It is well
illustrated by the numerical calculations for the intensity of the radiated aco-
ustical wave obtained for different values of the frequency of disturbance an-
gular velocity and tube thickness. We found two series of the amplitude re-
sonances, one on the fundamental frequencies corresponding to the resonances
of the spectrum, other on the frequencies two times smaller than the main
one.

2. Spectral characteristics. Consider the case of non-uniform rotation of
the elastic hollow cylinder of the infinite length around its axis of symmetry
in the compressible ideal gas (air). The cylinder is empty inside. As a conse-
quence of the rotation the centrifugal force arises. This force varies over time.
Then in the material of the body, axially symmetric converging and diverging
cylindrical elastic waves of the longitudinal and shear types are generated.
Simultaneously, in the surrounding air sound waves excited by the radial vib-
ration of the outer cylindrical surface are radiated. The intensity of these wa-
ves depends on the frequency and relative amplitude of the oscillation of the
angular velocity.

The equation of the dynamical equilibrium of the elastic hollow cylinder
rotating about its unmoved axis of symmetry at variable angular velocity is in
the form [4, 11]
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where u = u(r,t) is the radial displacement; Q(t) is the time-variable angular
velocity of the axial rotation of the body; A, u are the Lamé parameters; p, is
the density of the elastic material; r is the radial co-ordinate with the origin
on the axis of symmetry; t is the time; a and b are the outer and inner radii
of the tube, respectively.

The pressure in the acoustical medium p = p(r,t) is defined by the wave

equation [8]
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where c is the sound velocity.
On the surfaces of the cylinder the following boundary conditions are

satisfied [10]:
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where p is the fluid density.

To study the spectral characteristics of the radiated sound waves in the
air we apply the integral Fourier transformation over time to Eqgs (1)—(5),
taking into account that all input and unknown functions satisfy the causality
principle [8].

Then, in the Fourier-transforms space (steady-state regime) we obtain
the exact solution of problem (1)—(5). In particular, for the Fourier-transform
of acoustical pressure in the air we have following expression [10]:
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pF (r,0) = (L + 20X} ()P(r, ®), a<r<om, (6)
where

P(r,m) = ¢, (kr)Ag (7)
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Here and further index «F» denotes the Fourier-transform; J (z), n =
=0,1,2, are the Bessel functions; N, (z), n=0,1,2, are the Neimann func-
tions; Hfll)(z), n =0,1, are the Hankel functions of the first kind; o is the
Fourier-transform parameter (the circular frequency for w>0); k= o/c is
the wave number for the acoustical medium; o =c%/ci, ci = (A +2n)/p,,
¢ =u/p,, where c, and c, are the velocities of the longitudinal and shear
waves in the cylinder, respectively; k; = o/c; is wave number for the elastic

material and x;, =k;a, y, =k.b.
Similarly, the spectral distribution of the particle velocity in the acousti-

cal medium o (r,0) = —i(pw) " (p" /6r) can be expressed by the formula
vF(r, o) = cLXi(m)V(r, ), a<r<o, 9)
where
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Solutions (6) and (9) are obtained using the Sommerfeld conditions of the
wave radiation at r — o [8].
In other limiting case ® — 0 was shown [10] that

P(r,m) > 0, V(ir,o) > 0. (11)

In partial case of the solid cylinder when b — 0 we obtain the results of
the paper [5].

3. The time characteristics. If the oscillation of the angular velocity €(t)
have form

Q(t) = Q, (1 + g, sin w,t), —w<t<w, (12)

where Q, is the constant angular velocity of the cylinder rotation; g, is the
small non-dimensional parameter characterizing the amplitude of the distur-
bance of this velocity, ®, is the circular frequency, then from the Fourier-

transform for Q%(t) we obtain [1]
X2 (w) = 21X2 {(1 + 0.5e) 8(®) — g, [8(® + @) — (0 — ®))] —
- 0.2582[8(0 + 200y) + 8( — 200)] }, (13)
where §(z) is the Dirac function and X;, = Qqa/c; .
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Applying the inverse Fourier-transform to Eqgs (6), (9) and taking into ac-
count asymptotic properties (11), we obtain following formulas for the acous-
tical pressure and particle velocity generated by the rotating motion of the
hollow cylinder at the modulated angular velocity:
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For the estimation of the sound energy radiated in the acoustical medium
let calculate the time average of the power over period T, = 2n/®, :

Ty
r=L _[ p(r, t)v(r,t)dt, a<r<o. (16)
TO 0

Then, taking into account Eqs (14) and (15), we obtain
I =2¢ep.c;'(Q,a)* Re[P(r,0))V*(r,®,) +
+ (g9 /4)* P(r, 20,V (1, 20,)], r>a. 17)

Here asterisk is a sign of complex conjugation.
4. The numerical results. The numerical calculations are carried out for
the case of the Armco iron hollow cylinder (p, = 7700 kg/m? c;, =5960m/s,

¢y = 3240 m/s [2]), immersed in the air (p = 1.293kg/m’, ¢ =331m/s [7]).
Fig. 1 shows the function |P(r,®)| (in dB) of the non-dimensional frequ-

ency x =ka (the wave outer radius of the cylinder) and the geometrical pa-
rameter e=b/a |

(the relative inner
radius of the cylin-
der) at r/a =1. On
account of the wa-
ve reflections bet-
ween the cylindri-
cal surfaces the ~
frequency spect-
rum of the sound
generated in the
surrounding air has Fig. 1
an explicitly ex-
pressed resonance character. Therefore, the resonance locations are sufficient-
ly dependent on the thickness of the cylindrical objects. Namely, the sound
waves on the resonance
frequencies are subjec-
ted to geometrical dis-
persion when the tube
becomes thinner. That
is, the resonance loca-
tions in general are the
non-monotonic function
of the parameter ¢.
This effect is well : .
illustrated by Fig. 2, 100 150 200 250 300 350 ax
where curves of the Fig. 2

rfa=1
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identical levels of the sound spectrum amplitudes are plotted. It is shown that
the first, low frequency resonance moves in the lower frequency range if the
parameter ¢ decreases.

Additionally, Fig. 3 shows a thin structure of the spectral lines of first re-
sonance for the discrete values of € (the results are obtained with the non-di-
mensional frequency step Ax = 0.0005). Dispersion is also observed for the re-
sonances of the higher orders but only for not very great values of ¢. The
range of parameter €, in which the resonance lines are moved to the lower
frequencies side, narrows quickly with an increasing of the resonance order.
Moreover, there are values of the cylindrical tube thickness for which a direc-
tion of the resonance curves motion is changed. That is, for continuously in-
creasing &, the resonances speedily move to the high frequencies side (Fig. 2).
As a matter of fact, we observe radiating sound waves formed with the ne-
gative group velocity. These plots also show that the resonance amplitudes
decrease rapidly with an increasing of the resonance order.
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p(r, t), Pa

Fig. 4
In the pulse situation we can see from Eq. (14) that the acoustical waves
radiate at two frequencies, o, and 20,. Fig. 4a demonstrates the time depen-

dence of the sound pressure p(r,t) for different values of the thickness para-
meter ¢ and x;, =90 (x, =kya, k, =w,/c, t=ct/a) The calculations are
carried out for the pressure far from the cylindrical surface, r/a =10. The
cylinder of the outer radius a = 0.457m carries out N, =50 revolutions per
second (€, = 2nN,rad/s) with the relative amplitude of the angular velocity

modulation ¢, = 0.1. These plots illustrate the space resonances. Indeed, till
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the values of ¢ are contained outside of resonance positions (cf. Figs 1 and 2)
the acoustical signals are with the low sinusoidal amplitudes. The picture
changes significantly if the parameter ¢ crosses the dispersive curves. Then

oscillations of the signals become well noticeable although for small ¢, these

amplitudes scarcely reach 400 Pa. Fig. 4b is obtained only for the second term
of expression (14), that is for the component with double frequency. Here, the
above mentioned effect of the space resonance is also demonstrated, but, na-
turally, it arises for another values of the &. The amplitudes of these oscilla-

tions are by two order lower, because again the parameter g, is small. In fact,

such additional signal is masked by the signal background with the frequency
®,, but its existence gives the evidence that the nature of the sound radiation

in our case has the character of the wave field with the second harmonic.
It is well illustrated in Fig. 5a for the sound radiation intensity depen-
dence [3]

N=101g(I/I,), I, =10""2W/m? (18)
on different x, and ¢. Here I is zero level of sound intensity. The value N

is calculated on the basis of Eq. (17) with r/a =1, g, = 0.3. Fig. 5a depicts the

total intensity and Fig. bb represents only that which is defined by the second
component of the expression for power I.
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Fig. 6
These plots also discover both the resonances of the radiation amplitudes
and the dispersive character of the wave formation. In more detail the struc-
ture of the radiation intensity as the function of the frequency is displayed in
Fig. 6 (also in dB) for the discrete values of ¢ (all other parameters are as in
Fig. 5). These illustrations show that the resonances are of high quality with
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the fairly intensive amplitudes. The resonances of the double frequency are
fairly good visible, especially for the low frequency range. For comparison, in
the case of cylinder rotating in a water [10] we note that corresponding low-
level spectral lines are practically masked. The plots describe very well the
motion of the resonance locations with a change of the geometrical parameter
€. It is shown that the first resonance line moves, extending and decreasing,
to the low frequency range. All other resonance lines diverged quickly and
move to the high frequencies. It is connected with the re-reflection of the
elastic waves on the boundary surfaces of the hollow cylinder.
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Fig. 7

In Fig. 7 the analogous curves for the intensity are shown for several
cases of the solid cylinder-surrounded medium interface: Armco iron — water
[10], water — air, Armco iron — air, and air — air. A last case simulates sound
radiation from air vortex. The structure of the frequency dependencies of
sound wave intensity radiated by the water and air hollow cylinders in air for
the different geometrical parameter ¢ is demonstrated in Fig. 8. It is shown
that sound generation by the air cylinders (in the frame of our model) is
without resonances. In the other cases the resonances of the first and second
harmonics form a quasi-periodical structure.

I The water cylinder a) The air cylinder b)

1 g
N, clemm . N, cua,ﬂﬂnﬂ;T .

Fig. 8

Finally, in Fig. 9 the distributions of the sound wave intensity of the
Armco iron cylinder in the air near the cylindrical surface, 1<r/a <2, are

shown when the elastic tube thickness is a continuous variable. The pictures
are obtained for x, =5, 10, 25, 50, 75,100, 200 and 400. These plots are in-

teresting because in this case both the primary resonances (with a;) and the

secondary resonances (with 2x;) are expressed explicitly. In other words, it is

136



demonstrated that continuous variation of the parameter & causes to the
consequence of the visible sound intensity splash for the arbitrary frequencies
of the radiation.
Tp=5 a) xg=10 b)
D N,dB =

Fig. 9

4. Conclusions. The rotation of the hollow circular elastic cylinder with
an inconstant angular velocity is a cause of the sound wave radiation in sur-
rounded acoustical medium. More precisely, a source of the wave propagation
in the cylinder and air is variable over time centrifugal force excited by the
rotating elastic body. A result of the time modulation of this rotating motion
is the complicated spectral structure of the generated sound waves with
clearly expressed resonance character. The resonance properties are also re-
flected on the stationary excited sound signals. As a result of the fact that
centrifugal force is proportional to the second power of the angular velocity,
the generated sound contains the first and second oscillation harmonics.

The investigation of the thin structure of frequency characteristics is a
necessary precondition for the sound radiation control and diagnostic of the
work of rotating cylindrical elements of the machines. From other hand, the
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rotating elastic cylinder can be considered as low powerful all-directional
transducer of the acoustic signhals in air on the basic and double frequencies.

The analysis of the numerical calculations shows that the major peculiari-
ties of the sound wave structure are following:

e The amplitudes of the radiated acoustical pressure and wave intensity
in the air posses the sequence of the resonances caused by the superposition
of the outgoing and ingoing cylindrical waves in the elastic material of the
rotated elastic tube.

e The resonances locations are connected with the phase velocities vfh =

= cx/x;es(x), 7=12,..., of the resonance wave propagation. The phase velo-
gr
J
are subjected to the dispersion phenomenon caused by the varying cylinder
thickness parameter.

e The resonance lines are of good quality and high intensity.

e The resonances corresponding to the solid cylinder case [5] are of the
constructive type. For the hollow cylinder the resonances are divided into the
constructive and destructive classes. This effect is visible very well for the
thin elastic cylindrical shells.

e The first resonance is particular in the sense that its location in contrast
to the positions of all rest the resonances, is low mobile with a change of the
cylindrical wall thickness.

e The series of the low-level resonances presented in the sound wave
intensity slightly masked on the background of the high-amplitude resonances
are good discovered by the cylindrical tube thickness changing at the fixed
frequencies of the angular velocities oscillation. However, this masking for the
cylinder in the air is not so strong as for the cylinder in the water [10].

cities as well as the group velocities v = dvfh /dx, j=1,2,..., of these waves
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OCECUMETPUYHE BUMPOMIHIOBAHHA 3BYKY MPY>XHUM NMOPOXHUCTUM
LUnIHAPOM, LLIO OBEPTAETbLCA B NOBITPI

Busuaembvcs 8UNPOMIHIOBAHHA 38YKY MPYHCHOIO KPY208010, NYCMOI 8CePeOUHT YULIHO-
puuHoto mpy6or Ge3mentcHol 008ICUHU, WO 00ePMAEMBCS 3 HECAL0I0 KYMOBO ULBUO-
Kicmio 8 noseimpi. Touni po3e’A3KU PIBHAHD, WO ONUCYIOMDb AEPONPYHCHY 83AEMO0TI0 Ce-
pedosuwy, 00epicant 3 BUKOPUCMAHHAM THMeEZPALbHO20 nepemeoperus Pyp’e 3a uacom.
Hucao6i npukaadu noKasyroms, U0 CNeKMparbHa CMPYKMypa 368YK08020 8UNPOMIHIO-
8aHHs 810 NPYAHCHOT MPY6uU, Habazamo ckaadHIwa, HIXC Y UNAOKY CYYIIBHOZ0 NPYHICHOZ0
Yuainopa. 3oxpema, Pe3OHAHCU YIEL CMPYKMYPU CYMMESO 3aLeHamd 810 MOosUUHU
o06epmanvrozo 06’ ekmy i nidafzaroms asuwy oucnepcii.

OCECUMMETPWUYHOE U3NYYEHUE 3BYKA YINPYIrM NMoJibiM UMNNHOPOM,
BPALLAKOLLUMMCA B BO3OYXE

M3yuaemcecs usayuenue 38yKa ynpyeou KpPY2080%, NYCmMol uHYmMPuU YuiuHopuLeckou
mpy6ol GeckoHeuHOU OAUHDBL, 8PAWAOWeELUCS C nepemMeHHOt Y2080l CKOPOCMbIO 8 803-
Oyxe. Tounvle peweHUus YpasgreHUt, ONUCHLBAIOWUXL AIPOYNpPpy20e 83aumodeticmsue cpeod,
NOAYUEHDbL C UCTIOABI0BAHUEM UHMEZPALLHO20 Npeobpasdosanus Pypve no epemeru. Juc-
N08ble NPUMEPDBL NOKA3ZLLBAIOM, UMO CNEKMPEAIbHAL CMPYKMYPA 36YK08020 U3AYUEHUS
om ynpyz0t mpyosvl, HAMHOZO CAOHCHEE, UeM 8 CAYUAE CNAOULHOZ0 YNPY2020 Yuaundpa. B
YACTMHOCMU, PE3OHAHCHL IMOU CMPYKMYPblL CYUWECMBEHHO 3ABUCAM OM MOAUWUHDL 8PA-
warowezocsa 00seKma U nodeepzaromces A8AeHur0 Oucnepcul.
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