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COMPLETE INVARIANT KAHLER METRICS ON COTANGENT
BUNDLES OF SPHERES

For the spheres S™ = SO(n+1)/SO(n), n =3, all complete SO(n +1) -invariant
Kdhler metrics g with the canonical symplectic form as the Kdhler form on the

cotangent bundle T*S™ are described. This description of the corresponding Kdhler
structure (J,g) (with the complex structure J ) is based on the methods of sym-
metric Lie algebra theory. We consider also analogical complete Kdihler structures
(J,g9) which are invariant with respect to the mormalized geodesic flow on the

punctured cotangent bundle T*S™ \ S™.

1. Introduction. Consider the sphere S™ with the standard SO(n +1) -in-
variant metric 9 - Using g We can identify the cotangent and tangent

bundle to the sphere S™ thus obtaining the canonical symplectic structure Q

on TS". Therefore the metric 9 determines the geodesic flow on TS" with

the Hamiltonian function H .
In the study of SO(n + 1) -invariant Kihler structures on TS™, Kihler
structures (J,g) with the form Q as the Kihler form, ie. g(-,-)=Q(J-,-),

are of particular interest because such structures arise in different problems
of Riemannian and complex geometry of the (co)tangent bundles. For instan-

ce, the adapted complex structure (J,,9,) on TS™ [8] is the structure of this

type naturally extending the Riemannian structure Ion> that is the restriction

of g, to the zero section S" < T'S™ coincides with the homogeneous metric

gs"' Moreover, (J,,g,) is a unique extension such that the function VH isa

solution of the homogeneous complex Monge — Ampere equation (65@ =0
[2]. Another example of such a structure on the punctured (co)tangent bundle

TS™ \ S" is the structure (Jg,gg) [5, 7] which is invariant with respect of the

Hamiltonian vector field of the function vH (the normalized geodesic flow of
the metric g ON S™).

In our paper [4] we presented a Lie algebraic method of a description of
all SO(n + 1) -invariant Kéhler structures (J,g) on the domains D of the co-

tangent bundle T*S™ of the n-dimensional sphere S" with the canonical
symplectic form Q as the Kéhler form. The question arises, for which struc-
tures (J,g) the metric g on D is complete. This problem is solved in the pa-
per. Our method of the proof of the completeness is motivated by a paper of
G. Patrizio and P. Wong [6], where there was proposed a proof method based
on the existence of solutions of the homogeneous complex Monge — Ampere
equation and associated the Monge — Ampere foliation. In our case, generally
speaking, such a solution does not exist. But using the fact that the (co)tan-

gent bundle TS" is a cohomogeneity one manifold, that is there are
SO(n +1) -orbits in TS™ which are hypersurfaces, we generalize the method
of Patrizio and Wong and apply it for all invariant Kéhler structures (J,g).
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We find all Kihler structure (J,g) on the tangent bundle or the punctured
tangent bundle of S" with the complete metric g (Theorems 2 and 3).
Moreover, we show that the Souriau — Rawnsley metric gy is non-complete
but there exist complete Kihler structures (J,g) on the punctured tangent
bundle of S" invariant with respect to the normalized geodesic flow of the
metric Ion-

2. Invariant Kihler structures. In this subsection we shall give an expo-
sition of the results of [4]. We will describe all invariant Kihler structures on
the domains D of the cotangent bundle to sphere T'S™ in terms of some
operator-function P.

Let M = G/ K be a symmetric space with a compact connected Lie group
G and a closed subgroup K. Let g and ¢ be the Lie algebras of the groups
G and K respectively. There is a positive definite AdG -invariant bilinear
form (,) on g and a subspace m c g such that g=¢®m is the AdK -in-
variant direct sum decomposition of g and ¢ 1L m. Moreover [¢,m]c m and
[m, m] c £. The restriction (, )| m determines G -invariant Riemannian met-
ric gy on M =G/K. The metric g, identifies the cotangent bundle "M

and the tangent bundle TM and thus we can also talk about the canonical

def
l1-form 6 on TM. The form 0 and the symplectic form Q = dO are G -inva-

riant with respect to the natural action of G on TM .

Consider the trivial vector bundle G xm with the two commuting Lie
group actions on it: the left G -action, [, : (g, w) = (hg,w), and the right K-
action 7, :(g,w) (gk, Ad k_l(w)). Let m:Gxm = Gxx m be the natural
projection. It is well known that G xx m and TM are isomorphic. Using the

corresponding G -equivariant diffeomorphism ¢:Gx, m - TM, [(g,w)] —

— % gexp (tw) K and the projection n we define the G -equivariant sub-
0

mersion IT: G xm — TM, Il = ¢ o . Denote by 0 the 1-form IT°0 and by Q

its differential df. Let Ef be the left-invariant vector field on the Lie group
G defined by a vector £ € g.

The 2-form Q on the manifold G x m has the form [4]

Q(g,w)((éf(g)’ ul),(éé(g), uy)) = (&g uy) = (&1, up) — (W, [§1,8,]) (1)

where geG, wem, &, eg, u,u,u,em=T, m. The kernel K c
c T(G xm) of the 2-form Q is generated by the global (left) G -invariant

vector fields (¥, L et on Gxm, (g, w) = (L (g), [w,(]).
Let D be an open connected G -invariant subset of TM . Denote by W a
unique Ad K -invariant open subset of m such that H"I(D) =GxW. Let

Eqv (W) be the set of all smooth K -equivariant mappings A : W — End(mc),

w A, e for which

Ad, oA, o Aclki1 = AAdkw on m forall weW, keK. (2)
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Denote by Alm (W) the set of all maps P € Eqv (W) such that the opera-

. C C : _ .
tor P, :m~ — m~ and its real part R, =ReP, : m — m are nondegenerate

for each w e W. Such a K -equivariant mapping P € Alm (W) determines a
complex (left) G -invariant subbundle F(P)c TC(GX W) generated by (left)

G -invariant vector fields £, £ e m, and (", (€t on G x W, where

gl(g,w) = (€'(9), 1P, (8),  CM(gw) = (L' (), [w,L]).
The subbundle F(P) is (right) K -invariant by (2) and because the vector
fields ¢&, ¢ e ¢, span the (right) K -invariant subbundle (kernel) K . Therefo-

re F(P)difH*(f(P)) is a well-defined (smooth) complex subbundle of T°D
(K€ < F(P)). Moreover, since F(P)+ F(P)=T%(GxW) and F(P)() F(P)=
=K we have F(P)+TP) =T®D and F(P)HWP) =0. In other words, the
mapping P determines an almost-complex structure J, on Dc TM with
F(P) as the subbundle of its (0,1)-vectors: TF(P)={X +iJ,X,X e [(TD)} .

Let g, denote a (2,0)-tensor on TD, where gP(Yl,YZ)difQ(JPYl,Y2) for
vector fields Y;,Y, on TD. The almost-complex structure J, is an almost
Kihler structure with the Kihler form Q if (Q(F(P),F(P))=0 and g, is a
Riemannian metric on TD. Such a structure is a Kihler structure if the sub-
bundle F(P)CTC(TD) is involutive, i.e. is closed under the Lie bracket
[F(P),F(P)] < F(P). Since gp(-,-)=Q(Jp-,-) this structure will be denoted by
the pair (Jp,gp) or, (Jp,Q).

Let G be the Lie group SO(n +1) and K be its subgroup isomorphic to

SO(n). Let {,) be the normalized trace form —%Tr on g = so(n +1) associa-

ted with the standard representation of so(n +1). Put r(w)=|w| = {w,w) .
Denote by O some open connected subset of [0,+o) such that O = r Y(W).

Now we can describe all SO(n + 1) -invariant Kéhler structures on D c
c TM with the Kéhler form Q. To this end consider the operator-function

P:W — End(m®):
Al |w]) = w
Pw(§)=\l/(|w|)§+w<w’ >w’ &em, wEW’ (3)
T
where y, A: O — C are smooth functions. Remark that the one-dimensional

complex vector space (w) and its orthogonal complement (w)" in m® are

the eigensubspaces of P, with eigenvalues A(|w|) and y(|w|) respectively.

Theorem 1 [4]. Let G = SO(n+1) and let K be its subgroup isomorphic
to SO(n). Let (J,Q) be a G -invariant Kdihler structure on the domain D c
cT(G/K). If n=3 then J=J,, where the smooth mapping P: W — End (mc)
has form (3). If n > 2 then the smooth mapping P (3) defines a Kdhler struc-
ture on D if and only if real parts of the functions A(|w|),w(|w|): W — C
are positive and y(r) is given by formula

do(r) 1

cosh ((X,(?")) where R or \U(')") =17. (4:)

wir) =7 sinh (a(r))’ dt A(r)’
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3. Complete Kihler metrics g, on TS" and T’S™. We continue with

the previous notation but throughout this subsection it is assumed that
G =S5S0(n+1) and K =S0(n).

To find all complete metrics g, on D — TS™ note that the tangent space
TS™ is a cohomogeneity one manifold, i.e. the Lie group SO(n +1) acts on

this manifold with a codimension one orbit. The zero section S™ < TS™ is a
singular orbit. With the exception of this one case, all SO(n + 1) -orbits in

TS™ are hypersurfaces (principal orbits). The geometry of cohomogeneity one
manifolds is now well understood. But we will use only one fundamental fact
on the structure of these manifold [1]:

the unit smooth vector field U on TS™ which is g, -orthogonal to each
SO(n +1) -orbit on TS™ is a geodesic vector field, i.e. its integral curves
are geodesics of the metric g.
We describe the vector field U in terms of some Hamiltonian vector field. To
this end consider the Hamiltonian function H : TS™ — R associated with the

invariant metric gn OB the sphere S™ (induced by the form (,) on m).

Each G -orbit in T'S™ (principal or singular) is a level surface of H. We claim
that the vector field J,X,; on D c TS", where X, is the Hamiltonian vector
field of H, is gp-orthogonal to each G -orbit in D . Indeed, since the function

H is G -invariant dH(Y) =0 for each vector field Y tangent to G -orbits in
D . Then by definition of a Hamiltonian vector field we have

0=dH(Y) = Q(-X,,Y) = gp(JpX;;,Y).

Since the operator J,(x) is orthogonal with respect to the form g,(x),
we have U = JpX, /|| Xy |, where

9 9 def
1TpXu [ =1 X " = 9p(Xpy, Xp) = QI p Xy, Xp).
Moreover,
dH(U) = Q(-Xy1,U) = gp(TpXpp, JpX i) /| X | = [ X |, ®)
and for any vector field Z on D
dH(Z) = Q-Xy,2) = 9p(p Xy, 2) <[ Xy |- 2]

The function | X, || on D is G -invariant so that | X, || = p(H) (is a function
of H) for some smooth positive function p.

Using the vector field J,X, and the method of [6] we shall calculate the
distance between level sets {H =a} and {H =b} in D with respect to the
metric induced by g,. Let y=1y(t), t €[0,T], be the integral curve of the
vector field U =J,X, /| X, | with the initial point x, € {H =a}. There
exists a function h on some subset of R such that the function h(H(y(t))) is
linear in t. It is easy to verify that

h(s) =

1
amd‘t, (6)

because by (5)
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%h(H(y(t))) = h'(H(y(t)))dH(y'(t)) = R'(H(y() | X5 (y(®) | = 1.

Suppose that x, € {H =b} and x, = y(t,). But the curve y is a geodesic.

Therefore the length of the curve y, t €[0,t,], from x, to x, is
)
L = [[Y®]dt = t, = h(H(,)) - h(H(x,)) = h(b) = h(a).
0

For any other curve y,(t), with |y, | =1, starting from the point x, and
ended at a point ) € {H =b} we have

L h(H(ry (0) = h'(Hry(6) dH (1) <

<R (Hy@)vo |- | Xaro@) | =1.

Thus h(H(y,(t)) - h(H(x,)) <t and the length of the curve y, from x, to x;

is larger than the length of the curve y:
th
L, = [t =) = h(HE, @) - h(H(x,) =
0

= h(H(xy)) - h(H(x,)) = h(b) - h(a) = 1, .

Therefore the distance between the level surfaces {H = a} and {H = b},
a,beR" is |h(b) — h(a)|, where the function p is given by (6). Since these le-
vel surfaces are compact sets, the metric g, on D is complete if and only if
the metric on the orbit space D/G induced by the function h is complete too.

Let us calculate the function h for the Kihler metric g, defined by the
operator-function P (3). To this end we consider on G xm the function H

and the vector field }ZH putting
H(g, w) = (w,w) and Xy (g, w) = 2(w'(9),0). (7

It is immediate that H =I1*H. Moreover, H*}NKH = X, (see [3], section 2.4).
Using the fact that the complex structure J, is defined uniquely by the

complex subbundle F(P)c T®(Gx W), we obtain that J,X, =I1,(JpXy),
where

TpXy (g, w) = 2((- RS, w) (9), (R, + SRS, )w) =

wTTw T w

R u2<uwn>+v2<uwu>w)
Wl w(lwl)

Here the operator R, (resp. S, ) is the real (resp. imaginary) part of P, ; si-

milarly, A = u+iv. By (1) and (7)

I ” Xy "2 = H*(Q(JPXH’XH)) = Q(JP}ZH’XH) =

W (w]) + v (w])

w(fwl)

=4 (w,w).
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Thus

L) )I
x(J_

Suppose that the domain D is the whole space T'S™. Then the operator-
function P (3) is smooth on the set W = m if and only if the complex-valued

p*(H) = (8)

functions y and A _Z\V on the real line R are even smooth functions. Thus A
T
is an even function on R and the function y is uniquely defined by A:
cosh (a(r)
yir) = SORLED) (©)
sinh (a(r))
where
a(r) = dr_ a(0)=0
Ar)’

We proved (compare (6) and (8))
Theorem 2. The Kdihler metric g, on the tangent bundle TS"™ defined by

the operator-function P:m — End(m®) (3) is complete if and only if the

function A is an even smooth complex-valued function on R with the positive
real part, the function y is given by (9) and the function

j \/ Rek(r
G

is unbounded as s — .
Suppose now that the domain D is a punctured tangent bundle
T°S™ = TS™ \ S™. Then the operator-function P (3) is smooth on the set

W=m’=m \ {0} if and only if the complex-valued function A on the set
(0,+o) c R is smooth. Using similar arguments as above, we obtain

Theorem 3. The Kdhler metric g, on the punctured tangent bundle TS™

defined by the operator-function P:m — End(m®) (3) is complete if and
only if
(a) the function A is a smooth function on (0,+x) c R with the positive
real part;
(b) the function y is given by (4) and has positive real part;
(c) the function
Vs
his) = |

1

ReA(r)dr
[A(r)]

is unbounded as s > © and s > 0.
Remark. The Kihler metric g, on the punctured tangent bundle T°S™ is

invariant with respect to the Hamiltonian vector field X - of the function
VH (the normalized geodesic flow of the metric g OD S™) if and only if

y(r) =1 (see [3, theorem 12] and [4, subsection 4.3]). Thus the metric g, with
y(r)=r and A(r)=1, constructed by Rawnsley [5] is noncomplete. But by

Theorem 3 there exist complete metrics g, on T°S™ which are invariant with

respect to the normalized geodesic flow of the metric 9 i
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NOBHI IHBAPIAHTHI KEJIEPOBI METPUKU HA KOOOTUYHUX
PO3LIAPYBAHHAX CPEP

Jdas cgpep S™ = SO(n+1)/S0O(n), n =3, onucani sci nogni SO(n + 1) -ineapianmmi xe-
1ePosi MemPUKU g 3 KAHOHIUHOW CUMNACKMUUHOMNO POPMOI0 AK Keaepogoro opmoro HA
xodomuunux poswapysanuaxr T'S™. Ilell onuc 6iON0GIOHUL KeaePOBUX CMPYKMYP
(J,9) (8 xomnaexcroto cmpyxmypoto J ) 6azyemsves Ha memodax meopii CUMempuiuHuL
anzebp JIi. Po3easnHymo maxoxde aHaao2iuHi mMO8HI kKeaeposi cmpyxkmypu (J,g),
THBAPIAHMHT 8I0HOCHO HOPMAAL308AHOZ0 2e00e3UUH020 MOMOKY HA NPOKOAOMOMY KOOO-

muunomy poswapysanui T S™ \ S™ .

NOJIHbIE UHBAPUAHTHBIE K3JIEPOBbl METPUKN HA KOKACATEJIbHbIX
PACCINOEHUAX CPEP

Jas cghep S™ = SO(n+1)/SO(n), n =3, onucanwvt sce noanvie SO(n + 1) -uneapuanm-
Hble KINePOBbL MEMPUKU ¢ C KAHOHUUECKOU cumniekmuueckol opmou 8 kauecmee Ka-

2epoeotl opmbL Ha KoKacameabHblx paccaoerusx T*S™ . dmo onucanue coomeemcmay-
rowuxr Kareposblr cmpykmyp (J,g) (¢ xomnaexkcrhou cmpyxkmypol J) 6asupyemcsa Ha
memodax meopuu cummempuueckux aszedp Ju. Paccmompens. maxdice anasouuHbsle
noansle Kaaeposvl cmpykxmypsvl (J,g), uHBaAPUAHMHBIE OMHOCUMEABHO HOPMAAUI0BAH-

*
HO020 2e00e3uueck0z0 NoOmoKa Ha npoxKoAoMOM KoKacamesbHoMm paccaoeHuu T"'S" \ S™.
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