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COMPLETE INVARIANT KÄHLER METRICS ON COTANGENT 
BUNDLES OF SPHERES 
 

For the spheres = +( 1)/ ( )nS SO n SO n , ≥ 3n , all complete +( 1)SO n -invariant 
Kähler metrics g  with the canonical symplectic form as the Kähler form on the 

cotangent bundle ∗ nT S  are described. This description of the corresponding Kähler 
structure ( , )J g  (with the complex structure J ) is based on the methods of sym-
metric Lie algebra theory. We consider also analogical complete Kähler structures 
( , )J g  which are invariant with respect to the normalized geodesic flow on the 

punctured cotangent bundle ∗ \n nT S S .  
 

 1. Introduction. Consider the sphere nS  with the standard ( 1)SO n + -in-

variant metric nS
g . Using nS

g  we can identify the cotangent and tangent 

bundle to the sphere nS  thus obtaining the canonical symplectic structure Ω  

on nTS . Therefore the metric nS
g  determines the geodesic flow on nTS  with 

the Hamiltonian functionH . 

In the study of ( 1)SO n + -invariant Kähler structures on nTS , Kähler 
structures ( , )J g  with the form Ω  as the Kähler form, i. e. ⋅ ⋅ = Ω ⋅ ⋅( , ) ( , )g J , 
are of particular interest because such structures arise in different problems 
of Riemannian and complex geometry of the (co)tangent bundles. For instan-

ce, the adapted complex structure ( , )A AJ g  on nTS  [8] is the structure of this 

type naturally extending the Riemannian structure nS
g , that is the restriction 

of Ag  to the zero section n nS TS⊂  coincides with the homogeneous metric 

nS
g . Moreover, ( , )A AJ g  is a unique extension such that the function H  is a 

solution of the homogeneous complex Monge – Ampere equation ∂∂ =( ) 0nH  
[2]. Another example of such a structure on the punctured (co)tangent bundle 

\n nTS S  is the structure ( , )S SJ g  [5, 7] which is invariant with respect of the 

Hamiltonian vector field of the function H  (the normalized geodesic flow of 

the metric nS
g  on nS ). 

In our paper [4] we presented a Lie algebraic method of a description of 
all ( 1)SO n + -invariant Kähler structures ( , )J g  on the domains D  of the co-

tangent bundle ∗ nT S  of the n -dimensional sphere nS  with the canonical 
symplectic form Ω  as the Kähler form. The question arises, for which struc-
tures ( , )J g  the metric g  on D  is complete. This problem is solved in the pa-
per. Our method of the proof of the completeness is motivated by a paper of 
G. Patrizio and P. Wong [6], where there was proposed a proof method based 
on the existence of solutions of the homogeneous complex Monge – Ampere 
equation and associated the Monge – Ampere foliation. In our case, generally 
speaking, such a solution does not exist. But using the fact that the (co)tan-

gent bundle nTS  is a cohomogeneity one manifold, that is there are 

( 1)SO n + -orbits in nTS  which are hypersurfaces, we generalize the method 
of Patrizio and Wong and apply it for all invariant Kähler structures ( , )J g . 
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We find all Kähler structure ( , )J g  on the tangent bundle or the punctured 

tangent bundle of nS  with the complete metric g  (Theorems 2 and 3). 

Moreover, we show that the Souriau – Rawnsley metric Sg  is non-complete 

but there exist complete Kähler structures ( , )J g  on the punctured tangent 

bundle of nS  invariant with respect to the normalized geodesic flow of the 
metric nS

g . 

2. Invariant Kähler structures. In this subsection we shall give an expo-
sition of the results of [4]. We will describe all invariant Kähler structures on 

the domains D  of the cotangent bundle to sphere ∗ nT S  in terms of some 
operator-function P . 

Let = /M G K  be a symmetric space with a compact connected Lie group 
G  and a closed subgroup K . Let g  and k  be the Lie algebras of the groups 

G  and K  respectively. There is a positive definite Ad G -invariant bilinear 

form ,  on g  and a subspace ⊂m g  such that = ⊕g k m  is the Ad K -in-

variant direct sum decomposition of g  and ⊥k m . Moreover ⊂,k m m[ ]  and 

⊂,m m k[ ] . The restriction , | m  determines G -invariant Riemannian met-

ric Mg  on = /M G K . The metric Mg  identifies the cotangent bundle ∗T M  

and the tangent bundle TM  and thus we can also talk about the canonical 

1-form θ  on TM . The form θ  and the symplectic form Ω = θ
def

d  are G -inva-
riant with respect to the natural action of G  on TM . 

Consider the trivial vector bundle G × m  with the two commuting Lie 
group actions on it: the left G -action, : ( , ) ( , )hl g w hg w , and the right K -

action − 1: ( , ) ,Ad ( )kr g w gk k w( ) . Let : KG Gπ × → ×m m  be the natural 

projection. It is well known that KG × m  and TM  are isomorphic. Using the 

corresponding G -equivariant diffeomorphism : KG TMϕ × →m , ( , )g w[ ]  


0

exp ( )d g tw K
dt

 and the projection π  we define the G -equivariant sub-

mersion : G TMΠ × →m , Π = ϕ π . Denote by θ  the 1-form ∗Π θ  and by Ω  

its differential θd . Let ξ  be the left-invariant vector field on the Lie group 

G  defined by a vector ξ ∈ g . 

The 2-form Ω  on the manifold G × m  has the form [4]  

  Ω ξ ξ = ξ − ξ − ξ ξ
( , ) 1 1 2 2 2 1 1 2 1 2( ( ), , ( ), ) , , , ,g w g u g u u u w( ) ( ) [ ]  , (1) 

where ∈ ∈,  g G w m , ξ ξ ξ ∈1 2, , g , ∈ =1 2, , wu u u Tm m . The kernel ⊂  

⊂ ×( )T G m  of the 2-form Ω  is generated by the global (left) G -invariant 

vector fields Lζ , ζ ∈ k  on G × m , ζ = ζ ζ( , ) ( ), ,L g w g w( )[ ] . 

Let D  be an open connected G -invariant subset of TM . Denote by W  a 

unique Ad K -invariant open subset of m  such that −Π = ×1( )D G W . Let 

Eqv ( )W  be the set of all smooth K -equivariant mappings → : End ( )A W m , 

ww A , i. e. for which  

  − = ∈ ∈  1     on     for all    ,   k w Adkk
Ad A Ad A w W k Kw m  .  (2) 
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Denote by Alm ( )W  the set of all maps ∈ Eqv ( )P W  such that the opera-

tor :wP →m m   and its real part = →Re :w wR P m m  are nondegenerate 

for each w W∈ . Such a K -equivariant mapping ∈ Alm ( )P W  determines a 

complex (left) G -invariant subbundle ( ) ( )P T G W⊂ ×   generated by (left) 

G -invariant vector fields Lξ , ξ ∈ m , and Lζ , ζ ∈ k  on G W× , where  

  ξ = ξ ξ ζ = ζ ζ( , ) ( ), ( ) ,      ( , ) ( ), [ , ]L L
wg w g iP g w g w( ) ( )  . 

The subbundle ( )P  is (right) K -invariant by (2) and because the vector 

fields Lζ , ζ ∈ k , span the (right) K -invariant subbundle (kernel)  . Therefo-

re ∗= Π
def

( ) ( ( ))F P P  is a well-defined (smooth) complex subbundle of T D  

( ( )P⊂  ). Moreover, since + = ×( ) ( ) ( )P P T G W   and =( ) ( )P P   

=   we have + =( ) ( )F P F P T D  and =( ) ( ) 0F P F P . In other words, the 

mapping P  determines an almost-complex structure PJ  on D TM⊂  with 

( )F P  as the subbundle of its (0,1) -vectors: Γ = + ∈ Γ( ) , ( )PF P X iJ X X TD{ } . 

Let Pg  denote a (2,0) -tensor on TD , where = Ω
def

1 2 1 2( , ) ( , )P Pg Y Y J Y Y  for 

vector fields 1 2,Y Y  on TD . The almost-complex structure PJ  is an almost 

Kähler structure with the Kähler form Ω  if Ω =( ( ), ( ) 0F P F P( )  and Pg  is a 

Riemannian metric on TD . Such a structure is a Kähler structure if the sub-

bundle ( ) ( )F P T TD⊂   is involutive, i. e. is closed under the Lie bracket 

[ ( ), ( )] ( )F P F P F P⊂ . Since ⋅ ⋅ = Ω ⋅ ⋅( , ) ( , )P Pg J  this structure will be denoted by 

the pair ( , )P PJ g  or, Ω( , )PJ . 

Let G  be the Lie group ( 1)SO n +  and K  be its subgroup isomorphic to 

( )SO n . Let ,  be the normalized trace form − 1 Tr
2

 on = +( 1)so ng  associa-

ted with the standard representation of ( 1)so n + . Put = =( ) ,r w w w w . 

Denote by O  some open connected subset of [0, )+∞  such that −= 1( )O r W . 
Now we can describe all ( 1)SO n + -invariant Kähler structures on ⊂D  

⊂ TM  with the Kähler form Ω . To this end consider the operator-function 

→: End ( )P W m :  

  
λ − ψ

ξ = ψ ξ + ξ ξ ∈ ∈
2

( ) , ,       ,      w

w w
P w w w w W

r
m

( ) ( )
( ) ,  (3) 

where ψ λ →,  : O   are smooth functions. Remark that the one-dimensional 

complex vector space w  and its orthogonal complement ⊥w  in m  are 

the eigensubspaces of wP  with eigenvalues λ w( )  and ψ w( )  respectively.  

Theorem 1 [4]. Let = +( 1)G SO n  and let K  be its subgroup isomorphic 
to ( )SO n . Let ( , )J Ω  be a G -invariant Kähler structure on the domain ⊂D  

⊂ ( / )T G K . If ≥ 3n  then = PJ J , where the smooth mapping →: End ( )P W m  

has form (3). If 2n ≥  then the smooth mapping P  (3) defines a Kähler struc-

ture on D  if and only if real parts of the functions , :w w Wλ ψ →( ) ( )   

are positive and ( )rψ  is given by formula  

  
cosh ( ) ( ) 1( ) ,     where    ,     or    ( )

( )sinh ( )

r d r
r r r r

dt rr

α αψ = = ψ =
λα

( )
( )

.  (4) 
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3. Complete Kähler metrics Pg  on nTS  and 0 nT S . We continue with 
the previous notation but throughout this subsection it is assumed that 

= +( 1)G SO n  and = ( )K SO n . 

To find all complete metrics Pg  on nD TS⊂  note that the tangent space 
nTS  is a cohomogeneity one manifold, i. e. the Lie group ( 1)SO n +  acts on 

this manifold with a codimension one orbit. The zero section n nS TS⊂  is a 
singular orbit. With the exception of this one case, all ( 1)SO n + -orbits in 

nTS  are hypersurfaces (principal orbits). The geometry of cohomogeneity one 
manifolds is now well understood. But we will use only one fundamental fact 
on the structure of these manifold [1]: 

the unit smooth vector field U  on nTS  which is Pg -orthogonal to each 

( 1)SO n + -orbit on nTS  is a geodesic vector field, i. e. its integral curves 

are geodesics of the metric Pg . 

We describe the vector field U  in terms of some Hamiltonian vector field. To 

this end consider the Hamiltonian function : nH TS →   associated with the 

invariant metric nS
g  on the sphere nS  (induced by the form ,  on m ). 

Each G -orbit in nTS  (principal or singular) is a level surface of H . We claim 

that the vector field P HJ X  on nD TS⊂ , where HX  is the Hamiltonian vector 

field of H , is Pg -orthogonal to each G -orbit in D . Indeed, since the function 

H  is G -invariant =( ) 0dH Y  for each vector field Y  tangent to G -orbits in 
D . Then by definition of a Hamiltonian vector field we have  

 = = Ω − =0 ( ) ( , ) ( , )H P P HdH Y X Y g J X Y . 

Since the operator ( )PJ x  is orthogonal with respect to the form ( )Pg x , 

we have = /P H HU J X X , where  

  = = = Ω
def

2 2 ( , ) ( , )P H H P H H P H HJ X X g X X J X X . 

Moreover,  

  = Ω − = =( ) ( , ) ( , ) /H P P H P H H HdH U X U g J X J X X X ,  (5) 

and for any vector field Z  on D   

  = Ω − = ≤ ⋅( ) ( , ) ( , )H P P H HdH Z X Z g J X Z X Z . 

The function HX  on D  is G -invariant so that = ( )HX p H  (is a function 

of H ) for some smooth positive function p . 

Using the vector field P HJ X  and the method of [6] we shall calculate the 

distance between level sets =H a{ }  and =H b{ }  in D  with respect to the 

metric induced by Pg . Let γ = γ( )t , ∈ 0,t T[ ] , be the integral curve of the 

vector field = /P H HU J X X  with the initial point ∈ =ax H a{ } . There 

exists a function h  on some subset of   such that the function γ( ( ))h H t( )  is 

linear in t . It is easy to verify that  

  = τ
τ∫ 1( )

( )

s

a

h s d
p

,  (6) 

because by (5) 
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  ′ ′ ′γ = γ γ = γ γ =( ( )) ( ( )) ( ) ( ( )) ( ( )) 1H
d h H t h H t dH t h H t X t
dt

( ) ( ) ( ) ( ) . 

Suppose that ∈ =bx H b{ }  and = γ( )b bx t . But the curve γ  is a geodesic. 

Therefore the length of the curve γ , ∈ 0, bt t[ ] , from ax  to bx  is  

  γ
′= γ = = − = −∫

0

( ) ( ) ( ) ( ) ( )
tb

b b al t dt t h H x h H x h b h a( ) ( ) . 

For any other curve 0 ( )tγ , with ′γ =0 1 , starting from the point ax  and 

ended at a point ∈ =0
bx H b{ }  we have  

  ′ ′γ = γ γ ≤0 0 0( ( )) ( ( )) ( )d h H t h H t dH t
dt

( ) ( ) ( )  

 ′ ′≤ γ γ ⋅ γ =0 0 0( ( )) ( ( )) 1Hh H t X t( ) . 

Thus γ − ≤0( ( ) ( )ah H t h H x t( ) ( )  and the length of the curve 0γ  from ax  to 0
bx  

is larger than the length of the curve γ :  

  γ
′= γ = ≥ γ − =∫

0

0 0
0 00

0

( ) ( ( ) ( )
tb

b b al t dt t h H t h H x( ) ( )  

 γ= − = − =0( ) ( ) ( ) ( )b ah H x h H x h b h a l( ) ( ) . 

Therefore the distance between the level surfaces =H a{ }  and =H b{ } , 

,a b +∈   is −( ) ( )h b h a , where the function p  is given by (6). Since these le-

vel surfaces are compact sets, the metric Pg  on D  is complete if and only if 

the metric on the orbit space /D G  induced by the function h  is complete too. 

Let us calculate the function h  for the Kähler metric Pg  defined by the 

operator-function P  (3). To this end we consider on G × m  the function H  

and the vector field HX  putting  

  = = ( , ) ,          and         ( , ) 2( ( ),0)HH g w w w X g w w g .  (7) 

It is immediate that ∗= ΠH H . Moreover, ∗Π =
H HX X  (see [3], section 2.4). 

Using the fact that the complex structure PJ  is defined uniquely by the 

complex subbundle ( ) ( )P T G W⊂ ×  , we obtain that ∗= Π ( )P H P HJ X J X , 
where  

  − −= − + = 1 1( , ) 2 ( ) ( ), ( )P H w w w w w wJ X g w R S w g R S R S w( )  

  
ν µ + ν = − µ µ 

2 2

2 ,
w w w

w w
w w

( ) ( ) ( )
( ) ( )

. 

Here the operator wR  (resp. wS ) is the real (resp. imaginary) part of wP ; si-

milarly, λ = µ + νi . By (1) and (7) 

  ∗ ∗Π = Π Ω = Ω =  2 ( , ) ( , )H P H H P H HX J X X J X X( )  

  
µ + ν

=
µ

2 2

4 ,
w w

w w
w

( ) ( )
( )

. 
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Thus  

 
λ

=
λ

2
2 ( )
( ) 4

Re ( )

H
p H H

H
.  (8) 

Suppose that the domain D  is the whole space nTS . Then the operator-
function P  (3) is smooth on the set =W m  if and only if the complex-valued 

functions ψ  and 
2r

λ − ψ
 on the real line   are even smooth functions. Thus λ  

is an even function on   and the function ψ  is uniquely defined by λ :  

  
α

ψ =
α

cosh ( )
( )

sinh ( )

r
r r

r

( )
( )

,  (9) 

where  

 α = α =
λ∫( ) ,           (0) 0
( )
drr
r

. 

We proved (compare (6) and (8)) 

Theorem 2. The Kähler metric Pg  on the tangent bundle nTS  defined by 

the operator-function : End( )P →m m  (3) is complete if and only if the 
function λ  is an even smooth complex-valued function on   with the positive 
real part, the function ψ  is given by (9) and the function  

  
λ=

λ∫
0

Re ( )
( )

( )

s
r

h s dr
r

 

is unbounded as s → ∞ .  

Suppose now that the domain D  is a punctured tangent bundle 

=0 \n n nT S TS S . Then the operator-function P  (3) is smooth on the set 

= =0 \ 0W m m { }  if and only if the complex-valued function λ  on the set 

(0, )+∞ ⊂   is smooth. Using similar arguments as above, we obtain 

Theorem 3. The Kähler metric Pg  on the punctured tangent bundle 0 nT S  

defined by the operator-function →: End( )P m m  (3) is complete if and 
only if 

(a) the function λ  is a smooth function on (0, )+∞ ⊂   with the positive 
real part; 

(b) the function ψ  is given by (4) and has positive real part; 
(c) the function  

  
λ

=
λ∫

1

Re ( )
( )

( )

s r dr
h s

r
 

is unbounded as s → ∞  and 0s → .  

Remark. The Kähler metric Pg  on the punctured tangent bundle 0 nT S  is 

invariant with respect to the Hamiltonian vector field 
H

X  of the function 

H  (the normalized geodesic flow of the metric nS
g  on nS ) if and only if 

ψ =( )r r  (see [3, theorem 12] and [4, subsection 4.3]). Thus the metric Pg  with 

ψ =( )r r  and λ =( ) 1r , constructed by Rawnsley [5] is noncomplete. But by 

Theorem 3 there exist complete metrics Pg  on 0 nT S  which are invariant with 

respect to the normalized geodesic flow of the metric nS
g .  
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ПОВНІ ІНВАРІАНТНІ КЕЛЕРОВІ МЕТРИКИ НА КОДОТИЧНИХ 
РОЗШАРУВАННЯХ СФЕР 
 
Äëÿ ñôåð ( 1)/ ( )nS SO n SO n= + , 3n ≥ , îïèñàí³ âñ³ ïîâí³ ( 1)SO n + -³íâàð³àíòí³ êå-
ëåðîâ³ ìåòðèêè g  ç êàíîí³÷íîþ ñèìïëåêòè÷íîþ ôîðìîþ ÿê êåëåðîâîþ ôîðìîþ íà 

êîäîòè÷íèõ ðîçøàðóâàííÿõ nT S∗ . Öåé îïèñ â³äïîâ³äíèõ êåëåðîâèõ ñòðóêòóð 
( , )J g  (ç êîìïëåêñíîþ ñòðóêòóðîþ J ) áàçóºòüñÿ íà ìåòîäàõ òåîð³¿ ñèìåòðè÷íèõ 

àëãåáð Ë³. Ðîçãëÿíóòî òàêîæ àíàëîã³÷í³ ïîâí³ êåëåðîâ³ ñòðóêòóðè ( , )J g , 
³íâàð³àíòí³ â³äíîñíî íîðìàë³çîâàíîãî ãåîäåçè÷íîãî ïîòîêó íà ïðîêîëîòîìó êîäî-

òè÷íîìó ðîçøàðóâàíí³ \n nT S S∗ . 
 
ПОЛНЫЕ ИНВАРИАНТНЫЕ КЭЛЕРОВЫ МЕТРИКИ НА КОКАСАТЕЛЬНЫХ 
РАССЛОЕНИЯХ СФЕР 
 

Äëÿ ñôåð ( 1)/ ( )nS SO n SO n= + , 3n ≥ , îïèñàíû âñå ïîëíûå ( 1)SO n + -èíâàðèàíò-
íûå êýëåðîâû ìåòðèêè g  ñ êàíîíè÷åñêîé ñèìïëåêòè÷åñêîé ôîðìîé â êà÷åñòâå êý-

ëåðîâîé ôîðìû íà êîêàñàòåëüíûõ ðàññëîåíèÿõ nT S∗ . Ýòî îïèñàíèå ñîîòâåòñòâó-
þùèõ êýëåðîâûõ ñòðóêòóð ( , )J g  (ñ êîìïëåêñíîé ñòðóêòóðîé J ) áàçèðóåòñÿ íà 
ìåòîäàõ òåîðèè ñèììåòðè÷åñêèõ àëãåáð Ëè. Ðàññìîòðåíû òàêæå àíàëîãè÷íûå 
ïîëíûå êýëåðîâû ñòðóêòóðû ( , )J g , èíâàðèàíòíûå îòíîñèòåëüíî íîðìàëèçîâàí-

íîãî ãåîäåçè÷åñêîãî ïîòîêà íà ïðîêîëîòîì êîêàñàòåëüíîì ðàññëîåíèè \n nT S S∗ . 
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