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A PRIORI ESTIMATES FOR PERIODIC LINEAR ELLIPTIC
FIRST-ORDER SYSTEMS

We prove the wuniqueness and the continuous dependence results for initial-
boundary periodic problem for the first-order semi-linear elliptic systems in the
whole scale of Sobolev spaces of periodic functions. We derive a priori estimates
with respect to the spaces of solutions and right-hand sides ensuring the optimal
regularity trade-off for our problem.

Introduction. We investigate a periodic-Dirichlet problem for a first-or-
der elliptic system with discontinuous coefficients. Specifically, in the domain

{(a, ) | 0<x<l —o<t<ow}, we consider system
O, u + A0, u+ a(x)u + b(x)v = f(x,t),

0,v — o, v+ c(x)u +d(x)v = g(a,t), (1)
subjected to periodic conditions

u(x,t +T) = u(x,t),

v(x,t+T) = v(x,t) (2)
and reflection boundary conditions

u(0,1t) = rv(0,1),

v(1,t) = nu(l,t). (3)

The unknown functions u and v and all the data in (1) are complex func-
tions; A, u, 7, and 71, are complex constants, and T > 0. The functions f and

g are assumed to be T -periodic in ¢t and a, b, ¢, d € L”(0,1).

Our goal is to investigate uniqueness and continuous dependence of solu-
tions, where we deal with spaces of solutions V' and spaces of right hand
sides WY in (1) providing us with an optimal regularity trade-off of the fol-
lowing kind. From one side, for all (u,v) € V' the left-hand side of (1) belongs
to W' and, from the other side, for all (f,g) € W" solutions to (1)—(3) belong

to V7. Similar results for the first-order hyperbolic system of kind (1) with
A =pn =1 subjected to conditions (2) and (3) is obtained in [2, 3]. It contrasts to

our elliptic case in the sense that the optimal regularity trade-off for the hy-
perbolic problem is attained in the pair of spaces (V',W") where V' is a sub-

space of V' which does not coincide with V?. This means that elliptic opera-
tors are «more regular» than hyperbolic operators, namely, that they improve

the regularity of the right hand side (f,g) better than the hyperbolic opera-

tors do this. An explanation of this phenomenon is that hyperbolic operators
give «non-uniform» regularity in all directions on the real plane: In the so-
called characteristic directions singularities of the derivatives of the unknown
functions cancel out each other, while in all other directions they do not.

In the present paper we derive a priori estimates in the whole scale of
Sobolev spaces of periodic functions and, as a consequence, obtain the uni-
queness and the continuous dependence results.

2. Spaces of solutions and right-hand sides. We here introduce two

scales of Banach spaces V' (for solutions) and W' (for right-hand sides
in (1)) with a scale parameter y € R, consisting of complex valued functions.
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We will achieve the following properties:

e elements of V' satisfy (2) and have traces in & and elements of W"
satisty (2);

e elements of W' allow discontinuities in x;
e for any y € R, the pair (V¥,W") gives an optimal regularity for (1)—(3).
We first introduce Sobolev spaces of T -periodic functions (see, e.g. [1, 4, 5]).
Let ST = R/TZ. Define the (Banach) space ck (ST) of k-times continuously
differentiable functions on ST by
C* ST ={f:8" > C|foqeC'®)},
where q 1is the quotient map q:R — R/TZ. For the (Freshet) space of

smooth functions we hence have

c?(sT) = N ck(s™).
k>1

As a topological vector space this is a projective limit of ck (ST) with pro-
jections being the natural inclusions. Now the space of distributions on ST is
defined as the ascending union (colimit) of duals of the spaces Ck(ST) :

c*(ST)" = L}gck(sT)* = colim C*(ST)".

k—o
We are now prepared to define Sobolev spaces of periodic functions: Set
o =21/T and @, (t) = e and define

© * 2
HUST) = {u e T I ully g, -

-1 2 2

=T Z 1+ k%) |[u’(P—k]C°°(ST)| < oo},
keZ

where [ -,- ]Coo(ST) :C* STy xC*(ST) > C is the dual pairing.

Given (¢ € N, denote

H" = H'(0,; H"(ST)) = {u(-,t) :(0,1) —»

¢ 1
> HESulf,, =Y a+k) Y |

kel m=0

" ’
d—muk(x) dx < OO},
X

where
keZ, (4)

-1
we (@) = T [ul@,), 0 ] g -

denote the t -Fourier coefficients of u € H"".

Finally, for each y € R we define the spaces W' and V' by

W' = H" x H*
and

VY =W N [HY x HYY].

These spaces will be endowed with norms

o)y =lullo, +l1v 1,
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and

2 2 2 2 2
T B, =l Py #1010y + 1l +10l,,-
We now collect useful properties of the function spaces introduced above.

Lemma 1 [2]. W' s a Hilbert space.
Define a Euclidian space

E = {(uk(x))kez | u,(x) € L*(0,1)  for each k,

Z(l + kz)V ” Uy, ||i2(031) < o0 }
keZ
with inner product

1
< (U ) s (wk)k> = Z(l + kz)yjuk(x)wk(x)dx.
keZ 0
Lemma 2 [2]. E7 is a Hilbert space.
Lemma 3 [2]. The map u — (u,(x)),., S a Hilbert space isomorphism
from H™ onto E.

Corollary 1. For any u,v € HYY there exist unique sequences (U ).z

(V) ez TN Hf(O,l) given by (4) such that the series
D Wk, D V0 ()

keZ keZ

converge, respectively, to u and v in HY. Vice wversa, for any sequences
(W ez » (U )peg 0 H'(0,1) such that

DA+ | u, ||24(071) <o and Y (1+k*) v, ”?1‘(0,1) <
kel keZ

there exist unique u,v € H" with uw, and v, being their t-Fourier coeffi-
cients.

In what follows, we will identify distributions w € H &Y and sequences
(u,())yez in H [(0,1) corresponding to these distributions by Corollary 1.

Lemma 4. Let (u,v) € V'. Then for any x €[0,1] the traces u(x,-) and

v(x,-) are distributions in H' (S T) and satisfy the estimate

2

2
" (u(xi )7 v(xi')) ||[HY(ST)]2 <C " (u,’l)) "Vy )
where C does not depend on x, u, and v.

P r oo f The corollary follows from the continuous embedding
VY o HY(0,1;H'(ST)) & C(0,1;H"(ST)). 0
3. A priori estimates. We here give conditions ensuring the uniqueness
and the continuous dependence of generalized solutions to (1)—(3).
Definition 1. A function (u,v) € V' is called a strong generalized solution
to the problem (1)—(3) if it satisfies (1) in H% and (3) in HV(ST).
Assume that
ReA >0, ImA >0, Rep >0, Imp>0 (6)
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and
Rel = Reyp. (7)
We can state and prove our result as well for some other signs of ReA, ImA,

Rep, Imy, say, if these numbers are all negative. However, some restriction

on these signs distribution is necessary, say, our argument does not work if
the signs of ReA ImA and Rep Imp are different. What about the condi-

tion (7), it can be removed at all and imposed only to simplify technicalities.
Let §, be an arbitrary fixed real in the range 0 < 3§, <1 and set

p =38, —log|n|, q = log|r,| - 3,. (8)
Fix N € N so large that the following estimates are fulfilled

[Imale +|Imd]|g +| b max {1,e?* 7900} 4
x€[0,1]

- N
tllele max {1,700} < B, ©)

ol (L+1211p=al)+[dlye +[ bl max {1,e™ 790} 4

+l el max {1,eP**907 DY < NRe ), (10)

(ReA+ImA+Imp)*(ImA +Imp + o)
Re A min {ImA,Impu}

(lale @+ [21p-a)+
el d e +[ble max {Le P00 4

_ No?
#lely max {167 x)}j < No” (11)

To formulate the main result of this section, we will make the following
assumption about the coefficients of the differential equations and the

reflection coefficients 7, and 7 : For all k in the range |k| < N

(I ol + a7 el ) [1+ @+ fr A+

+lr DA Jexp {2027 [+ [u @+ al= +dll=)} <1, (12)

where
X

a(x) = [ a(y)dy, 3(x) = [ d(y)dy,
0 0

A, = eu’l(ikarS(l)) _ Torle—k’l(ikmﬂx(l)).
Theorem 1. Let y € R be a fixed real, a,b,c,d € L”(0,1), and (f,g9) € W".
Assume that |r)| <1, |n| <1, and the estimate (12) is fulfilled. If for all k in

the range |k| < N
1
|rym| # exp {— ko(Ah +up™t) + j [Re (ar™') + Re(du™)] dx} , (13)
0

then every strong generalized solution to the problem (1)—(3) satisfies the a
priory estimate

I (w,0) yr < C(f,9) [y (14)
for some C > 0 not depending on (f,g).
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Proof Due to the assumptions imposed on the functions f and g,
they allow the following series representations:

> fers D 9P (15)

keZ keZ
where f, (x) = T f(x, ‘)7(P_k]cw(
fier 0 € L2(0,1),

Z(l + k%) | fie () "?}(0,1) <%, z(l + k%) | gy () ||2LZ(0,1) <, (16)
keZ keZ

ST and g, (x) = T_l[g(x, ')’(P—k]cw(sT)' Clearly,

and the series (15) converge to f and g in H%Y. Assume that (u,v) is a
strong generalized solution to the problem (1)—(3). Represent u and v as se-
ries (5). Hence u,,v, for each k € Z are in Hl(O,l) and satisfy the boundary
value problem

Ay, = f(x) - (a(x) + ko), —b(x)v,,

wo, = —g,. (x) + (d(x) + ikw)v, + c(x)u,, (7)

Uy, (0) = 750, (0), v (1) = ru, (1). (18)
Our aim is to show that

> W R g @) [z, + 1000 2] < 0 (19)

keZ

kZZ 1+ k2)y[ " w () ”iZ(o,n + " vy (x) "?}(0,1)] < 0. (20)

The estimate (20) follows from (16), (17), and (19). It remains to prove (19).

We will distinguish three cases.
Case 1. The estimate (19) is fulfilled with k> N in place of k € Z. Fix
k = N. Multiplying the equations of the system (17) by u, and v, , respecti-

vely, and then subtracting the resulting equalities and their complex con-
jugations, we arrive at the system

1 1
ReAl (wu, —u,u, )de +iImA| (u,u, +u,u, )dx +
e — U Ky + Uy
0 0
1 1 B
+2iJ(Ima+km)|uk|2dx=j(fkﬁk—fkuk)dx—

0 0

1
- [ (b, — b, B, ) dar,
0

1 1
Re XI (o0, — v, 0, ) dor + 1 Im uj (v, vy, + 0,0, ) dx —
0 0

1 1
- 2ij (Imd + ko)|v, |* da = J (G0, — 9,0, ) dx +
0 0

1
+I(c§kuk —cvu, )dx. (21)
0

Subtraction of the second equality of (21) from the first one and

_ik_1+"/

multiplication of the resulting equality by o

yields
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1 1+ 1
2k2+yj(|uk|2 +|v ) doe = %[_ ZJ (tmafu, | + Imd|v, ') dz +
1 0
1
+iRel| (@), - i, + v, - Bv,) dx -
0

1 1
—Im kj (uuy, + uuy ) de + Im MJ (v, 0, + V0 ) dx —
0 0

1
- 4 (fetly, = fw = 90y + Gpvp, ) doe +
0

1
+ i (bitwy, — b B, + et — v, ;) dx} : (22)
0
We will make use of the following simple inequalities for m,g,,K > 0:

1
lclJ'VJ-|Ima|uk|2 +Imd|vk|2|d.7c <
0

k2+y L 1
<z [||Irna||LwJ|uk|2 dx+||Imd||Lmj|vk|2dx ,
0 0

1 1 1
k1+yj|u;€ﬁk|dx < k—ﬂiﬂuuz dx+k2+7mj.|uk|2 dax,
0 0 0

1 1 1
K[ | iy | de < I:—yj|fk|2 dx + ok [ u, [* de,
0 09 0

1 9ay /1 1
k1+vf [bu, v, |dx < || b | ICZ_KY( j |u,, [P da + j v, |° dxj , (23)
0 0 0

the latter inequality being true for all k> K >0. We estimate all other
integrals in the right-hand side of (22) similarly. Set

_ ()]
" 8(ReA+ImA+Imup)’

We will consider K > N, where N was fixed to satisfy (9)—(11). Then, on the
account of (9), (22), and (23), we are able to choose g; so small that the

m

following estimate is true:

1
212 [ (|w ! + v, ) dae <
0

,16(Red +ImA +Imp)°

<k
o>

1
j(|u;€|2 +|v;c|2)dx+
0

1

+CK [ (| £ ] + g, ') da, (24)
0

where C > 0 is a constant which depends on g, but neither on k nor on K.
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To estimate the first summand in the right hand side of the latter in-
equality, we multiply equations of the system (17) by u, and v, respective-
ly, and then sum up the resulting equalities with their complex conjugations.
Combining this with the following equalities, obtained by integration by parts,
and with the boundary conditions (18):

1
[ @, + ) de = |, OF = | [0, O,
0

(Ekvllc + vkl_)}’c)dx = |7"1|2 |uk(1)|2 - |Uk(0)|2,

O C—y

we get
Re (1= ) weMF + 1= ) o OF ]+
1 1
+ 2J (Rea|w, | + Red|v, |*) da + iImkj (wuy, — u ) dac +
0 0
1 1 3
+1Im uj (v,.0), — Vv ) dx = j (fiuy + fru, ) dx +
0 0
1 —_—
(9,5, + G0, ) da —j (b, v, + bu, B, ) dx -
0

+

S S———

(ev,u, + v i, ) da. (25)

O C—y

For the third and the fourth summands in the left hand side we will use the
representation obtained from the equations of the system (17) multiplied by
ﬁ;c and 5};, respectively. More precisely, we make of use the following equa-
lities:
1 1 _ 1
2Re [ u [ dx = [ (£, + fou,) da - [ (e, + @) da
0 0 0
1 _ 1
- J (bv,uy, + bou;, ) dx + ik(of (wuy, —u ) da,
0 0
1 1 1 _
2Re [ |v|" da = [ (9,7}, + Gyv) dx + [ (dv,B), + dv,v) dx +
0 0 0
1 1
+ j (cu, v, + ¢ upvy ) dae + ilccoj (v, 0, — Vv ) dex.
0 0

Combining this with (25), we arrive at

KT Red [(1=|n ) |u OF + (1= |7 )]0, O)F ] +

J2RedImA ¢, J2ReAImu i 2,
+k — £|uk| dx +k — £|vk| dx =

1
= —2k1”j (Rea|w,|* + Red|v,|*) dx +
0
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1
L4y - 7 = =
+k j (fiwy, + frug + 9,05 + p0, ) dix —
0
1
4y [ (he o= = = =
-k j (bu, v, + bu, vy, + cvu, + cvu, ) de —
0

ImA
)

_kY

1
j— ’ — — — 7 — !

j (—awu;, — au, uy +bou, +bvu,)de +

0

1
Im T N —
+ k7 R j (dv, o), + dv, v, + cu, vy + cuy vy, ) da —
0

— T Imp g,
-k —j (fiuy + fuy,)dx + k' TH.[ (9,0, + gpvp)dx. (26)
0 0
Since || <1 and |r|<1, the sum of the boundary terms is positive. We will

drop them in the subsequent estimates. In addition to the above simple
inequalities (23) (but now with a new ¢) we will use the following estimates.

Given ¢; >0 and K >0, for all k 2 K we have
1 1 1
[15, | de < L [|£,[* da + & [ |, de,
0 oy 0

1 1 1
— k" r2 ky+2 2

k7£ law,uy |dx < | a - [ﬁ'[l; luy | dac + ﬁ.{[ |, |* da |

If K> N, then, on the account of (10), the equality (25) yields

- 2" 2(ImA + Im p + ©) [HbH .

~ KReAmin{ImA,Im p} L

1
[y + oy ] da
0

1
el +lals +1dl +Keq | [ (uf + o) dz +
0

1

+CK' [ (£ ] +1g, ) da, (27)
0

which is true for some C > 0 depending on ¢, but neither on k nor on K. As
above, we consider K> N. We are now able to choose g, so small that the

claim is a consequence of (11), (24), and (27). Therewith we are done.
Case 2. The estimate (19) is fulfilled with k < —-N in place of ke Z. We
start from the observation that (u,,v,) is a solution to the problem (17), (18)

px+q(

. 1— . . .
it (w,,v,), where e 9:)wk =u;, and p,q € R are fixed reals, is a solution

to the problem (for negative k)

hawy, = e PEIE () — (a(@) - i|k| 0 + M(p — @) wy, — e P (),
wor, = — g, (x) + (d(x) - ilk|o) v, +eP* 1 Pe(x)w, (28)

ew, (0) = 1y, (0),
v, (1) = nePw, (1). (29)
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The proof of the claim follows the same scheme as the proof of Claim 1. We
indicate only the differences. Let us write down analogues of the equalities

(22) and (26) with respect to functions w, and v, satisfying (28), (29):

1 Loy | L
207 [ (|, ! +|o ) dz = ELZ| o[ (tmauw, [ + m o, ) da +
0 0
1
+1Re kj (W wy, — W Wy, + VLV, — D0y ) dx —
0
1 1
—-Im kj (w,wy, + w,w,, )dx +Im MJ (v, 0, + V0, ) dx —
0 0
B 1
(f 0, — fw, ) e PE 9075 goe — zf (9,0, + v, ) dac +
0

-1

+ 1| (biwv, —bw, v, ) e P 1) dp +

S R S

1
+ J (et w,, — v, vy, ) eP* 1) doe
0
and

[T Re A[(1 = |n, " ) [w, (O] + (1 = |m " e79) [0, (O] -
2ReAImA }, , 2 2Rek1rnu1 )2
_ Y _ vy =
o 2RI [ oy P e — [l SRR [ P e

1
= —2|Ic|1+y j [(Rea+Rek(p—q))|'wk|2 +Red|vk|2]d.7c+
0

1
+ Rl _[ (/i@ + frawy,) e P90 1 6,5 + Gy ] de —
0

1
— k| J [(bi, v, + bw, D, )e PF912) 4
0
+ (cﬁkwk + E”kﬁ’k) epx+q(1fx)] da —
Im ) ¢ B
[kl =5 [ (= (@ + p — @) D), — (@ + A(p — @) w, i, +

0

+ (bv, iy, + b w, ) e P*I)) doe +
1
I — - =
+|k[ %J‘ (dv, vy, + dv,v,, + (cw, D), + civ, vy, )eP* 11 ~7)) de —
0

1
I =N —pr—a(l—
Il TR ] (5, + By ) e P dr 4

0

1
|k|y J 91D — Gicvrc) dax -
0
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Take p and q to be defined by the formula (8) for an arbitrary fixed
0 <8, < 1. This clearly forces
(1= 1" ) w M + (1= [r[* ™) 0, (O < 0.

Further we use similar argument as in the proof of Claim 1. The claim follows.
Case 3. The estimate (19) is fulfilled with |k|< N in place of ke Z. It

suffices to show that, given k in the range |k|< N, u, € H'(0,1).

By a straightforward calculation, the problem (17), (18) has in H'(0,1)
the following equivalent integral representation:

xX
w (@) = e o sa@) (%J & oUW (£ (1) b (y)o, ) dy +
0

r
+ A—Owk(fk -bv,,—g, + cuk)j ,
k
x
vk(x) — oM L (ikox+8(x)) ( iJ‘ - 1(ikmy+5(y))(_gk(y) T c(y)uk)dy +
0
1
A Wk (fie = boy,=g; + cyy, )j ) (30)
k

where
1

27Nk 1))y -1 A7 Gk
w, (fkvgk) = ne (tko+a(1)y J‘ PN wy+0t(y))fk(y)dy _
0

1
-1, -1,.
oM <zkm+5(1))u—1j e ROy W g (4 dyy
0

Here we used assumption (13), which implies A, # 0 for all |k| < N. Fix

any k € N. Since Hl(O,l) is a Banach space and, by (12), the operator of the
problem (30) is contractible, application of the Banach fixed point theorem to

the system (30) gives us the unique solvability of the latter in H'(0,1). Since

k € N is arbitrary, the claim follows.

The estimate (19) now follows from Claims 1—3. This finishes the proof of
the theorem. ¢

The following corollaries are straightforward.

Corollary 2. Under the conditions of Theorem 1 a strong generalized
solution to the problem (1)—(3) (if such exists) is unique.

Corollary 3. Under the conditions of Theorem 1 any strong generalized
solution to the problem (1)—(3) continuously depends on the right hand sides

of (1).
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AMPIOPHI OLIHKW AN NEPIOAUYHUX NMIHIAHUX ENINTUYHNX
CUCTEM NEPLLUOIO NorPAQOKY

Poszzasanymo smiwany mepioduuny 3adauy Oas mavidce ATHIUHUX eAlnmuuHux cucmem
nepuiozo nopadky ma 0ogedenHo 0as Hei meopemy npPo €OuUHICMD | HenepepsHy 3anedc-
HICMb PO36’A3KI8 Y NOBHIU UKAAL COOOAIBCHKUX Mpocmopie nepioduunuxr Pynryil. Bu-
8e0eHO anpioPHi OUIHKU 8 MPocmopaxr Ppo3e’sas3kié i NPaAsuxr wacmuH, u,o 0aroms onmu-
MaAbHe CNIBBIOHOULEHHSA PeYaiPHOCME Oasl PO3easidysarnol 3adaut.

AMPUOPHBIE OLIEHKM ONA NEPUOANYECKUX IMHENHbIX
SAMNIMNTUYECKUX CUCTEM NEPBOIO NMNOPAOKA

Paccmompena cmewannas nepuoduueckas 3adaua 048 NOUMU AUHEUHBLL dsrunmuiec-
KUX cucmem mepsozo nopadxa u doxazana 0as Hee meopema O eOUHCMBEHHOCTU U He-
npepwvleHOtl 3asucumocmu peweHull 8 noanod wxare Cobosesckuxr npocmpancms nepu-
oduueckux Pyrxyui. Bovigedensvl. anpuopHvle OYyeHKU 8 MPOCMPAHCMEAX PeweHul u
npasvlx uacmeti, obecneuusaroujue ONMUMALLHOE COOMHOWEHUE PELYALPHOCIMU OAf
paccmampugaemoll 3a0auu.
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