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METHOD OF SOLVING CAUCHY PROBLEM FOR INHOMOGENEOUS
DIFFERENTIAL-OPERATOR EQUATION

We propose a method of solving the Cauchy problem for high order inhomoge-
neous equation with operator coefficients in a certain linear space. For the right-
hand sides of the initial conditions and the equation, which are represented as
Stieltjes integrals over a certain measure, the solution of the problem is represented
as a sum of Stieltjes integrals over the same measure. We describe some applica-
tions of the method for solving the Cauchy problem for inhomogeneous partial
differential equations of infinite order in a spatial variable.

1. Statement of the problem. Let §) be a certain linear space, in which

the linear operator A acts with all of its powers A’ defined in , 1=2,3,....

Then any vector h from § is a C* -vector of the operator A [1, p. 66]. Sup-
pose A to be an open circle in C with the centre at point A =0 (if A c R,
then A is a symmetric interval with respect to A = 0). Let us denote by x(A)
a solution of the equation

Ax(\) = Ax()), reA,

considering x(A) to be an eigenvector of the operator A respective to the
eigenvalue A € A, and x(A) =0 when A is not an eigenvalue of the opera-
tor A.

Consider the functions b,(A), by(R),...,b,(A) analytical in A which obvi-

ously can be represented as power series
S k
b](?\) = kz%) Bjk;L ’

where B, €C, ke NU{0}, j=1,...,n. To these functions, we shall put to a

correspondence the following operators:
[’e] % )
bi(A) =D ByA", i=1l..,n,
k=0
whose action in $ is defined as follows:

b;(Ah = B, AR, ji=1,...,n, he$,
k=0

in particular, bj(A)x(k) = bj(k)ac(k) for j=1,...,n, LeA.
We shall consider the following Cauchy problem:

d j d"U | < d" U
LI% Alut) =Y +3b.(4) . = f(t), (1)
(dt dt" ]z:; A /
dk—g R,  k=01..,n-1, 2)
dt” li—o

where h;, for k =0,1,...,n —1 are given vectors from the space $, f:R > §

is a given vector-function, U : R, — § is the sought vector-function.

In the investigations of Cauchy problem for differential-operator equati-
ons, a significant place is taken by semigroup theory (see, e.g., [9, 10, 13—15]
and their references). Cauchy problem for differential-operator equations has
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been studied by means of the technique of infinite order operators in the
works by Yu. A. Dubinskiy [2, 3] and Ya. V. Radyno [6, 7].

In paper [2], the author has found a representation of the problem soluti-
on in integral form by means of the Fourier transform for problem (1), (2),

where A = —i% and $ is a certain subspace L,(R). To solve the problem

(1), (2), where A = % and $ is a class of entire analytical functions, the dif-

ferential-symbol method has been used in paper [4]. The problem solution is
represented as actions of the differential expressions, whose symbols are
right-hand sides of the equations and the initial data, onto certain entire
functions of parameters in which the expressions act.

In the present paper, we propose a method of constructing a solution of
problem (1), (2) in the form of sum of Stieltjes integrals over a certain measu-
re. That form, in particular, contains the representations of the problem solu-
tion obtained in [2] and [4]. Note that the paper proposed is a continuation of
[11, 12] to the case of inhomogeneous differential-operator equation.

2. Main results. Let us show the method of solving the problem (1), (2)
for the vectors h,, k=0,1,...,n -1, taken from a special subspace § and for

f(t) taken from a special class of vector-functions.
Let w(A) be a given measure on A.
Definition 1. Vector h from § is said to belong to $, < 9, if it could

be represented in the form as follows:
h=[R, ,a(®)du(r), (3)
A

where R, ; is a linear operator dependent on h and A € A, which actsin §,.

Definition 2. Vector-function f(t) belongs to N,(R,$,), if f(t) is ana-
lytical in R and for each t € R belongs to $, and, besides, there exists a li-
near analytical in R operator Fk,f(t) dependent on f(t) and A € A, which for
each t e R actsin §, and such that

£ = [F ()20 du(h). ()
A

Hence, each vector-function f(t) from NF(]R,S’) A) could be represented
in a form of Stieltjes integral (4) over the chosen measure with a certain line-
ar operator F, ..

In the differential-operator expression L(%,AJ, we shall replace the
operator A by the parameter A and for each A € A consider the ordinary
differential equation

L(%,ij:O. (5)
Denote by
T, (t,A), Ty(t, ), ..., T, ,(t,A) (6)
the solutions of equation (5) which satisfy the initial conditions
dij =J k,j=0,1 n-1
o 3 ki )] Lo, ,

where Skj is a Kronecker symbol.
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Lemma 1. Functions Tj(«,X), j=0,1,...,n—-1, are analytical in A, and

Tj(t, ), 7=0,1,...,n—1, are functions analytical in R.

P r oo f By the assumption, functions bj(k), j=1,...,n, are analytical

in A, so the coefficients of equation (5) are functions analytical in the domain
A . Let us reduce equation (5) to normal system of first order ordinary diffe-
rential equations

dX _
o = POVX, Q)
n-1
where X = col(x,, x,, ..., x,), x; =T, x, =Ccll_’£’ e, X, = Ccllt""f’
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
-b,(A) =b, ;(A) =b, ,(A) ... =by(A) —b/(R)

Let Xj(t,k) = col (le(t,k), xﬂ(t,k), . xjn(t,k)), j=1,...,n, be a normal
fundamental system of vector-functions of system (7). By the Poincaré theo-
rem [8, p. 59] on analytical dependence of the Cauchy problem solution on the
parameter, the vector-functions Xj(t,X), j=1,...,n, are analytical in A. Since
Ty(t, &) = xy,(t,A), Ty(t,A) =xy(t,A), ..., T,_,(t,A) = x,,(t,A), functions (6) are
analytical in A in the domain A.

Functions (6), as solutions of ODE (5) with constant (in t) coefficients, are
quasipolynomials of t, so those functions are analytical in ¢t variable in R.
This completes our proof. ¢

In the differential-operator expression L(i,AJ, we shall replace the

dt

differentiation symbol % by v, and the operator A by A. Then we obtain

the function L(v,A), which is a polynomial of v and analytical in parameter
A in the domain A. Besides, consider the following function:

n-1
e’ = VIT,(t, 1)

GO\, v, 1) = f&m . 9)

Lemma 2. Function of form (9) is a solution of the Cauchy problem as
follows:

d _ vt
L(dt’K)G_e ’ Y
k
dG g, k=01..,m-1, an
dt” l;=o

and, moreover, G(A,-,-) s analytical in A, G(-,v,-) and G(-,-,t) are func-
tions analytical in R.

P r o o f. Recall that the set (6) constitutes a normal fundamental system
of solutions of equation (5). Let us act by the linear differential expression

d . i
L(E,k) onto function (9):
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d d v LS, -
L(dt ij L(dt kj{(et—Zv]Tj(t,K)le(v,k)}=

i=0

d vty -1 -1 o(d B
L(d , j{e L(v,\)}-L (v,k);)v’L(a,ijj(t,k)_

_ -1 d d* |y V=
- L (v,k)L(dt,k) =L7(v, k){dt +]Zb( )dn]}e =

1

= L(v, k){v + Zb (A" J} = LY (v,M)L(v,A)e"" =e".
j=1

Besides, for k =0,1,...,n — 1 we have

dk n-1
- Ll(v,k){—k (e"t - v’Tj(t,k)j}
=0 dt j=0

=L (v,){vF -vF}=0.

Since function (9) is a solution of Cauchy problem (10), (11), similarly as
in the proof of Lemma 1, one can reduce inhomogeneous differential equation
(10) to a system of equations of the following form:

dX
dt
where P()) is matrix (8), F = col(0,0, ..., 0, ¢"*). Function (9), at that, will be
the first component of the solution of system (12) satisfying condition

d*G
dt®

t=0

—L(vk{ ZV]

=L (v,)) { Zv’Sk]}

t=0

=P(MX+F, (12)

X |t_0 = 0. Since the elements of the matrix P(A) are functions analytical in

A, by Poincaré theorem [8, p. 59], function (9) is analytical in A parameter in
domain A.
Note that the function G(A,v,t), as a function of v, is a solution of inho-

mogeneous equation (10) that contains v only in the right-hand side e‘‘. The-
refore, the solution of problem (10), (11) is a quasipolynomial of v, and so,
G(-,v,*) is a function analytical in R.

Function (9), as a function of t, is a solution of equation (10) with cons-

tant (in t) coefficients with the right-hand side of the form e"*. Therefore,
G(-,-,t) is a quasipolynomial, and so, it is a function analytical in R. This

proves our Lemma. ¢

Lemma 3. If f e N(R,$,) then there holds the equality as follows:
d vt _ vt
F ¢ (Ej {e"x(M)} = e"F, ;(t)x(D), (t,M)eRxA. (13)
P r oo f Letusdevelop Fk’f(t) as a series:
F  (8)= Y ¢, ;nt"
n=0
Then we have
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F, ; (%j {e" 2 (L)} = ;} Cfm % {thx(k)} =

= D Calttez()} = e (Z c}hfynt")x(k) = e"'F, ;(t)x(L).
n=0 n=0

The proof is complete. ¢
Lemma 4. Let %(t,A) be an arbitrary function analytical in R x A, and let

the operator A commute with % Then there holds the equality as follows:

L(%,AJ {X(t,k)x(k)} = {L (%,K jx(t,%)} x(A), (t,MN)eRxA. (14)

P r o o f. First of all, note that if x(A) is not an eigenvector of the opera-
tor A then x(A)=0 and equality (14) moves to an identity. If x(A) is an
eigenvector of the operator A, A € A, then the proof is similar to the proof of
Lemma 1 in [12]. The proof is complete. ¢

Corollary. Let the functions system (6) be a normal fundamental system
of solutions of equation (5), G(A,v,t) be function (9), and let the operator A

commute with % Then the following equalities hold:
L(%,AJ{Tk(t,k)x(k)}zo, k=01,..,n-1, (15)
L(%,A) (GO, v, (M)} = e x(h), AeA. (16)

P r o o f. Equalities (15) and (16) follow from (14), if one takes T, (t,})
and G(A,v,t) respectively as y(t,A) and makes use of equalities (5) and (10).
The proof is complete. ¢

Now we pass on to constructing a solution of problem (1), (2). Suppose in
the initial conditions (2) h, € ,, k =0,1,...,n —1. This means that there exist

linear operators R, o such that

h, :J.Rk’hkx(}»)du(k), k=01,.,n-1. (17)
A

Let in equation (1) f € Ny(R,$,) and, besides, suppose the conditions (A)
and (B) to be fulfilled, where

(A) is a condition of existence of such Stieltjes integrals:

A

_[Rk,hk {T. (&, V(W) } du(d), k=0,1,...,n-1;
A

v=

(B) is a condition of fulfillment of the following equalities:

L (% ’ A) /.[ Rk,hk {Tk(t7 }\’)x(}\f)}dl,l(}\,) =

= [Ry, [L (%,Aj {Tk(t,mx(x)}] dpt),  k=0,1,..,n-1,
A
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du(h) =
v=0

_ HFM (&)L 4], t)x(m}

Theorem 1. Let, in conditions (2), h,, € , for each k=0,1,...,n-1, i.e.

[Fx f( j{G(k v t)x(k)}}

du(i).

v=0

equalities (17) hold, besides, in equation (1), f(t) belong to Np(R,$,) and be
represented in the form (4), the linear operator A act in $, and commute

with %, and conditions (A), (B) be fulfilled. Then the solution of problem (1),

(2) could be expressed in the form as follows:

n-1
U=y, jRMk {T,, (t, )x (M)} du(r) +
k=0 A

+f [Fk, ; (%j (GO, v, t)x(k)}}
A

Proof Let us show that under the assumptions made, vector-function
(18) satisfies equation (1). In fact, by the conditions (A) and (B), we have

n-1
L (% , Aj U(t) = kz [R, [L (% : Aj (T, (t, k)x(k)}} du(n) +
=0 A

. {[Fx ()24 a)ica, t)x(x)}}

From equalities (15) and (16), we obtain

L(%,AJU(t 5 [ R, (0}du(r) + j[ (%){ewx(x)}}

k=0 A

du(nr). (18)

v=0

du(h).

v=0

du(d).

v=0

The first n terms in the last sum are equal to zero by the linearity of the
operators nyhk, k=0,1,...,n—1, and the last term, by Lemma 3, equals to

J‘[e”Fx’f(t)x(k) N du()) . Therefore, we have

A =

L(C‘ft jU(t {Fw(t)ac(k)du(k).

Taking into account equality (4), we obtain L(% ,Aj U(t) = f(t).

Now we shall prove the fulfillment of conditions (2). For j=0,1,...,n -1,
du(d) +

we have
n—1
=Y [R,, { x(k)}
k=0 A t=0

d\|d'G
F .| & {22 20
+/'[[ ~! (dvj{ dt’ x( )} t0i|

Dy dka
Considering (11) and the fact that

d'U
dt’ o

du(dr).
v=0

= Sjk, we obtain
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j n-1
LU 2% [Ryp, {8@}dn0)) = [ Ry, 2(0) dp(h).-
dt’ lioo koo A
By equalities (17), we have Ccll_[’] :hj, where j=0,1,...,n—-1. This
=0

proves our theorem. ¢

Now we shall give examples of the operators A and the respective spa-
ces 9 and $,, when the conditions of Theorem 1 are fulfilled.

Example 1. Let § = L,(R), A:—i;l—x, i =-1, A=R, H, = H(A).

The space $), consists of such functions h(x) that the Fourier transform
i/z\(k) = th(x)e_"x}‘dx is finite in A . Problem (1), (2) in this case will have
vam

the form

o .0 a"U " U
L(E,—za—ij(tx Z ( ja”f = f(t,x), (19)

k
%ﬁgﬂlx)=hgxh k=0,1,...,n—1. (20)
t

The eigenvector x(A) of the operator A is e™®  As measure u(h) we ta-
ke the Lebesgue measure, i.e. du()) = dA. For any function h(x) from H*(R),

we have the representation h(x) = J‘R;hhe”‘xdk , where R; ; = h(n).

1
V21
The class Np(R,$,) for problem (19), (20) is the set of all functions
f(t,x) analytical in R in t variable, which for fixed t € R belong to H*(R).

Then f(t,x) = J‘F;hf(t)ei}‘xdk, where F, ((t) = ]/‘\(t,k), ]/‘\(t,k) is a Fourier
R

1
V2m
transform of the function f(t,x) in x variable.

The operator A = —i% commutes with %, the condition (A) of exis-

tence of the integrals

ellr () somon ]

%Iﬁk(k)Tk(t,k)eimdk, k=01..,n-1,
T
R

dx,
v=0

holds by the finiteness of h , (1), k =0,1,...,n—1, and f(%,xj in A. The

action of any differential expression ]"\(%,kj onto G(k,v,t)em‘ with res-

pect to the parameter v is correctly defined since the function G(-,v, -) is
an entire analytical function of first order (see [5, p. 314]). The condition (B)

holds as well. The operators b | — 1i
g ox

By Theorem 1, we obtain such a result as to the solvability of problem
(19), (20).

j, j=1,...,n, act invariantly in H”(R).
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Theorem 2. Let for each k =0,1,...,n -1 the functions h,(x) belong to

H”(R), f(t,-) be a function analytical in R, and f(-,x) €e H°(R). Then the
solution of problem (19), (20) could be expressed in the form as follows:

1 Son ixh
U(t,x) = — h . (M) T, (¢, L)e™ " d\ +
T ZI T,
j[ ( d xj{c(x v t)em‘}} ..
v=0
Example 2. Let in equation (1) A = cld_x’ H =A be the class of functions

h(x) analytical in R, A =R, e’ be an eigenvector of the operator A. Prob-
lem (1), (2) is a Cauchy problem for the equation

o 0 "U |~ " U _
L(atajU(t )_a +]Z:b]( )a’” f(t, x) (21)

with initial conditions (20).

As a measure p(A), we take the Dirac measure, i.e. du(A) =03(A)dA. As
N, = le , we take the class of functions analytical in R with the growth or-
der not greater than p e R, (this order is assigned by the behavior of the
symbols bj(k), j=1,...,n, see [4, p. 122]). Then each function h(x) from le,
as an analytical function in R, could be represented in the form

h(x) = J.R}hhe“S(k)dk,
R

or

h(x) = Rme“|

d ) 0 h(k (0) k
where Rkh_h(dk) ie. Rk,h:}; o lan
As Np(R,9,), we take the class of functions f(¢,x) analytical in R?,
such that f(-,x) belongs to Q[p. Then

r=0"’

f(t,x) = F, ;™|

] 1 0
where F;hf(t)zf( dkj Le. By ,(t) = Z x - (ﬁj

In this case, the operator A = dd_x commutes with %, the existence of

Stieltjes integrals in condition (A) at the expense of Dirac measure is reduced
to the convergence of such series:

o 8 .
f(a ax){GO“ 0L TN

) kzo,l,...,n—l.
rA=0

hy, (a%j {T,.(t,v) "}

Those integrals converge at the expense of choosing the classes Nj (R, le)

and le. The condition (B) gets the form
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J0 0 0 Ax
L (5 y aj hk (6_7\,) {Tk(t7 7\4)@ }
(2N (2 2 -

=)L (& e mene]]
J0 0 o 0 Ax _
L(E7%)|:f (E’ﬁ) {G()L,V,t)e } }L=0!V=0:| -

(8 &g )i

Those equalities hold by the analyticity of the respective functions in the pa-
rameters A and v.
By Theorem 1, we can formulate the result as follows.

A=0,v=0

Theorem 3. Let for each k=0,1,...,n -1 the functions h,(x) belong to
Q(p and f € NF(R,QIP). Then the solution of problem (21), (20) could be exp-
ressed in the form

U(t,ac)=f(a i){G(x,v,t)e“”} +

ov’ o 1=0,v=0

n-1
+ 3 n, (a%) {T,(t, 1)e**}
k=0

3. Conclusions. In the present paper, we propose a method of solving a
Cauchy problem for inhomogeneous differential-operator equation of order n.
In a special class of vector-functions, the problem solution is represented as a
sum of Stieltjes integrals over a certain measure. Such a representation inclu-
des, as particular cases, an integral representation of the Cauchy problem so-
lution for PDE obtained by means of the Fourier transform, as well as a rep-
resentation of the Cauchy problem solution for PDE of generally infinite order
in spatial variable obtained by means of the differential-symbol method.

A=0
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METOL PO3B’A3YBAHHA 3A0AYI KOLWI AnA HEOOHOPIAHOIO
OWOEPEHUIAITBHO-ONEPATOPHOIO PIBHAHHA

3anpononosaro memod po3s’s3ysanns 3adaui Kowi Oas HeoOHopiOHO020 PI8HAHHSA 8UCO-
K020 NOPAOKY 3 onepamopHumu Koediyienmamu y Oeakomy aAiHitiHomy npocmopi. Jas
NPABUX HLACTNUH TMOUAMKOBUX YMO8 MA DPIBHAHHA, AKI 300PANCAIOMBCL AK THMEZPAAU
Cminmuveca 3a 0esK010 Mipoto, PO38°A30K 3adaui 300PaHceHo Yy 8uzasdi cymu tHmezpania
Cmianmuveca 3a yiero s mipor. ITodano npukaadu 3acmocysanns memody 00 poses’sas3y-
eanna 3adaui Kowi 0aa HeoOHOpPiOHuUX OugeperyianvbHUx PiéHAHDb 13 YACMUHHUMU NO-
LIOHUMU HECKIHUEeHHO020 NOPAOKY 3a NPOCMOPOEOI0 3MIHHOTO.

METO[ PELWLEHMA 3A0AYM KOLWK AnNA HEOOHOPOAHOIO
ONOPEPEHLUAIIBbHO-OMNMEPATOPHOIO YPABHEHUA

ITpedaoscen memod peweHus 3adayu Kowu 0as HeoOHOPOOHO20 YPABHEHUS B8bLCOKOZ0
nopadKa ¢ onepamopHvlmU KOIPPUYUEHMAMU 8 HEKOMOPOM AUHEUHOM npocmpancmae.
Has npasvir wacmeli HAUAABHBLL YCAOBUL U YPABHEHUS, KOMOPble NPedcmasasiomes 8
sude unmezpanros Cmuamveca no HeKOMOPOU Mmepe, pewerHue 3a0ayu NpPedcmasieHo 8
sude cymmvl unmezparos Cmuamuveca no amou e mepe. IIpusedenv. npumepsv. npume-
HeHus memoda k¥ pewenuro 3adauu Kowu 0aa ufPeperHyuarbiuvle YpasHeHul 8 wacm-
HBLL NPOU3BOOHBLY OECKOHeuH020 NOPA0KA N0 NPOCMPAHCMBEEHHOU NepemeHHOU.
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