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METHOD OF SOLVING CAUCHY PROBLEM FOR INHOMOGENEOUS 
DIFFERENTIAL-OPERATOR EQUATION 
 

We propose a method of solving the Cauchy problem for high order inhomoge-
neous equation with operator coefficients in a certain linear space. For the right-
hand sides of the initial conditions and the equation, which are represented as 
Stieltjes integrals over a certain measure, the solution of the problem is represented 
as a sum of Stieltjes integrals over the same measure. We describe some applica-
tions of the method for solving the Cauchy problem for inhomogeneous partial 
differential equations of infinite order in a spatial variable. 

 
1. Statement of the problem. Let H  be a certain linear space, in which 

the linear operator A  acts with all of its powers jA  defined in H , = 2,3,j . 

Then any vector h  from H  is a ∞C -vector of the operator A  [1, p. 66]. Sup-
pose Λ  to be an open circle in   with the centre at point λ = 0  (if Λ ⊆  , 
then Λ  is a symmetric interval with respect to λ = 0 ). Let us denote by λ( )x  
a solution of the equation 

 λ = λ λ λ ∈ Λ( ) ( ),            Ax x , 

considering λ( )x  to be an eigenvector of the operator A  respective to the 
eigenvalue λ ∈ Λ , and λ =( ) 0x  when λ  is not an eigenvalue of the opera-
tor A . 

Consider the functions λ λ λ1 2( ), ( ), , ( )nb b b  analytical in Λ  which obvi-

ously can be represented as power series 
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where β ∈ ∈ = ,  0 ,  1, ,jk k j n{ }  . To these functions, we shall put to a 

correspondence the following operators: 
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whose action in H  is defined as follows: 
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in particular, λ = λ λ( ) ( ) ( ) ( )j jb A x b x  for = 1, ,j n , λ ∈ Λ . 

We shall consider the following Cauchy problem: 
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d U h k n
dt

, (2) 

where kh  for = −0,1, , 1k n  are given vectors from the space H , →:f H  

is a given vector-function, + →:U H  is the sought vector-function. 
In the investigations of Cauchy problem for differential-operator equati-

ons, a significant place is taken by semigroup theory (see, e. g., [9, 10, 13–15] 
and their references). Cauchy problem for differential-operator equations has 
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been studied by means of the technique of infinite order operators in the 
works by Yu. A. Dubinskiy [2, 3] and Ya. V. Radyno [6, 7].  

In paper [2], the author has found a representation of the problem soluti-
on in integral form by means of the Fourier transform for problem (1), (2), 

where = − dA i
dx

 and H  is a certain subspace 2 ( )L  . To solve the problem 

(1), (2), where = dA
dx

 and H  is a class of entire analytical functions, the dif-

ferential-symbol method has been used in paper [4]. The problem solution is 
represented as actions of the differential expressions, whose symbols are 
right-hand sides of the equations and the initial data, onto certain entire 
functions of parameters in which the expressions act. 

In the present paper, we propose a method of constructing a solution of 
problem (1), (2) in the form of sum of Stieltjes integrals over a certain measu-
re. That form, in particular, contains the representations of the problem solu-
tion obtained in [2] and [4]. Note that the paper proposed is a continuation of 
[11, 12] to the case of inhomogeneous differential-operator equation. 

2. Main results. Let us show the method of solving the problem (1), (2) 
for the vectors kh , = −0,1, , 1k n , taken from a special subspace H  and for 

( )f t  taken from a special class of vector-functions. 

Let µ λ( )  be a given measure on Λ . 

Definition 1. Vector h  from H  is said to belong to ⊆AH H , if it could 
be represented in the form as follows: 

 λ
Λ

= λ µ λ∫ , ( ) ( )hh R x d , (3) 

where λ,hR  is a linear operator dependent on h  and λ ∈ Λ , which acts in AH . 

Definition 2. Vector-function ( )f t  belongs to ,F AN H( ) , if ( )f t  is ana-

lytical in   and for each ∈t   belongs to AH  and, besides, there exists a li-

near analytical in   operator λ, ( )fF t  dependent on ( )f t  and λ ∈ Λ , which for 

each ∈t   acts in AH  and such that  

 λ
Λ

= λ µ λ∫ ,( ) ( ) ( ) ( )ff t F t x d . (4) 

Hence, each vector-function ( )f t  from ,F AN H( )  could be represented 
in a form of Stieltjes integral (4) over the chosen measure with a certain line-
ar operator λ, fF . 

In the differential-operator expression   
 

,dL A
dt

, we shall replace the 

operator A  by the parameter λ  and for each λ ∈ Λ  consider the ordinary 
differential equation 

  λ = 
 

, 0dL T
dt

. (5) 

Denote by 

 −λ λ λ0 1 1( , ),  ( , ),  ,  ( , )nT t T t T t  (6) 

the solutions of equation (5) which satisfy the initial conditions 
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where δkj  is a Kronecker symbol. 
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Lemma 1. Functions ⋅ λ = −( , ),  0,1, , 1jT j n , are analytical in Λ , and 

( , )jT t ⋅ , = −0,1, , 1j n , are functions analytical in  . 

P r o o f. By the assumption, functions λ( )jb , = 1, ,j n , are analytical 

in Λ , so the coefficients of equation (5) are functions analytical in the domain 
Λ . Let us reduce equation (5) to normal system of first order ordinary diffe-
rential equations 

 = λ( )dX P X
dt

, (7) 

where 
−

−
= = = = 

1

1 2 1 2 1
col ( , , , ),  ,  ,  ,  

n

n n n
dT d TX x x x x T x x
dt dt

, 

 

− −

λ =
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1 2 2 1
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( )
0 0 0 0 1
( ) ( ) ( ) ( ) ( )n n n

P

b b b b b

. (8) 

Let λ = λ λ λ1 2( , ) col ( , ), ( , ), , ( , )j j j jnX t x t x t x t( ) , = 1, ,j n , be a normal 

fundamental system of vector-functions of system (7). By the Poincaré theo-
rem [8, p. 59] on analytical dependence of the Cauchy problem solution on the 
parameter, the vector-functions λ = ( , ),  1, ,jX t j n , are analytical in Λ . Since 

λ = λ0 11( , ) ( , )T t x t , λ = λ1 21( , ) ( , )T t x t ,  , − λ = λ1 1( , ) ( , )n nT t x t , functions (6) are 

analytical in λ  in the domain Λ . 
Functions (6), as solutions of ODE (5) with constant (in t ) coefficients, are 

quasipolynomials of t , so those functions are analytical in t  variable in  . 
This completes our proof. ◊ 

In the differential-operator expression   
 

,dL A
dt

, we shall replace the 

differentiation symbol d
dt

 by ν , and the operator A  by λ . Then we obtain 

the function ν λ( , )L , which is a polynomial of ν  and analytical in parameter 
λ  in the domain Λ . Besides, consider the following function: 
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∑
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. (9) 

Lemma 2. Function of form (9) is a solution of the Cauchy problem as 
follows: 

 ν λ = 
 

, tdL G e
dt

, (10) 
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= = −
0

0,      0,1, , 1
k

k
t

d G k n
dt

, (11) 

and, moreover, λ ⋅ ⋅( , , )G  is analytical in Λ , ⋅ ν ⋅( , , )G  and ⋅ ⋅( , , )G t  are func-

tions analytical in  . 

P r o o f. Recall that the set (6) constitutes a normal fundamental system 
of solutions of equation (5). Let us act by the linear differential expression 

 λ 
 

,dL
dt

 onto function (9): 
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Besides, for = −0,1, , 1k n  we have 

 
−

− ν

= = =

  = ν λ − ν λ =  
  

∑
1

1

0 0 0

( , ) ( , )
nk k

t j
jk k

t j t

d G dL e T t
dt dt

 

 
− −

− ν −

= ==

   = ν λ ν − ν = ν λ ν − ν δ =   
   

∑ ∑
1 1

1 1

0 00

( , ) ( , )
kn n

jk t j k j
kjk

j jt

d T
L e L

dt
 

 −= ν λ ν − ν =1( , ) 0k kL { } . 

Since function (9) is a solution of Cauchy problem (10), (11), similarly as 
in the proof of Lemma 1, one can reduce inhomogeneous differential equation 
(10) to a system of equations of the following form: 

 = λ +( )dX P X F
dt

, (12) 

where λ( )P  is matrix (8), ν= col 0, 0, , 0, xF e( ) . Function (9), at that, will be 
the first component of the solution of system (12) satisfying condition 

=
=

0
0

t
X . Since the elements of the matrix λ( )P  are functions analytical in 

Λ , by Poincaré theorem [8, p. 59], function (9) is analytical in λ  parameter in 
domain Λ . 

Note that the function λ ν( , , )G t , as a function of ν , is a solution of inho-

mogeneous equation (10) that contains ν  only in the right-hand side νte . The-
refore, the solution of problem (10), (11) is a quasipolynomial of ν , and so, 

⋅ ν ⋅( , , )G  is a function analytical in  . 

Function (9), as a function of t , is a solution of equation (10) with cons-

tant (in t ) coefficients with the right-hand side of the form νte . Therefore, 
⋅ ⋅( , , )G t  is a quasipolynomial, and so, it is a function analytical in  . This 

proves our Lemma. ◊ 

Lemma 3. If ∈ ,F Af N H( )  then there holds the equality as follows: 

 ν ν
λ λ

  λ = λ λ ∈ × Λ ν , ,( ) ( ) ( ),      ( , )t t
f f

dF e x e F t x t
d

{ }  . (13) 

P r o o f. Let us develop λ, ( )fF t  as a series: 
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Then we have 
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The proof is complete. ◊ 
Lemma 4. Let χ λ( , )t  be an arbitrary function analytical in × Λ , and let 

the operator A  commute with d
dt

. Then there holds the equality as follows: 

 
    χ λ λ = λ χ λ λ λ ∈ × Λ    

    
, ( , ) ( ) , ( , ) ( ),      ( , )d dL A t x L t x t

dt dt
{ }  . (14) 

P r o o f. First of all, note that if λ( )x  is not an eigenvector of the opera-
tor A  then λ =( ) 0x  and equality (14) moves to an identity. If λ( )x  is an 
eigenvector of the operator A , λ ∈ Λ , then the proof is similar to the proof of 
Lemma 1 in [12]. The proof is complete. ◊ 

Corollary. Let the functions system (6) be a normal fundamental system 
of solutions of equation (5), λ ν( , , )G t  be function (9), and let the operator A  

commute with d
dt

. Then the following equalities hold: 

   λ λ = = − 
 

, ( , ) ( ) 0,               0,1, , 1k
dL A T t x k n
dt

{ } , (15) 

 ν  λ ν λ = λ λ ∈ Λ 
 

, ( , , ) ( ) ( ),      tdL A G t x e x
dt

{ } . (16) 

P r o o f. Equalities (15) and (16) follow from (14), if one takes λ( , )kT t  

and λ ν( , , )G t  respectively as χ λ( , )t  and makes use of equalities (5) and (10). 

The proof is complete. ◊ 
Now we pass on to constructing a solution of problem (1), (2). Suppose in 

the initial conditions (2) ∈k Ah H , = −0,1, , 1k n . This means that there exist 

linear operators λ, khR  such that 

 λ
Λ

= λ µ λ = −∫ , ( ) ( ),             0,1, , 1
kk hh R x d k n . (17) 

Let in equation (1) ∈ ( , )F Af N H  and, besides, suppose the conditions (À) 

and (Â) to be fulfilled, where 

(À) is a condition of existence of such Stieltjes integrals: 

 λ
ν =Λ

  λ ν λ µ λ  ν  ∫ ,
0

( , , ) ( ) ( )f
dF G t x d
d

{ } , 

 λ
Λ

λ λ µ λ = −∫ , ( , ) ( ) ( ),              0,1, , 1
kh kR T t x d k n{ } ; 

(Â) is a condition of fulfillment of the following equalities: 

 λ
Λ

  λ λ µ λ = 
  ∫ ,, ( , ) ( ) ( )

kh k
dL A R T t x d
dt

{ }  

 λ
Λ

  = λ λ µ λ = −    ∫ , , ( , ) ( ) ( ),      0,1, , 1
kh k

dR L A T t x d k n
dt

{ } , 



43 

 λ
ν =Λ

    λ ν λ µ λ =    ν    ∫ ,
0

, ( , , ) ( ) ( )f
d dL A F G t x d
dt d

{ }  

 λ
ν =Λ

    = λ ν λ µ λ    ν    ∫ ,
0

, ( , , ) ( ) ( )f
d dF L A G t x d
d dt

{ } . 

Theorem 1. Let, in conditions (2), ∈k Ah H  for each = −0,1, , 1k n , i. e. 

equalities (17) hold, besides, in equation (1), ( )f t  belong to ( , )F AN H  and be 

represented in the form (4), the linear operator A  act in AH  and commute 

with d
dt

, and conditions (À), (Â) be fulfilled. Then the solution of problem (1), 

(2) could be expressed in the form as follows: 
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{ } . (18) 

 P r o o f. Let us show that under the assumptions made, vector-function 
(18) satisfies equation (1). In fact, by the conditions (À) and (Â), we have 
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From equalities (15) and (16), we obtain 
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The first n  terms in the last sum are equal to zero by the linearity of the 
operators λ = −, ,  0,1, , 1

khR k n , and the last term, by Lemma 3, equals to 

ν
λ

ν =Λ

 λ µ λ  ∫ ,
0

( ) ( ) ( )t
fe F t x d . Therefore, we have 

 λ
Λ

  = λ µ λ 
  ∫ ,, ( ) ( ) ( ) ( )f

dL A U t F t x d
dt

. 

Taking into account equality (4), we obtain   = 
 

, ( ) ( )dL A U t f t
dt

. 

Now we shall prove the fulfillment of conditions (2). For = −0,1, , 1j n , 
we have 
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Considering (11) and the fact that 
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= δ
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d T
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, we obtain 
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By equalities (17), we have 
=

=
0

j

jj
t

d U h
dt

, where = −0,1, , 1j n . This 

proves our theorem. ◊ 
Now we shall give examples of the operators A  and the respective spa-

ces H  and AH , when the conditions of Theorem 1 are fulfilled. 

Example 1. Let = 2 ( )LH  , = − dA i
dx

, = −2 1i , Λ =  , ∞= Λ( )A HH . 

The space AH  consists of such functions ( )h x  that the Fourier transform 

 − λ

Λ

λ =
π ∫1( ) ( )

2
ixh h x e dx  is finite in Λ . Problem (1), (2) in this case will have 

the form 

 
−

−
=

∂ ∂ ∂ ∂ ∂   − ≡ + − =   ∂ ∂ ∂   ∂ ∂
∑

1

, ( , ) ( , )
nn n j
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j

U UL i U t x b i f t x
t x xt t

, (19) 

 ∂ = = −
∂

(0, ) ( ),           0,1, , 1
k

kk
U x h x k n
t

. (20) 

The eigenvector λ( )x  of the operator A  is λi xe . As measure µ λ( )  we ta-

ke the Lebesgue measure, i.e. µ λ = λ( )d d . For any function ( )h x  from ∞( )H  , 

we have the representation λ
λ= λ∫ ,( ) i x

hh x R e d


, where 
λ = λ

π,
1 ( )
2

hR h . 

The class ,F AN  H( )  for problem (19), (20) is the set of all functions 

( , )f t x  analytical in   in t  variable, which for fixed ∈t   belong to ∞ ( )H  . 

Then λ
λ= λ∫ ,( , ) ( ) i x

ff t x F t e d


, where 
λ = λ

π,
1( ) ( , )
2

fF t f t ,  λ( , )f t  is a Fourier 

transform of the function ( , )f t x  in x  variable. 

The operator = − dA i
dx

 commutes with d
dt

, the condition (À) of exis-

tence of the integrals 

  λ

ν =

  λ λ ν λ  ν  π ∫
0

1 , ( , , )
2

ixdf G t e d
d

{ }


, 

  ( ) λλ λ λ
π ∫1 ( , )

2
ix

kkh T t e d


, = −0,1, , 1k n , 

holds by the finiteness of  ( )λ = −,  0,1, , 1kh k n , and   λ ν 
,df

d
 in Λ . The 

action of any differential expression   λ ν 
,df

d
 onto λλ ν( , , ) ixG t e  with res-

pect to the parameter ν  is correctly defined since the function ⋅ ν ⋅( , , )G  is 

an entire analytical function of first order (see [5, p. 314]). The condition (Â) 

holds as well. The operators jb i
x
∂ − ∂ 

, = 1, ,j n , act invariantly in ∞ ( )H  . 

 By Theorem 1, we obtain such a result as to the solvability of problem 
(19), (20).  
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 Theorem 2. Let for each = −0,1, , 1k n  the functions ( )kh x  belong to 
∞ ( )H  , ⋅( , )f t  be a function analytical in  , and ∞⋅ ∈( , ) ( )f x H  . Then the 

solution of problem (19), (20) could be expressed in the form as follows: 

  ( )
−

λ

=

= λ λ λ +
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∑ ∫
1
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1( , ) ( , )
2

n
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kk
k

U t x h T t e d


 

  λ

ν =

  + λ λ ν λ  ν  π ∫
0

1 , ( , , )
2

ixdf G t e d
d

{ } . 

 Example 2. Let in equation (1) = dA
dx

, =H A  be the class of functions 

( )h x  analytical in  , Λ =  , λxe  be an eigenvector of the operator A . Prob-
lem (1), (2) is a Cauchy problem for the equation  

 
−
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∂ ∂ ∂ ∂ ∂   ≡ + =   ∂ ∂ ∂   ∂ ∂
∑

1

, ( , ) ( , )
nn n j
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j

U UL U t x b f t x
t x xt t

 (21) 

with initial conditions (20). 
 As a measure µ λ( ) , we take the Dirac measure, i. e. µ λ = δ λ λ( ) ( )d d . As 

=A pH A , we take the class of functions analytical in   with the growth or-

der not greater than +∈p   (this order is assigned by the behavior of the 

symbols λ( )jb , = 1, ,j n , see [4, p. 122]). Then each function ( )h x  from pA , 

as an analytical function in  , could be represented in the form 

 λ
λ= δ λ λ∫ ,( ) ( )x

hh x R e d


,  

or 

 λ
λ λ =

= , 0
( ) x

hh x R e , 

where λ
 =  λ ,h

dR h
d

, i. e. 
∞

λ
=
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,
0

(0)
!

kk

h
k

h dR
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. 

 As ( , )F AN  H , we take the class of functions ( , )f t x  analytical in 2 , 

such that ⋅( , )f x  belongs to pA . Then 

 λ
λ λ =

= , 0
( , ) ( ) x

ff t x F t e , 

where λ
 =  λ , ( ) ,f

dF t f t
d

, i. e. 
∞

λ
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 ∂=  λ ∑,

0

( ,0)
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!

k
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f
k

f
t

dxF t
k d

. 

 In this case, the operator = dA
dx

 commutes with d
dt

, the existence of 

Stieltjes integrals in condition (À) at the expense of Dirac measure is reduced 
to the convergence of such series: 

 λ
λ = ν=

∂ ∂  λ ν ∂ν ∂λ  0, 0
, ( , , ) xf G t e{ } , 

 λ

λ =

∂  ν = − ∂λ 


0
( , ) ,           0,1, , 1x

k kh T t e k n{ } . 

Those integrals converge at the expense of choosing the classes ,F pN  A( ) 

and pA . The condition (Â) gets the form 
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λ =

 ∂ ∂ ∂    λ =    ∂ ∂ ∂λ    0
, ( , ) x

k kL h T t e
t x

{ }  

 λ

λ =

∂ ∂ ∂    = λ    ∂λ ∂ ∂     0
, ( , ) x

k kh L T t e
t x

{ } , 

 λ

λ = ν =

∂ ∂ ∂ ∂    λ ν =    ∂ ∂ ∂ν ∂λ     0, 0
, , ( , , ) xL f G t e

t x
{ }  

 λ

λ = ν =

∂ ∂ ∂ ∂    = λ ν    ∂ν ∂λ ∂ ∂     0, 0
, , ( , , ) xf L G t e

t x
{ } . 

Those equalities hold by the analyticity of the respective functions in the pa-
rameters λ  and ν . 
 By Theorem 1, we can formulate the result as follows. 

 Theorem 3. Let for each = −0,1, , 1k n  the functions ( )kh x  belong to 

pA  and ∈ ,F pf N A( ) . Then the solution of problem (21), (20) could be exp-

ressed in the form 

 λ

λ = ν =

∂ ∂ = λ ν + ∂ν ∂λ  0, 0
( , ) , ( , , ) xU t x f G t e{ }  

 
−

λ

λ==

∂ + λ ∂λ ∑
1

00

( , )
n

x
k k

k

h T t e{ } .  

 3. Conclusions. In the present paper, we propose a method of solving a 
Cauchy problem for inhomogeneous differential-operator equation of order n . 
In a special class of vector-functions, the problem solution is represented as a 
sum of Stieltjes integrals over a certain measure. Such a representation inclu-
des, as particular cases, an integral representation of the Cauchy problem so-
lution for PDE obtained by means of the Fourier transform, as well as a rep-
resentation of the Cauchy problem solution for PDE of generally infinite order 
in spatial variable obtained by means of the differential-symbol method.  
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МЕТОД РОЗВ’ЯЗУВАННЯ ЗАДАЧІ КОШІ ДЛЯ НЕОДНОРІДНОГО 
ДИФЕРЕНЦІАЛЬНО-ОПЕРАТОРНОГО РІВНЯННЯ  
 
Çàïðîïîíîâàíî ìåòîä ðîçâ’ÿçóâàííÿ çàäà÷³ Êîø³ äëÿ íåîäíîð³äíîãî ð³âíÿííÿ âèñî-
êîãî ïîðÿäêó ç îïåðàòîðíèìè êîåô³ö³ºíòàìè ó äåÿêîìó ë³í³éíîìó ïðîñòîð³. Äëÿ 
ïðàâèõ ÷àñòèí ïî÷àòêîâèõ óìîâ òà ð³âíÿííÿ, ÿê³ çîáðàæàþòüñÿ ÿê ³íòåãðàëè 
Ñò³ëòüºñà çà äåÿêîþ ì³ðîþ, ðîçâ’ÿçîê çàäà÷³ çîáðàæåíî ó âèãëÿä³ ñóìè ³íòåãðàë³â 
Ñò³ëòüºñà çà ö³ºþ æ ì³ðîþ. Ïîäàíî ïðèêëàäè çàñòîñóâàííÿ ìåòîäó äî ðîçâ’ÿçó-
âàííÿ çàäà÷³ Êîø³ äëÿ íåîäíîð³äíèõ äèôåðåíö³àëüíèõ ð³âíÿíü ³ç ÷àñòèííèìè ïî-
õ³äíèìè íåñê³í÷åííîãî ïîðÿäêó çà ïðîñòîðîâîþ çì³ííîþ. 
 
МЕТОД РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ НЕОДНОРОДНОГО 
ДИФФЕРЕНЦИАЛЬНО-ОПЕРАТОРНОГО УРАВНЕНИЯ  
 
Ïðåäëîæåí ìåòîä ðåøåíèÿ çàäà÷è Êîøè äëÿ íåîäíîðîäíîãî óðàâíåíèÿ âûñîêîãî 
ïîðÿäêà ñ îïåðàòîðíûìè êîýôôèöèåíòàìè â íåêîòîðîì ëèíåéíîì ïðîñòðàíñòâå. 
Äëÿ ïðàâûõ ÷àñòåé íà÷àëüíûõ óñëîâèé è óðàâíåíèÿ, êîòîðûå ïðåäñòàâëÿþòñÿ â 
âèäå èíòåãðàëîâ Ñòèëòüåñà ïî íåêîòîðîé ìåðå, ðåøåíèå çàäà÷è ïðåäñòàâëåíî â 
âèäå ñóììû èíòåãðàëîâ Ñòèëòüåñà ïî ýòîé æå ìåðå. Ïðèâåäåíû ïðèìåðû ïðèìå-
íåíèÿ ìåòîäà ê ðåøåíèþ çàäà÷è Êîøè äëÿ äèôôåðåíöèàëüíûõ óðàâíåíèé â ÷àñò-
íûõ ïðîèçâîäíûõ áåñêîíå÷íîãî ïîðÿäêà ïî ïðîñòðàíñòâåííîé ïåðåìåííîé. 
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