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ON A CERTAIN METHOD FOR NUMERICAL ANALYSIS
OF THE NAVIER - STOKES EQUATIONS

The present paper describes a modification and development of the method presen-
ted in [18] for the determination of unsteady plane flow of wviscous incompressible
fluid. The main feature of the method consists in such elimination of the pressure
from the governing equations by means of integration that the order of resulting
system is not increased in comparison with the original one. This operation leads
to the initial problem for a system of the first order ordinary differential equa-
tions. In this paper the method was modified by application of the staggered grid
for velocity components. Numerical results and their comparison with results ob-
tained by other authors are presented in order to verify the method.

1. Introduction. Many flows in nature and technological devices are vis-
cous and incompressible. They are governed by the Navier — Stokes equa-
tions, describing both laminar and turbulent flow. The development of the
methods for solving complete non-simplified Navier — Stokes equations is an
important part of computational fluid dynamics. Even though in most cases
these methods are too computationally demanding on today’s computers, they
can serve to study the physics of the flow, to predict and analyze turbulent
flow or may provide tools for the averaging methods with turbulence mode-
ling or reference databases for fitting parameterized models [1, 6, 8—10, 16, 17].

The numerical approximation of the Navier — Stokes equation is general-
ly difficult due to the coupling between velocity and pressure fields and the
presence of the non-linear convective term. The most popular numerical me-
thods for decoupling of velocity and pressure fields and serving the solution to
the Navier — Stokes equations are operator splitting methods, and they are
the subjects of many papers [1, 2, 6, 8—11, 14, 16, 17, 19, 20]. They are based
on discretizing first in time in order to get a set of simpler partial differential
equations for which many efficient numerical methods exist. The specific
feature of these approaches is deriving of the Poisson equation for the
pressure that demands more boundary conditions than the original problem.

The method for numerical solution to the whole non-simplified Navier —
Stokes equations, considered in this paper, is based on discretizing first in spa-
ce. Hence, the implementation of correct boundary conditions is much more
easier than in other splitting methods [16]. The method was first presented in
[18]. This paper is a continuation and extension of earlier studies of this me-
thod [12, 13].

2. Statement of the problem and the method of solution. This paper
deals with plane, unsteady flow of viscous, incompressible fluid of constant
density and viscosity described by the known system of partial differential
equations:

U, +v, = 0, (1)

u, + (), +(uv), = —p, + év%, 2)
1

v, +(uv), + (vz)y =-p, +R—eV21J, 3)

which refers to the rectangular system of coordinates x,y; the symbol t de-
notes time; the subscripts stand for partial derivatives with respect to the cor-
responding independent variables, whilst the symbol V denotes the Hamilton
operator. The system of equations consists of the dimensionless forms of con-
tinuity Eq. (1) and the Navier — Stokes Eqgs (2), (3) with three unknown func-
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tions: fluid velocity components u(x,y,t), v(x,y,t) in the x,y-direction, re-

pVL

spectively and pressure p(x,y,t). The symbol Re = , including density p,

dynamic viscosity p together with velocity V and length L scales, denotes

the Reynolds number. Many authors refer to the Eqs (1)—(3) as the Navier —
Stokes equations.

The initial conditions consist of prescribing u and v. The boundary con-
ditions can be of several types: prescribed velocity components, vanishing
normal derivatives of velocity components, or prescribed stress vector compo-
nents. The pressure can be determined by prescribing the value at one spatial
point.

The method for determination of unsteady, plane flow of viscous incom-
pressible fluids is based on some method of elimination of pressure from the
system of the Navier — Stokes equations by means of integration. Consequent-
ly the order of resulting system of equations is not increased in comparison
with the original one and there is no need for posing the additional, «artifi-
cial» boundary conditions, which do not exist in the original problem.

Both velocity components and pressure are univalent functions of the in-
dependent variables and any fixed contour integrals of total differentials of
these functions must vanish at any instant. For pressure it can be expressed
in the following form:

[(p dx+p,dy) =0, )
r

where I' denotes any closed contour under consideration.
The derivatives p, and p, can be obtained from (2) and (3) and after

substitution into (4) this relation yields:

I [é Au—-u, - (u2)x — (vu)y]d.x' +
r

1
+[R—eAv—vt—(uv)x—(vz)y}dyzo. (5)
The Eq. (5) and the continuity Eq. (1), partially differentiated with respect to

time:
(u,), +(v,), =0, (6)

do not contain pressure. These two equations can be applied to determine the
velocity components u(x,y,t) and v(x,y,t). It can be done in a number of
ways, depending on accepted contour of integration and the type of temporal
and spatial discretization.

After determination of the velocity components in the nodes of the mesh
at any instant, pressure can be obtained from the integral:

x,y
pla,y,t) = play, Yy, t) + j [...]dx +[...]dy, (7

o-Yo
where t denotes time and expressions in brackets are identical with those
in (5). The symbol p(x,y,t) denotes a known function of time at the fixed

point (x;,y,)-

The system of Eqs (5) and (6), serving the determination of velocity field,
after discretization has a form of the system of the first order ordinary diffe-
rential equations. It means that the problem of the determination of viscous
incompressible flow described by the system of partial differential equations
has been transformed to equivalent initial problem for a set of the first order
ordinary equations. The initial problem so defined can be solved by means of
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different ways. The initial and boundary conditions are the same as in the
original problem, because no differentiation has been used in described trans-
formation of the problem.

3. Discretization of the problem. The final system of the first order or-
dinary differential equations depends on many factors. The main of them are:
the shape of the domain of solution, the shape of the contour of integration
I', the applied method of integration in (5), the applied type of discrete ap-
proximation of the Eq. (6) and the method of time discretization. Originally in
[18] a finite difference scheme on non-staggered grid was applied to the dri-
ven cavity problem. There were checked different paths of integration in (5),
and approximating formulas for the integral, the first and the second deriva-
tives of velocity components. For the solution of the final system of ordinary
differential equations the fourth order Runge — Kutta method was applied.

Later in [12] the method was developed to more complicated domains of
solution and non-uniform, stretched and compressed in certain subdomains of
solution, computational meshes. Then in [13] the method was testing on the
flow around a given contour which exterior was transformed onto rectangular
domain of solution.

In the present paper the method has been modified and developed on
staggered grid, where velocity components are unknown at different spatial
locations. The non-typical staggered grid, shown in Fig. 1, was applied in this
case. The (—) denotes u points, (T denotes v points, whereas (e) denotes
(4,7) points of the «main» grid, around which the contour integral of the total

differential of pressure was computed. Nodes of this main mesh are defined
by the values

Tiis Yijo 1€[0,M+1], je€[0,N+1],
of the spatial variables in rectangular domain. Then the discretized unknown

velocity components are functions of time only and are associated with points
(4,7) in such a manner:

(X, Yjapit) = Uy (1), V(X4 19,Y;51) = Uiy (1)

The u and v points are located in the middle between the neighboring
points of main grid as a rule. That is even though one of these points is a
boundary point. The grid of points is generally non-uniform in both directions.

Mesh spacings Ax; and Ay, are defined in Fig. 2.

poAx g Axp
| N '
1) i+ )
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—_ > —> —> | | i
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| 2 2 I
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| I
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Fig. 1 Fig. 2

Some cells in applied staggered grid are presented in Fig. 2. The (4,})

points are the points around which the integral of total differential of the
pressure is computed, as shown in this figure. The path of integration has a
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shape of rhomb, and leads between u and v points surrounding the (7, 7)
point. Integration by means of the trapezoidal rule applied to (5), yields
—hu

i1y TR 10 F 0,005 = Viiyn = Wy s (8)

where dots over velocity components indicate differentiation with respect to
time, and

Ax, + Ax,_,
h=———— )
Ay, + Ay,
Wi = h[Gi,j+1/2 - Gi,j—1/2] + Hi—l/z,j N Hi+1/2,j’ (10)
and
1 o2 2
G—R—eV u-—(u )x—(uv)y, (11)
1 o2 2
H—R—eV v—(uv), — (v )y. (12)

The Eq. (8) represents the system of MN ordinary differential equations
of the first order with unknown functions u and v, which number in rectan-
gular domain equals 2MN + M + N. The lacking MN + M + N equations must
be obtained from the relation (6) expressing the continuity equation partially
differentiated with respect to time. This can be done by using the finite diffe-
rences method as in previous works [12], but in this case more suitable is ap-
plication of the continuity equation, partially differentiated with respect to
time, in its integral form to the subdomain, illustrated in Fig. 2 as the dotted
cell lying between (7,7), (1+1,7),(t+1,7+1) and (¢,5+1) nodes of the main
grid. This operation yields the relation

ij[ui+1,j+1/2 - ui,j+1/2] + Axi[bi+1/2,j+1 - 1.)1'+1/2,j] =0. (13)
The subsystem (13) contains MN v i | I
lacking equations written for all dotted (o,j+1)4¢ __+___+___
cells associated with the node (7,7) as }
14

shown in Fig. 2. The remaining M + N
equations are obtained in the same way (0, 7) T T -
by applying the continuity equation

|

(differentiated with respect to time) to ] » +
the M subdomains (dotted in Fig. 3), ) __1‘*%1__*(_@_1;1)
lying near the boundary j =0, and to .
the N subdomains (dashed in Fig. 3), T *i il
posed near the boundary i =0. The y '
M + N lacking equation are given by (4,0 ”H%,O (i +1,0)
formulas: Fig. 3

Ayo[ui+l,l/2 - 7'.‘z',1/2] + A'xi[bﬂl/z,l - 7.’141/2,0] =0, (14)

ij[ul,j+l/2 - uo,jﬂ/z] + Ax[)[bl/2,j+1 - 7.)1/2,]'] =0. (15)

Two cells being located at bottom-left and upper-left corners of the
rectangular domain bring into Egs (14) and (15) a slight modification in order
to satisfy the mass conservation law in these subdomains.

The Eqgs (8), (13), (14) and (15) form a linear system of 2MN + M + N
equations serving the determination of the first derivatives of velocity compo-
nents with respect to time.

The right-hand sides in (8), given by formula (10), contain the first and
the second derivatives of velocity components. They may be approximated in
different ways. In this paper they were obtained by application of the theory
of cubic splines.
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_du

Let Lm,n = 5 zé_u

and [, , denote wu derivatives with respect

ox m,n ox m,n

to x direction (n is kept constant) at its (m,n) location, shown in Fig. 3.
Following the cubic spline theory [15] the derivatives are computed from
equations for non-uniform grid:

Ax,, L, .+ 2(Ax,,_, +Ax,, )L,, , + AxmLerLn =
_ G(uerl,n - um,n _ um,n - umfl,nj (16)
Ax,, Ax, ’
1 1 1 1
l +2 + . +—1 =
Axm,l m-1,n (Axml Axm) m,n Al‘m m+1,n
_ 3( Um,n _Zum—l,n n Umti,n ;um,n j, (17)
Ax,, 4 Ax

m m

where m =1,...,M and Ax, =x,,, — x,, . The values of derivatives on the

boundaries m =0 and m =M +1 are computed by formulas stemming from
the finite difference method for non-uniform grid. For example for the point
m =0 on the left boundary of the domain it is:

ou 2Ax, + Ax,
b = ox " T Ax,(Ax, + Ax )u[)’” *
0,n 0 1 1

Ax, + Ax, Ax,
—_—y, -
AxyAx, " Axy(Ax, + Axy)) 2

62uj 2 [
L = (— = u - U —
0 ox? on (Ax, + Aacl)2 2m 0.n

(18)

Ax,

- Axl (u’O,n - uz,n)] -

Uin ~ Uon

_ 19

Ax,Ax, (19)
The derivatives for the right-hand side boundary can be computed from

analogous formulas. The sets of formulas for the derivatives of u component

with respect to y direction and for the derivatives of v component with re-

spect to both directions can be obtained from (16)—(19) by proper replacement
of symbols in all the relations.

The derivatives of the product of velocity components uv with respect to
x and y directions were determined in the same way, but after appropriate
averaging used in order to obtain the lacking values. It can be easily seen in
Fig. 2 that in order to get the value of one component (u or v) in location of
the second (v or wu) the four surrounding values have to be used. The as-
sumption of linear interpolation between nodes leads to the formulas presen-
ted below.

Resulting u component at (i—1/2,j) point of v can be computed

according following formula:

1
120 T Ay +ij( Yi Uiayzgenye T AY; Ui1yz5o170) (20)
where
1
Uiy2,5+1/2 = §(ui—1,j+1/2 + ui,j+1/2)’ (21)
1
Uiy2,5-1/2 = E(ui—l,j—l/z + ui,j—l/z)' (22)

The set of formulas for obtaining v component at (¢, j —1/2) node of u is
quite analogues to (20)—(22):
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1

Vijo1j2 =5 iy + U 0),
where
1
Vij = W(A'xi—lviﬂﬂj +AZV; ),
1
v

Q-1 = m(Axi-l Viviyzga TAZ Uy 500) -

The Eqgs (8), (13), (14) and (15) serving determination of the velocity com-
ponents have to be completed by the appropriate initial and boundary
conditions which follow from the initial and boundary conditions for original
problem described by Eqgs (1)—(3) and there is no need for creation of additio-
nal boundary conditions.

In the present paper the initial conditions express assumption that the
motion of the fluid starts from rest. The boundary conditions express imper-
meability of the solid walls of the domain and the no-slip property of the
fluid. It means that the velocity components at all nodes lying on the bounda-
ry are known and equal to the values of the solid walls.

The system of Eqgs (8), (13), (14) and (15) can be rewritten in a matrix
form:

AY = W. (23)
The vector Y as well as W denote:

Y, =u;(1), k:=1,...,MN,

Y, =v;(1), k:=MN +1,...,2MN ,

Y, = uy;(t), k:=2MN+1,....,2MN + M,

Y, =v,(1), k:=2MN+M+1,...,2MN+M+ N,

W, = w;(1), k:=1,...,MN,

W, =0, k:=MN+1,...,2MN+M + N .

By means of the inverse matrix A~ the system (23) can be presented in
the form:

Y=A'wW. (24)

The inversion of the matrix A can be performed only once at the beginning

of the computation, because its elements are constant and the solution for

time derivatives of velocity components can be obtained directly from (24).
However, this simplest approach could be possible only on supercomputers.

In this paper a memory saving iterative method had to be applied. The

matrix A of the equation (23) was transformed by multiplying by the trans-

pose A" in order to yield a symmetric and positive definite matrix of coeffi-
cients B:

BY =A'W, (25)
where

B=ATA,
and a method of conjugate gradients has been applied in order to solve the
Eq. (25) with respect to the derivatives of velocity components. Then the Run-
ge — Kutta method of the fourth order was applied for integration of the sys-
tem (25). This is a fully explicit method and right-hand sides in (25) were ob-
tained from values computed at the previous time level

After determination of velocity components from the system of Eqgs (25),

pressure can be computed at any point by means of the integral (7). The
method and the path of integration should follow from the applied type of
discretization of Eq. (5). In this paper the integration of the total differential
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of the pressure was realized by means of
trapezoidal rule along the sides of rhombus as
shown in Fig. 2. It means that in this case the
path of integration ought to lead from the
location of u to v by turns like along the
sides of rhombus. An example of two possible
paths of integration, whilst determining
pressure at the point (i +1/2,5), is shown in

P(chyo)

S S

Fig. 4. Pressure at the point (a;,y,) Iis

____?___ ___?.___ -

assumed to be known. Consequently the grid
for obtaining pressure is twice dense as each
grid for velocity components.

4. Numerical results and conclusions. The viscous incompressible flow in
a square cavity in which one wall moves with the Y
known velocity is the well-known model problem for
testing and evaluating numerical techniques. The
domain of solution, considered in the present paper, is
shown in Fig. 5. The fluid flow has been generated by
the motion of the «bottom» wall.
The system of ordinary differential equations (25),
governing the flow in the driven cavity, has to be

completed by the proper initial and boundary Uy *
conditions. Fig. 5
At the initial time:
t=0: u(x,y,0) = v(x,y,0) =0,
and the «bottom» wall suddenly begins to move with the known velocity:
uy =1, t>0.

The bottom left and right corners of the cavity, where moving wall is in
contact with being at rest, are the singular points. In this paper the singulari-
ty has been omitted by assuming zero velocity at these points.

The computational mesh has M points in x direction and N in y. The

boundary conditions on the non-moving walls of the cavity can be formula-
ted as

U Ny = Vine1 =0, 1=0,.... M+1,

uOrj:vO,j:uMJrl,j:O’ jZO,-..,N-‘rl,
and on the bottom wall
U = Up(t) =1, j=1,...,M.

Pressure was assumed to be zero in the middle of the upper wall of the
cavity and at any instant and at all nodes of the grid was computed with re-
spect to this point.

The viscous incompressible flow in the driven cavity was computed
following the algorithm described in the previous section for three Reynolds
numbers Re =10,100 and 400 and compared with the known results [3—5, 7].
The Reynolds number was related to the side of the cavity and velocity of the
moving wall.

The direct results of calculations concern the fluid velocity components in
nodes of their meshes and can be presented in graphical form only as their
distributions along sections of the cavity.

The indirect results obtained after appropriate calculations of the direct
results concern:

— velocity field vectors — they can be calculated and shown graphically
after averaging of the velocity components; in the present paper averaging
was performed at (7,j) points of the main grid (Fig. 2) in the following way:
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_ 1
Ui = Ay, + Ay,

1
v, = —m—
Y Ax, ) + Ax;

(AY; g Uy jagn +AY; Uy 50) s

(Ax; 10,109 + ATV, 19 )5
— isobars — pressure is treated as an indirect result, because it can be
computed (in the way described above) after obtaining velocity components;
— sets of lines of constant vorticity — vorticity Q was computed following
its definition:
_Ov _ Ou
“ar oy’
where derivatives of the velocity components were approximated by formulas
analogous to (16)—(19), gained from the cubic spline-theory;

— streamlines — the values of stream function ¥ were obtained from
Poisson equation:
V¥ =-Q
by means of the Liebmann method,;
— position of the «center of the vortex», appearing in the cavity.

The computations were performed for the following data:
Re =10 and the uniform mesh M =N = 30,
Re =100 and the uniform mesh M = N =50,
Re = 400 and the uniform mesh M = N =50,
and the constant velocity of the «bottom» wall u,(t) =1, for comparison with

the results obtained in [3—5, 7].
Selected results are shown in Figs 6—12. The calculations were terminated

when two succeeding results of integration differed less then by 107° and the
steady state conditions of the flow in the driven cavity were attained.

Velocity profiles along vertical and horizontal lines through the center of
a driven cavity at Re =10 and t =5.0, and at Re =100 and t=5.0 and at
Re =400 and t =10.0 are given in Figs 6—8 respectively.

Figs 6—8 show distributions of velocity components along midlines of the
domain of solution, indicated by solid lines, and their comparisons with known
results [4, 5, 7], given by discrete points. The distribution of the u component
is done along vertical line through geometric center of the cavity, whilst the
distribution of wv-velocity is given along horizontal line through geometric
center. The results obtained agree quite close with those obtained by other
investigators considering the same problem.

Y

Yy
v/t fl o [Re=10 v/t o [Re=100
r T 0 t=5 i T t=5
08 08 |
104 L 104
06 - U/, 06 -
-0.8 -0.4 -0.8 -0.4 u/u,0
t t t t t t t t
0 0.4 0.8 /0 0.4 0.8
04 04
T04 e — Ghia V., [ 04
Ghia K. N.
02 I — Bozeman and 02 ShinC. T
Dalton 1los |0 — Burggraf O. | 54
— — present study — — present study
I 1 I 1 1 I 1 I 1 I 1 1 I 1
0 0.2 04 06 08 X 0 0.2 04 06 08 X
— > —_—>
Uy Uy
Fig. 6 Fig. 7
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An often compared quantity is the vorticity at the midpoint of the mo-
ving wall for Re =100. The present calculation gives the value Q =6.7394.
The values given in literature are: 6.57451 in [7] and 6.5641 in [3]. These re-
sults differ from the present value by 2.5% and 2.7% respectively.

The velocity extrema along the centerlines of the cavity at Re =100
yield results as follows: the minimum of the wu-component equals u,; =
=-0.21116039 at y =0.5784, the minimum of the v component equals

v =-0.1771529 (its location x =0.2647) and maximum is given by the va-

lue v, =0.26974899 at the point x = 0.81137. The data borrowed from lite-
rature [3] are: u_, =-0.2140424 at location y =0.5419; v, =-0.1795728

at *x =0.237 and v =0.253803 at x =0.8104. The obtained u differs

max max
from given in [3] by 1.3% in value and 6.7% in location. The v_, differs from

the value in [3] by 1.3% and 11.8% in location. The v__.  computed in the pre-

sent paper differs from the value in [3] by 6.3% and 0.4% in location. These
quantitative comparisons may indicate the fact that steady state conditions of
the flow may not be attained and there must be involved a stronger condition
for terminations of the calculations based on the value of the v component.

Y

v/ Re = 400
108 t=10
08 - A ‘e eae---Re=400,t=10
L 0.4 ° S
06
0.8 0.4 u/u,

(0 0.4 0.8
04

fo — Ghia V., 04T
02 L GhiaK N
: Shin C. T.

S T

L ® — Burggraf O. | 4 \ \§i :
— — present stud ‘ .
N P 1 N 1 Y 1 L 1 \\\ .
0 0.2 04 0.6 0.8 X
e
Uy
Fig. 8 Fig. 9

The velocity fields are not presented in this paper in the sake of their
difficult visualization except of one fragment (shown in Fig. 9) of the upper-
right corner of the cavity in order to demonstrate the recirculating region and
formation of the secondary vortex at Re = 400 and ¢t =10.0.

1

1

Re =100, t=5 a)

Uy Ug
Fig. 10

109



Streamline patterns and stream function values for flow in a driven
cavity for Reynolds numbers Re =100 and Re = 400 are presented in Fig. 10.
They show the development of the flow depending on the Re-number. With
the grow of the Reynolds number the primary vortex moves in the direction
of the trajectory of the bottom wall. Fig. 11 contains vorticity contours and
vorticity values for flow in a driven cavity for Re =100 and Re =400,
corresponding to the previous shown streamline patterns, whereas isobars for
these flows are shown in Fig. 12. Streamlines, vorticity contours and isobars,
presented in this paper, coincide closely with those published by other
investigators [4, 5, 7].

1 1
Re =100, t=5 E\ Re =400, t=10 )

0.8 -

0.27/_\ v

AN

& %
&
0 0.2 0.4 0 0.2 0.4 0.6 0.8 1
—_— —
U U
Fig. 12
Fig. 13 demonstrates an effect of Reynolds vy
number on location of the primary vortex cen- - © _ Bozeman and Dalton

. N A ) i e — present study
ter appearing in the cavity and its comparison 08 -

with result borrowed from [4]. F
The main feature of the method developed os |-
in this paper consists in the manner of elimina- -

tion of pressure from the Navier — Stokes equ- o4 | © Re = 400
ations by means of integration. Consequently - .
the order of the resulting system is not increa- ¢, | 10° 100

sed in comparison with the original one and L
there is no need to create the «artificial» boun- ! ! ! !

dary conditions, not existing in physical prob- 0 02 04 06 08 X
lem. The absence of any additional assumptions u,
in the governing equations is an advantage in Fig. 13
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direct simulations. The second advantage is that the elements of the matrix of
resulting system are constant. They can be computed only once, before in-
tegration.

The results gained for the flow in the driven cavity by application of pre-

sented method were compared with results obtained by other authors in or-
der to verify the method. These comparisons indicate that the development of
the method was performed properly.

The first computations of the flow in more complicated irregular domains

reveal the great advantage of application of staggered grid. This will be the
subject of further investigations.
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NPO OOMH METOA YNCITOBOIO AHANI3Y PIBHAHb HAB’E€ — CTOKCA

Onucano modugirayito i darvwull po3sumox memody, 3anpononosanozo 8 [18] das eu-
3HQUEHHS HeYCmaneHozo NAO0CK020 MeuiHHsa 6'a3K0l Hecmucaugoi piouHnu. I'onosnoro
8AACMUBICNIO MEMOOY € BUKAIOUCHHS MUCKY 3 KAOU0BUX PIBHAHD 3a 00NOMO2010 THMezs-
PYBAHHA MAKUM UYUHOM, WOO NOPAOOK OMPUMAHOL CUCMeMU He 30IAbUY8AsC NOPIBH-
HO 3 8uxiOHOt0 cucmemoro. Brasana onepayisa mpusodums 00 3a0aul 3 NOULAMKOBUMU
ymosamu Oas cucmemu 36UUAUHUL OUPEePEeHUIAALHUX PIBHAHbL Nepulozo nopadky. ¥
cmammi memod moOUPIKOBAHO WALLOM 3ACMOCYBAHHSA 3CYHYMOT cimku 0as KOMNO-
HeHm weudxocmi. 3 Memoio nepesipru memody HagedeHo YUCA08L Pe3ysbmamu ma ix
NOPIBHAHHA 3 PE3YALMAMAMU, OMPUMAHUMU THUUMU ABTNOPAMU.

OB OQHOM METOAE YUCINEHHOIO AHAINU3A YPABHEHUW HABBE — CTOKCA

Onucana modugpurayus u OanrvHetiwee passumue memoda, npedaodcennozo 8 [18] 0asn
onpedeneHus HeycmaHo8UBWE20CA NAOCKO20 MeUeHUSL 853KOU HeCHUMAeMOU HUdKoCmuU.
Trasnvim ceoticmeom memoda seasiemcs uckaouerue 0asienust U3 Karoueeblx YypasHenul
nymem UHMEZPUPOBAHUSL MAKUM 00PA3OM, UMOObL NOPAOOK NOAYUEHHOU cucmembsl He
Y8eAUUUBANCS NO CPABHEHUIO C UCTOOHOU cucmemoll. YKa3anHas onepayus npugooum
3a0aue C HAUAALHBIMU YCAOBUAMU OASL CUCMeMb. 00bIKHOBEHHbLL OugepeHyuarvrHuLe
YypasHeHUul nepsozo nopadka. B cmamve memod modupuyupyemcs nymem ucnoab308a-
HUSL c0BUHYMOU cemKu Oas KOMNOHEeHM ckopocmu. [Jas nposepku memoda npusodimcs
YUCAEHHDblE PE3YALMAMbL U UX CPABHEHUE C Pe3yAbMAMAMU, NOAYUEHHBLMU OPYUMU
asmopamu.
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