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M. Kolodziejczyk  
 
ON A CERTAIN METHOD FOR NUMERICAL ANALYSIS 
OF THE NAVIER – STOKES EQUATIONS  
 

The present paper describes a modification and development of the method presen-
ted in [18] for the determination of unsteady plane flow of viscous incompressible 
fluid. The main feature of the method consists in such elimination of the pressure 
from the governing equations by means of integration that the order of resulting 
system is not increased in comparison with the original one. This operation leads 
to the initial problem for a system of the first order ordinary differential equa-
tions. In this paper the method was modified by application of the staggered grid 
for velocity components. Numerical results and their comparison with results ob-
tained by other authors are presented in order to verify the method. 

 
1. Introduction. Many flows in nature and technological devices are vis-

cous and incompressible. They are governed by the Navier – Stokes equa-
tions, describing both laminar and turbulent flow. The development of the 
methods for solving complete non-simplified Navier – Stokes equations is an 
important part of computational fluid dynamics. Even though in most cases 
these methods are too computationally demanding on today’s computers, they 
can serve to study the physics of the flow, to predict and analyze turbulent 
flow or may provide tools for the averaging methods with turbulence mode-
ling or reference databases for fitting parameterized models [1, 6, 8–10, 16, 17]. 

The numerical approximation of the Navier – Stokes equation is general-
ly difficult due to the coupling between velocity and pressure fields and the 
presence of the non-linear convective term. The most popular numerical me-
thods for decoupling of velocity and pressure fields and serving the solution to 
the Navier – Stokes equations are operator splitting methods, and they are 
the subjects of many papers [1, 2, 6, 8–11, 14, 16, 17, 19, 20]. They are based 
on discretizing first in time in order to get a set of simpler partial differential 
equations for which many efficient numerical methods exist. The specific 
feature of these approaches is deriving of the Poisson equation for the 
pressure that demands more boundary conditions than the original problem.  

The method for numerical solution to the whole non-simplified Navier –
Stokes equations, considered in this paper, is based on discretizing first in spa-
ce. Hence, the implementation of correct boundary conditions is much more 
easier than in other splitting methods [16]. The method was first presented in 
[18]. This paper is a continuation and extension of earlier studies of this me-
thod [12, 13]. 

2. Statement of the problem and the method of solution. This paper 
deals with plane, unsteady flow of viscous, incompressible fluid of constant 
density and viscosity described by the known system of partial differential 
equations: 

 0x yu v+ = , (1) 

 2 21( ) ( )t x y xu u uv p u+ + = − + ∇
Re

, (2) 

 2 21( ) ( )t x y yv uv v p v+ + = − + ∇
Re

, (3) 

which refers to the rectangular system of coordinates ,x y ; the symbol t  de-
notes time; the subscripts stand for partial derivatives with respect to the cor-
responding independent variables, whilst the symbol ∇  denotes the Hamilton 
operator. The system of equations consists of the dimensionless forms of con-
tinuity Eq. (1) and the Navier – Stokes Eqs (2), (3) with three unknown func-
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tions: fluid velocity components ( , , ),  ( , , )u x y t v x y t  in the ,x y -direction, re-

spectively and pressure ( , , )p x y t . The symbol 
VLρ=
µ

Re , including density ρ , 

dynamic viscosity µ  together with velocity V  and length L  scales, denotes 
the Reynolds number. Many authors refer to the Eqs (1)–(3) as the Navier –
Stokes equations.  

The initial conditions consist of prescribing u  and v . The boundary con-
ditions can be of several types: prescribed velocity components, vanishing 
normal derivatives of velocity components, or prescribed stress vector compo-
nents. The pressure can be determined by prescribing the value at one spatial 
point. 

The method for determination of unsteady, plane flow of viscous incom-
pressible fluids is based on some method of elimination of pressure from the 
system of the Navier – Stokes equations by means of integration. Consequent-
ly the order of resulting system of equations is not increased in comparison 
with the original one and there is no need for posing the additional, «artifi-
cial» boundary conditions, which do not exist in the original problem.  

Both velocity components and pressure are univalent functions of the in-
dependent variables and any fixed contour integrals of total differentials of 
these functions must vanish at any instant. For pressure it can be expressed 
in the following form: 

 ( ) 0x yp dx p dy
Γ

+ =∫ , (4) 

where Γ  denotes any closed contour under consideration. 
The derivatives xp  and yp  can be obtained from (2) and (3) and after 

substitution into (4) this relation yields: 

 21 ( ) ( )t x yu u u vu dx
Γ

 ∆ − − − +  ∫ Re
 

 21 ( ) ( ) 0t x yv v uv v dy + ∆ − − − =  Re
. (5) 

The Eq. (5) and the continuity Eq. (1), partially differentiated with respect to 
time: 
 ( ) ( ) 0t x t yu v+ = , (6) 

do not contain pressure. These two equations can be applied to determine the 
velocity components ( , , )u x y t  and ( , , )v x y t . It can be done in a number of 
ways, depending on accepted contour of integration and the type of temporal 
and spatial discretization.  

After determination of the velocity components in the nodes of the mesh 
at any instant, pressure can be obtained from the integral: 

  

0 0

,

0 0
,

( , , ) ( , , )
x y

x y

p x y t p x y t dx dy= + +∫  [ ] [ ] ,  (7) 

where t  denotes time and expressions in brackets are identical with those 
in (5). The symbol 0, 0,( )p x y t  denotes a known function of time at the fixed 

point 0 0( , )x y . 

The system of Eqs (5) and (6), serving the determination of velocity field, 
after discretization has a form of the system of the first order ordinary diffe-
rential equations. It means that the problem of the determination of viscous 
incompressible flow described by the system of partial differential equations 
has been transformed to equivalent initial problem for a set of the first order 
ordinary equations. The initial problem so defined can be solved by means of 
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different ways. The initial and boundary conditions are the same as in the 
original problem, because no differentiation has been used in described trans-
formation of the problem.  

 3. Discretization of the problem. The final system of the first order or-
dinary differential equations depends on many factors. The main of them are: 
the shape of the domain of solution, the shape of the contour of integration 
Γ , the applied method of integration in (5), the applied type of discrete ap-
proximation of the Eq. (6) and the method of time discretization. Originally in 
[18] a finite difference scheme on non-staggered grid was applied to the dri-
ven cavity problem. There were checked different paths of integration in (5), 
and approximating formulas for the integral, the first and the second deriva-
tives of velocity components. For the solution of the final system of ordinary 
differential equations the fourth order Runge – Kutta method was applied. 

Later in [12] the method was developed to more complicated domains of 
solution and non-uniform, stretched and compressed in certain subdomains of 
solution, computational meshes. Then in [13] the method was testing on the 
flow around a given contour which exterior was transformed onto rectangular 
domain of solution. 

In the present paper the method has been modified and developed on 
staggered grid, where velocity components are unknown at different spatial 
locations. The non-typical staggered grid, shown in Fig. 1, was applied in this 
case. The (→) denotes u  points, (↑) denotes v  points, whereas (•) denotes 
( , )i j  points of the «main» grid, around which the contour integral of the total 
differential of pressure was computed. Nodes of this main mesh are defined 
by the values 

 , ,,  ,              0, 1 ,           0, 1i j i jx y i M j N∈ + ∈ +[ ] [ ] , 

of the spatial variables in rectangular domain. Then the discretized unknown 
velocity components are functions of time only and are associated with points 
( , )i j  in such a manner: 

 1/2 , 1/2 1/2 1/2,( , ; ) ( ),               ( , ; ) ( )i j i j i j i ju x y t u t v x y t v t+ + + += = . 

The u  and v  points are located in the middle between the neighboring 
points of main grid as a rule. That is even though one of these points is a 
boundary point. The grid of points is generally non-uniform in both directions. 
Mesh spacings ix∆  and jy∆  are defined in Fig. 2.  
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 Fig. 1  Fig. 2 

Some cells in applied staggered grid are presented in Fig. 2. The ( , )i j  
points are the points around which the integral of total differential of the 
pressure is computed, as shown in this figure. The path of integration has a 
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shape of rhomb, and leads between u  and v  points surrounding the ( , )i j  
point. Integration by means of the trapezoidal rule applied to (5), yields 

 , 1 2 , 1 2 1 2, 1 2, ,i j i j i j i j i jhu hu v v w− + − +− + + − =   
/ / / / , (8) 

where dots over velocity components indicate differentiation with respect to 
time, and  

 1

1

i i

j j

x x
h

y y
−

−

∆ + ∆
=

∆ + ∆
, (9) 

  , , 1 2 , 1 2 1 2, 1 2,i j i j i j i j i jw h G G H H+ − − += − + −/ / / /[ ] ,  (10) 

and 

  2 21 ( ) ( )x yG u u uv= ∇ − −
Re

,  (11) 

 2 21 ( ) ( )x yH v uv v= ∇ − −
Re

.  (12) 

The Eq. (8) represents the system of MN  ordinary differential equations 
of the first order with unknown functions u  and v , which number in rectan-
gular domain equals 2MN M N+ + . The lacking MN M N+ +  equations must 
be obtained from the relation (6) expressing the continuity equation partially 
differentiated with respect to time. This can be done by using the finite diffe-
rences method as in previous works [12], but in this case more suitable is ap-
plication of the continuity equation, partially differentiated with respect to 
time, in its integral form to the subdomain, illustrated in Fig. 2 as the dotted 
cell lying between ( , )i j , ( 1, ), ( 1, 1)i j i j+ + +  and ( , 1)i j +  nodes of the main 
grid. This operation yields the relation 

 1, 1/2 , 1/2 1/2, 1 1/2, 0j i j i j i i j i jy u u x v v+ + + + + +∆ − + ∆ − =   [ ] [ ] .  (13) 

The subsystem (13) contains MN  
lacking equations written for all dotted 
cells associated with the node ( , )i j  as 

shown in Fig. 2. The remaining M N+  
equations are obtained in the same way 
by applying the continuity equation 
(differentiated with respect to time) to 
the M  subdomains (dotted in Fig. 3), 
lying near the boundary 0j = , and to 

the N  subdomains (dashed in Fig. 3), 
posed near the boundary 0i = . The 
M N+  lacking equation are given by 
formulas: 
 

 0 1,1 2 ,1 2 1 2,1 1 2,0 0i i i i iy u u x v v+ + +∆ − + ∆ − =   
/ / / /[ ] [ ] ,  (14) 

  1, 1 2 0, 1 2 0 1 2, 1 1 2, 0j j j j jy u u x v v+ + +∆ − + ∆ − =   
/ / / /[ ] [ ] .  (15) 

Two cells being located at bottom-left and upper-left corners of the 
rectangular domain bring into Eqs (14) and (15) a slight modification in order 
to satisfy the mass conservation law in these subdomains. 

The Eqs (8), (13), (14) and (15) form a linear system of 2MN M N+ +  
equations serving the determination of the first derivatives of velocity compo-
nents with respect to time. 

The right-hand sides in (8), given by formula (10), contain the first and 
the second derivatives of velocity components. They may be approximated in 
different ways. In this paper they were obtained by application of the theory 
of cubic splines. 
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Let 
2

, 2
,

m n
m n

uL
x

∂=
∂

 and ,
,

m n
m n

ul
x

∂=
∂

denote u  derivatives with respect 

to x  direction (n  is kept constant) at its ( , )m n  location, shown in Fig. 3. 
Following the cubic spline theory [15] the derivatives are computed from 
equations for non-uniform grid: 
 1 1, 1 , 1,2( )m m n m m m n m m nx L x x L x L− − − +∆ + ∆ + ∆ + ∆ =  

 1, , , 1,

1
6 m n m n m n m n

m m

u u u u

x x
+ −

−

− − = − ∆ ∆ 
, (16) 

 1, , 1,
1 1

1 1 1 12m n m n m n
m m m m

l l l
x x x x− +

− −

 + + + = ∆ ∆ ∆ ∆ 
 

 , 1, 1, ,
2 2

1

3 m n m n m n m n

m m

u u u u

x x

− +

−

− − = + 
 ∆ ∆

, (17) 

where 1, ,m M=   and 1m m mx x x+∆ = − . The values of derivatives on the 

boundaries 0m =  and 1m M= +  are computed by formulas stemming from 
the finite difference method for non-uniform grid. For example for the point 

0m =  on the left boundary of the domain it is: 

 0 1
0, 0,

0, 0 1 1

2

( )n n
n

x xul u
x x x x

∆ + ∆∂ = = − + ∂ ∆ ∆ + ∆ 
 

 0 1 0
1, 2,

0 1 1 0 1( )n n

x x x
u u

x x x x x

∆ + ∆ ∆
+ −

∆ ∆ ∆ ∆ + ∆
, (18) 

 
2

0, 2, 0,2 2
0, 0 1

2
( )

n n n
n

uL u u
x x x

∂  = = − −   ∂ ∆ + ∆
 

 1, 0,0
0, 2,

1 0 1
( ) 2 n n

n n

u ux
u u

x x x

−∆ − − −∆ ∆ ∆
. (19) 

The derivatives for the right-hand side boundary can be computed from 
analogous formulas. The sets of formulas for the derivatives of u  component 
with respect to y  direction and for the derivatives of v  component with re-
spect to both directions can be obtained from (16)–(19) by proper replacement 
of symbols in all the relations. 

The derivatives of the product of velocity components uv  with respect to 
x  and y  directions were determined in the same way, but after appropriate 
averaging used in order to obtain the lacking values. It can be easily seen in 
Fig. 2 that in order to get the value of one component (u  or v ) in location of 
the second (v  or u ) the four surrounding values have to be used. The as-
sumption of linear interpolation between nodes leads to the formulas presen-
ted below.  

Resulting u  component at ( 1 2, )i j− /  point of v  can be computed 
according following formula: 

  1 2, 1 1 2, 1 2 1 2, 1 2
1

1 ( )i j j i j j i j
j j

u y u y u
y y− − − + − −

−
= ∆ + ∆

∆ + ∆/ / / / / ,  (20) 

where 

 1 2, 1 2 1, 1 2 , 1 2
1 ( )
2i j i j i ju u u− + − + += +/ / / / ,  (21) 

  1 2, 1 2 1, 1 2 , 1 2
1 ( )
2i j i j i ju u u− − − − −= +/ / / / . (22) 

The set of formulas for obtaining v  component at ( , 1 2)i j − /  node of u  is 
quite analogues to (20)–(22): 
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  , 1 2 , , 1
1 ( )
2i j i j i jv v v− −= +/ ,  

where 

  , 1 1 2, 1 2,
1

1 ( )i j i i j i i j
i i

v x v x v
x x − + −

−
= ∆ + ∆

∆ + ∆ / / , 

  , 1 1 1 2, 1 1 2, 1
1

1 ( )i j i i j i i j
i i

v x v x v
x x− − + − − −

−
= ∆ + ∆

∆ + ∆ / / . 

The Eqs (8), (13), (14) and (15) serving determination of the velocity com-
ponents have to be completed by the appropriate initial and boundary 
conditions which follow from the initial and boundary conditions for original 
problem described by Eqs (1)–(3) and there is no need for creation of additio-
nal boundary conditions.  

In the present paper the initial conditions express assumption that the 
motion of the fluid starts from rest. The boundary conditions express imper-
meability of the solid walls of the domain and the no-slip property of the 
fluid. It means that the velocity components at all nodes lying on the bounda-
ry are known and equal to the values of the solid walls.  

The system of Eqs (8), (13), (14) and (15) can be rewritten in a matrix 
form: 

  .AY W=   (23) 

The vector Y  as well as W denote: 
 ( ),           : 1, ,k ijY u t k MN= =  , 

      ( ),        : 1, ,2k ijY v t k MN MN= = +  , 

  ( ),           : 2 1, ,2k ijY u t k MN MN M= = + + ,  

 ( ),          : 2 1, , 2 k ijY v t k MN M MN M N= = + + + + , 

 ( ),          : 1, ,k ijW w t k MN= =  , 

 0,                : 1, ,2kW k MN MN M N= = + + + . 

By means of the inverse matrix 1A−  the system (23) can be presented in 
the form:  

 1Y A W−= . (24) 
The inversion of the matrix A  can be performed only once at the beginning 
of the computation, because its elements are constant and the solution for 
time derivatives of velocity components can be obtained directly from (24). 
However, this simplest approach could be possible only on supercomputers. 

In this paper a memory saving iterative method had to be applied. The 
matrix A  of the equation (23) was transformed by multiplying by the trans-

pose A  in order to yield a symmetric and positive definite matrix of coeffi-
cients B : 

 BY A W=  , (25) 
where 

 B A A=  , 

and a method of conjugate gradients has been applied in order to solve the 
Eq. (25) with respect to the derivatives of velocity components. Then the Run-
ge – Kutta method of the fourth order was applied for integration of the sys-
tem (25). This is a fully explicit method and right-hand sides in (25) were ob-
tained from values computed at the previous time level. 

After determination of velocity components from the system of Eqs (25), 
pressure can be computed at any point by means of the integral (7). The 
method and the path of integration should follow from the applied type of 
discretization of Eq. (5). In this paper the integration of the total differential 
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of the pressure was realized by means of 
trapezoidal rule along the sides of rhombus as 
shown in Fig. 2. It means that in this case the 
path of integration ought to lead from the 
location of u  to v  by turns like along the 
sides of rhombus. An example of two possible 
paths of integration, whilst determining 
pressure at the point ( 1 2, )i j+ / , is shown in 

Fig. 4. Pressure at the point 0 0( , )x y  is 

assumed to be known. Consequently the grid 
for obtaining pressure is twice dense as each 
grid for velocity components. 

4. Numerical results and conclusions. The viscous incompressible flow in 
a square cavity in which one wall moves with the 
known velocity is the well-known model problem for 
testing and evaluating numerical techniques. The 
domain of solution, considered in the present paper, is 
shown in Fig. 5. The fluid flow has been generated by 
the motion of the «bottom» wall. 
The system of ordinary differential equations (25), 
governing the flow in the driven cavity, has to be 
completed by the proper initial and boundary 
conditions.  

At the initial time: 

 0 :         ( , , 0) ( , ,0) 0t u x y v x y= = = , 

and the «bottom» wall suddenly begins to move with the known velocity: 

 0 1,         0u t= ≥ . 

The bottom left and right corners of the cavity, where moving wall is in 
contact with being at rest, are the singular points. In this paper the singulari-
ty has been omitted by assuming zero velocity at these points. 

The computational mesh has M  points in x  direction and N  in y . The 
boundary conditions on the non-moving walls of the cavity can be formula-
ted as 
 , 1 , 1      0,        0, , 1i N i Nu v i M+ += = = + , 

 0, 0, 1, 0,       0, , 1j j M ju v u j N+= = = = + , 

and on the bottom wall 
  ,0 0 ( ) 1,                 1, ,iu u t j M= = =  . 

Pressure was assumed to be zero in the middle of the upper wall of the 
cavity and at any instant and at all nodes of the grid was computed with re-
spect to this point.  

The viscous incompressible flow in the driven cavity was computed 
following the algorithm described in the previous section for three Reynolds 
numbers 10,100=Re  and 400  and compared with the known results [3–5, 7]. 
The Reynolds number was related to the side of the cavity and velocity of the 
moving wall. 

The direct results of calculations concern the fluid velocity components in 
nodes of their meshes and can be presented in graphical form only as their 
distributions along sections of the cavity. 

The indirect results obtained after appropriate calculations of the direct 
results concern: 

– velocity field vectors – they can be calculated and shown graphically 
after averaging of the velocity components; in the present paper averaging 
was performed at ( , )i j  points of the main grid (Fig. 2) in the following way: 
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 , 1 , 1 2 , 1 2
1

1 ( )i j j i j j i j
j j

u y u y u
y y − + −

−
= ∆ + ∆

∆ + ∆ / / , 

 , 1 1 2, 1 2,
1

1 ( )i j i i j i i j
i i

v x v x v
x x − + −

−
= ∆ + ∆

∆ + ∆ / / ; 

– isobars – pressure is treated as an indirect result, because it can be 
computed (in the way described above) after obtaining velocity components; 

– sets of lines of constant vorticity – vorticity Ω  was computed following 
its definition: 

 v u
x y

∂ ∂Ω = −
∂ ∂

, 

where derivatives of the velocity components were approximated by formulas 
analogous to (16)–(19), gained from the cubic spline-theory; 

– streamlines – the values of stream function Ψ  were obtained from 
Poisson equation: 

 2∇ Ψ = − Ω  
by means of the Liebmann method; 

– position of the «center of the vortex», appearing in the cavity. 

The computations were performed for the following data: 

 10=Re  and the uniform mesh 30M N= = , 

 100=Re and the uniform mesh 50M N= = , 

 400=Re and the uniform mesh 50M N= = , 

and the constant velocity of the «bottom» wall 0 ( ) 1u t = , for comparison with 

the results obtained in [3–5, 7]. 
Selected results are shown in Figs 6–12. The calculations were terminated 

when two succeeding results of integration differed less then by 610−  and the 
steady state conditions of the flow in the driven cavity were attained. 

Velocity profiles along vertical and horizontal lines through the center of 
a driven cavity at 10=Re  and 5.0t = , and at 100=Re  and 5.0t =  and  at 

400=Re  and 10.0t =  are given in Figs 6–8 respectively.  
Figs 6–8 show distributions of velocity components along midlines of the 

domain of solution, indicated by solid lines, and their comparisons with known 
results [4, 5, 7], given by discrete points. The distribution of the u  component 
is done along vertical line through geometric center of the cavity, whilst the 
distribution of v -velocity is given along horizontal line through geometric 
center. The results obtained agree quite close with those obtained by other 
investigators considering the same problem. 
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An often compared quantity is the vorticity at the midpoint of the mo-
ving wall for 100=Re . The present calculation gives the value 6.7394Ω = . 
The values given in literature are: 6.57451 in [7] and 6.5641 in [3]. These re-
sults differ from the present value by 2.5% and 2.7% respectively. 

The velocity extrema along the centerlines of the cavity at 100=Re  
yield results as follows: the minimum of the u -component equals minu =  

0.21116039= −  at 0.5784y = , the minimum of the v  component equals 

min 0.1771529v = −  (its location 0.2647x = ) and maximum is given by the va-

lue max 0.26974899v =  at the point 0.81137x = . The data borrowed from lite-

rature [3] are: min 0.2140424u = −  at location 0.5419y = ; min 0.1795728v = −  

at 0.237x =  and max 0.253803v =  at 0.8104x = . The obtained maxu  differs 

from given in [3] by 1.3% in value and 6.7% in location. The minv  differs from 

the value in [3] by 1.3% and 11.8% in location. The maxv  computed in the pre-
sent paper differs from the value in [3] by 6.3% and 0.4% in location. These 
quantitative comparisons may indicate the fact that steady state conditions of 
the flow may not be attained and there must be involved a stronger condition 
for terminations of the calculations based on the value of the v  component. 
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The velocity fields are not presented in this paper in the sake of their 
difficult visualization except of one fragment (shown in Fig. 9) of the upper-
right corner of the cavity in order to demonstrate the recirculating region and 
formation of the secondary vortex at 400=Re  and 10.0t = .  

 
Fig. 10 
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Streamline patterns and stream function values for flow in a driven 
cavity for Reynolds numbers 100=Re  and 400=Re  are presented in Fig. 10. 
They show the development of the flow depending on the Re -number. With 
the grow of the Reynolds number the primary vortex moves in the direction 
of the trajectory of the bottom wall. Fig. 11 contains vorticity contours and 
vorticity values for flow in a driven cavity for 100=Re  and 400=Re , 
corresponding to the previous shown streamline patterns, whereas isobars for 
these flows are shown in Fig. 12. Streamlines, vorticity contours and isobars, 
presented in this paper, coincide closely with those published by other 
investigators [4, 5, 7]. 

 
Fig. 11 

 
Fig. 12 

Fig. 13 demonstrates an effect of Reynolds 
number on location of the primary vortex cen-
ter appearing in the cavity and its comparison 
with result borrowed from [4]. 

The main feature of the method developed 
in this paper consists in the manner of elimina-
tion of pressure from the Navier – Stokes equ-
ations by means of integration. Consequently 
the order of the resulting system is not increa-
sed in comparison with the original one and 
there is no need to create the «artificial» boun-
dary conditions, not existing in physical prob-
lem. The absence of any additional assumptions 
in the governing equations is an advantage in 
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direct simulations. The second advantage is that the elements of the matrix of 
resulting system are constant. They can be computed only once, before in-
tegration. 

The results gained for the flow in the driven cavity by application of pre-
sented method were compared with results obtained by other authors in or-
der to verify the method. These comparisons indicate that the development of 
the method was performed properly.  

The first computations of the flow in more complicated irregular domains 
reveal the great advantage of application of staggered grid. This will be the 
subject of further investigations.  
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ПРО ОДИН МЕТОД ЧИСЛОВОГО АНАЛІЗУ РІВНЯНЬ НАВ’Є – СТОКСА 
 
Îïèñàíî ìîäèô³êàö³þ ³ äàëüøèé ðîçâèòîê ìåòîäó, çàïðîïîíîâàíîãî â [18] äëÿ âè-
çíà÷åííÿ íåóñòàëåíîãî ïëîñêîãî òå÷³ííÿ â’ÿçêî¿ íåñòèñëèâî¿ ð³äèíè. Ãîëîâíîþ 
âëàñòèâ³ñòþ ìåòîäó º âèêëþ÷åííÿ òèñêó ç êëþ÷îâèõ ð³âíÿíü çà äîïîìîãîþ ³íòåã-
ðóâàííÿ òàêèì ÷èíîì, ùîá ïîðÿäîê îòðèìàíî¿ ñèñòåìè íå çá³ëüøóâàâñÿ ïîð³âíÿ-
íî ç âèõ³äíîþ ñèñòåìîþ. Âêàçàíà îïåðàö³ÿ ïðèâîäèòü äî çàäà÷³ ç ïî÷àòêîâèìè 
óìîâàìè äëÿ ñèñòåìè çâè÷àéíèõ äèôåðåíö³àëüíèõ ð³âíÿíü ïåðøîãî ïîðÿäêó. Ó 
ñòàòò³ ìåòîä ìîäèô³êîâàíî øëÿõîì çàñòîñóâàííÿ çñóíóòî¿ ñ³òêè äëÿ êîìïî-
íåíò øâèäêîñò³. Ç ìåòîþ ïåðåâ³ðêè ìåòîäó íàâåäåíî ÷èñëîâ³ ðåçóëüòàòè òà ¿õ 
ïîð³âíÿííÿ ç ðåçóëüòàòàìè, îòðèìàíèìè ³íøèìè àâòîðàìè. 
 
ОБ ОДНОМ МЕТОДЕ ЧИСЛЕННОГО АНАЛИЗА УРАВНЕНИЙ НАВЬЕ – СТОКСА 
 
Îïèñàíà ìîäèôèêàöèÿ è äàëüíåéøåå ðàçâèòèå ìåòîäà, ïðåäëîæåííîãî â [18] äëÿ 
îïðåäåëåíèÿ íåóñòàíîâèâøåãîñÿ ïëîñêîãî òå÷åíèÿ âÿçêîé íåñæèìàåìîé æèäêîñòè. 
Ãëàâíûì ñâîéñòâîì ìåòîäà ÿâëÿåòñÿ èñêëþ÷åíèå äàâëåíèÿ èç êëþ÷åâûõ óðàâíåíèé 
ïóòåì èíòåãðèðîâàíèÿ òàêèì îáðàçîì, ÷òîáû ïîðÿäîê ïîëó÷åííîé ñèñòåìû íå 
óâåëè÷èâàëñÿ ïî ñðàâíåíèþ ñ èñõîäíîé ñèñòåìîé. Óêàçàííàÿ îïåðàöèÿ ïðèâîäèò ê 
çàäà÷å ñ íà÷àëüíûìè óñëîâèÿìè äëÿ ñèñòåìû îáûêíîâåííûõ äèôôåðåíöèàëüíûõ 
óðàâíåíèé ïåðâîãî ïîðÿäêà. Â ñòàòüå ìåòîä ìîäèôèöèðóåòñÿ ïóòåì èñïîëüçîâà-
íèÿ ñäâèíóòîé ñåòêè äëÿ êîìïîíåíò ñêîðîñòè. Äëÿ ïðîâåðêè ìåòîäà ïðèâîäÿòñÿ 
÷èñëåííûå ðåçóëüòàòû è èõ ñðàâíåíèå ñ ðåçóëüòàòàìè, ïîëó÷åííûìè äðóãèìè 
àâòîðàìè. 
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