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NEW TYPE OF INSTABILITY IN FRACTIONAL
REACTION-DIFFUSION SYSTEMS

The linear stage of the two-component fractional reaction-diffusion system stabi-
lity is studied. It is shown that for certain value of fractional derivative index a
new type of instability takes place and the system becomes unstable towards per-
turbations of finite wave number for given value of fractional derivative. As a re-
sult, inhomogeneous oscillations with this wave number become unstable and lead
to non-linear oscillations which result in spatial oscillatory structure formation.
Computer simulation of the system for cubic non-linearity is performed.

Introduction. Fractional reaction-diffusion systems (FRDS) have been
used in the study of the new type of self-organization phenomena [1-7]. The
analysis of the structures in FRDS evolves both from the standpoint of the
qualitative analysis and from the computer simulation. Namely these two
problems are the goal of our present investigation.

Let us consider the reaction-diffusion system for activator m,, inhibitor

n, in the following equations:
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boundary conditions and with the certain initial condition n; .

n,(t,0) = n,(t,1,), dn; |
dx *
o= n?(x). Here
x:0<x<l ;(x,t)eRxR,; 1,,1,,1,L are the characteristic times and
lengths of the system, o/ is a bifurcation parameter.
0%n,(x,1)
ot*
(2), instead of standard time derivatives, are the Caputo fractional derivatives
in time of the order 0 < o < 2 and are represented as [9, 10]

Fractional derivatives on the left hand side of equations (1),
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It should be noted that equations (1), (2) at a =1 correspond to standard re-
action-diffusion systems (RDS) [8, 11]. At a <1, they describe anomalous sub-
diffusion and at o >1 — anomalous super-diffusion [12—14].

Linear stability analysis. Stability of the steady-state constant solutions
of the system (1), (2) corresponds to homogeneous equilibrium state

W(nlﬂnz) = 05 Q(n17n27d¥) = 0 (5)
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and can be analyzed by linearization of the system nearby this solution. In
this case the system (1), (2) can be transformed into a linear system at this
equilibrium point. As a result, we have
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where u(x,t) = H (%, )H, F(u) = VT +an)/m ) 2'12/‘[1 is a Fre-
An,(x,t) ay, /T, (L*V? + ayy)/1,
chet derivative with respect to u(x,t), a;; = W;l , =W, 0y = Q;lz’ Ayy =

= Q;lz (all derivatives are taken at homogeneous equilibrium state). By sub-

stituting the solution in the form wu(x,t)=

An(t)
An,(t)
j=12,..., into FRDS (6) we can get the system of linear ordinary differential

cos kx = u(t)cos kzx, k:llj’
x

equations (6) with the matrix
(a, - K*1*)/1, a5/,
VAT (agy = k2L2)/T2

By simple linear transformation, equations (6) can be converted into the
simplest possible matrix representation, i. e. Jordan canonical form

F =

d’n(t)
=Gn(t), (7)
de*
. . . -1 }\41 .
where G is a diagonal matrix for F: G =P FP = ; eigenvalues A,

0 2,

are determined by the characteristic equation of the matrix F: A, :%(trFi

+ v tr’F — 4 det Fj; n(t) = %u(t); P is the change of the basis matrix corre-

sponding to diagonalization of the matrix F. For stability analysis, it is suffi-
cient to investigate the spectrum of eigenvalues A, for the evolution matrix
G . In this case, the solution of the vector equation (7) is given by Mittag —
Leffler functions [9, 10]

2 (ht*) .
An (t) =Y —————An(0) = G, (L,t*)An (0), i=12. (8)
kZ=;J I'(ka +1)

Using the result obtained in the papers [7], we can conclude that if for
any of the roots

|Arg ()| < ga 9)

the solution has an increasing function component, and then the system is
asymptotically unstable.
Analyzing the roots of the characteristic equations, we can see that at

4detF —tr’F > 0 eigenvalues 7»1’2 are complex inside the parabola 4detF =

= tr’F. For integer o :a =1 the fixed points are the spiral sources (tr F > 0)
or spiral sinks (trF < 0). In general case a:0 <o <2 we can introduce mar-

ginal value a:a =0, = %|Arg(ki)| which follows from the conditions (9) and

determines the stability conditions [2]
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T tr’F
Let us consider the parameters which keep the system inside the parabo-
la detF = itr2F. It is a well-known fact, that at o =1, the domain on the

right hand side of the parabola (tr F > 0) is unstable with the existing limit
cycle, while the domain on the left hand side (tr F < 0) is stable. By crossing
the axis tr F = 0, the Hopf bifurcation conditions become true.

In the general case of a:0<a <2, for every point inside the parabola,
there exists a marginal value of o, where the system changes its stability.
The value of o is a certain bifurcation parameter which switches the stable

and unstable state of the system. At lower a:a <o, = %|Arg(ki)| , the sys-
tem has oscillatory modes but they are stable. Increasing the value of a <
<o, = %|Arg(ki)| leads to instability.

Different limits of instability. Let us consider stability conditions for dif-
ferent possible limits. It is widely known that for integer time derivatives, the
system (1), (2) becomes unstable according to either Turing or Hopf bifurca-
tions.

The conditions for the Turing instability are:

trF <0, detF(k=0)>0, det F(k,) < 0. (11)
By rewriting the last condition we have

2
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In this case, the eigenvalues are real and at a;; >0, a,, <0, a;,a, <0, I <
< L, the conditions of Turing instability for k;, # 0 lead to spatial pattern

formation.
Let us consider the conditions for Hopf bifurcation which are held at

k=0 if

trF > 0, det F(k =0) > 0. (13)
By rewriting the last expression explicitly we have
2
_4a12a_21 > G _ Gy (14)
1% 1 T ]

This condition holds at a,; >0, a,, <0, ay,a,; <0, 7, <71, and leads to homo-
geneous oscillations.

In the case of fractional derivative index, Hopf bifurcation is not connec-
ted with the condition a;; >0 and can hold at certain value of o when frac-
tional derivative index is sufficiently large [1, 2]. In this case, the easiest way
to satisfy this conditions, is when the right hand side of (14) is close to zero
and in this case
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Let us consider a new possible situation when

trF <0, 4detF(0)< tr’F(0),
ddet F(k,) > tr’F(k,). (15)

Analysis of expressions (15) shows that at k =0 we have two real and
smaller then zero eigenvalues and the system is certainly stable. If the latter
inequality takes place for certain value of k;, # 0, we can obtain for matrix F

two complex eigenvalues. As a result, in the case of fractional derivatives, a
new type of instability, connected with the interplay between the determi-
nant and trace of the linear system, emerges. By obtaining such type of eigen-
values, it is possible to find out the value of fractional derivative index when
the system becomes unstable.

In fact, the last two conditions can be rewritten as
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Here we require that ay,a,; <0, a;; <0, a,, <0. In order to satisfy the
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last condition, the easiest way would be to estimate the best value of k =k :

kg = (h_aﬁ).(l‘i_ﬁ)_l . (18)
1 Ta o T
Considering (18), let us estimate the expression
_ g %120
gdetf g “1%2 . (19)
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The last expression determines the value of o, as a function of all parameters
of the system. The greater is the value of expression, the smaller is the value
o,. In order to have the maximum possible value of (19), we can see that it
goes to zero if either 1, or 1, goes to zero and, as a result, a; — 2. In the

intermediate situation, when 1, = 1,, the expression reaches its maximum.
Let us simplify the expression for the case 1, = 1,. From (19) we have
detF . _ — 40,8y
tr’F [[(ay, = ap)@ + L2) - (L2 = 13) 7Y + (=g, — )]
Analyzing the last expression, we can see that at L =1 the denominator is

large and the right hand side tends to zero. In the cases of different lengths

L>1, or L <1, the expression looks sufficiently simple and determines in-
stability conditions for inhomogeneous wave number (18)

) —4a,,a 2
a0=2——arctan{ 12721 2} )
T [(ay, = agy)| + (=ay; — ay,)]
In the case of marginal system parameters (16), we can estimate the last
expression as:

o, = 2—%arctan% ~1.7.

This value seems to be very close to the minimum of a,.
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Computer simulation of the stability curves and inhomogeneous os-
cillatory structures. We consider a very well-known example of the RDS
with cubical nonlinearity [8, 11] which is probably the simplest one used in
RDS modeling. Let us, for example, consider the isoclines for the model with

cubical nonlinearity for activator variable W =mn, —nf —n, and linear for in-
hibitor one @ = —n, + Bn, + & . Their null isoclines (W = @ = 0) are represen-
ted on Fig. la. In this case, a homogeneous solution can be determined from
the solution of the system of equations W =@ =0, and is given by the cubic
algebraic equation

([3—1)ﬁ1+§‘f+04=0. (20)
. . L 1-7; 1
Simple calculation of the derivatives a,; = - >0, a), = - <0, ay =
1 1
=r£ >0, ayy = —%< 0 makes it possible to write the expression at 1, = 1, =1:
2 2

2B _
(my =20 + L) /(L = 1)| + 7
The real and imaginary parts of the eigenvalues for this case at | < L
are represented on Fig. 1b.
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Fig. 1
We can see that real part of the roots is always less than zero and the
imaginary one in some interval of wave number k becomes nonzero. In this
case, if fractional derivative index becomes greater than o, determined by
condition (9), instability holds true. In this case, the instability conditions are
possible to realize for some interval k_, <k <k_, . This means that only the

n
perturbations with namely this wave number are unstable, and they are un-
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stable for oscillatory fluctuation. The stability domains for different [ and k,
k =0,1,2,3, are represented on Fig. 1c, d. With the solid bold line, we indicate

the marginal curve for stability domain with k =0 which corresponds to
homogenous oscillations. Inside this curve, the system is wunstable for
homogenous oscillations [2], while in the domains which bulge out from the
solid curve, we have a new type of instability for the given values of k. This
situation is qualitatively different from the classical RDS, whether either Tu-
ring (k #0) or Hopf bifurcation (k =0) takes place, and this depends on
which conditions are realized easier. In the system under consideration, we
can choose the parameter when we don’t have Turing and Hopf bifurcations
(for k=0) at all. Nevertheless, we obtain conditions for a new bifurcation
which can be realized for non-homogeneous wave numbers only.

The numerical study of the initial value problem of the system (1), (2)
was performed for the conditions at which the inhomogeneous perturbations
become unstable. The system with corresponding initial and boundary conditi-
ons was integrated numerically using implicit schemes with respect to time
and centered difference approximation for spatial derivatives. The fractional
derivatives were approximated using the scheme on the basis of Grunwald —
Letnikov definition for 1< a <2 [9, 10]. The results of the computer simula-
tion of the oscillatory inhomogeneous dissipative structures for different va-
lues of a are presented on Fig. 2. Dynamics of variable n, (Fig. 2a) and n,

(Fig. 2b) is represented on the time interval t € (0, 30) for o =1.94; I =6.28;

A=-50; 1,=12, 1,=1.0; I*=0.05, [* =1; B=2. We used initial condi-
tions in the form of small perturbation of homogeneous state

nyy = n; +0.05cos (k,x), My, = 1, +0.05 cos (k,x).

Fig. 2

In contrast to standard RDS, the inhomogeneous distributions are unstab-
le according to certain wave number and lead to space time oscillation. With
the increase in the parameter o, the amplitude of the oscillatory structures
increases. The emergence of inhomogeneous oscillations, which destroy the
stationary state, leads to a new form of pattern formation. The resulting
structures are rather similar to sending waves, than to standard structures
already investigated in autowave media.

Conclusion. In this article we consider a new mechanism of instability in
reaction-diffusion systems with fractional derivatives. It was shown that at a
sufficient value of fractional derivative index o, the system becomes unstable
according to inhomogeneous perturbation (k # 0) with eigenvalues with ima-
ginary part. As a result of this instability, pattern formation can be represen-
ted as oscillatory structures, similar to inhomogeneous standing waves in li-
near systems.
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HOBWW TUNM HECTIMKOCTI B CUCTEMAX PEAKLII-AU®Y3Ii
3 NOXIAHUMU APOBOBOIO NOPAOKY

Hocaidaxceno atnitiny cmadito cmivikocmi 080KOMNOHEHMHOT cucmemu peakyii-ougdysii 3
Opobosumu noxidHumu. Ioxa3aro, w0 NPU NeeHOMY 3HAUEHHT NOPAOKY 0pPob608oi noxid-
HOT MaA€ MicYe HOBUL MuUn Hecmillkocmsi 1 cucmema Cmae Hecmitikoro cmocosHo 0esaKo20
LBUNBOBO2O YUCAA 04 Yb020 3HAUeHHA 0P06080i NMoxiOHoi. B pe3yavmami Hecmitikocms
30Ypend 3 YUM LBUALOSUM UUCAOM Y cucmemi Hopmyromses npocmoposo-HeodHoPioHs
KoAusHi cmpyxmypu. IIpogedeno xomn'romepHe M0O0eAI08AHHA cUCMEMU OAs KYOIUHOL
HeATHIUHOCMA.

HOBbIW TUM HEYCTOWYMBOCTU B CUCTEMAX PEAKLIMN-OUDDY3UN
C NPOU3BOAHLIMU IPOBHOIO NOPALOKA

Hccaedosana aunetinas cmadus ycmoluusocmu 08YXKOMNOHEHMHOU cucmemdvl peax-
yuu-ouPgdysuu ¢ 0podruvimu npouszsodusimu. Ilokasano, u¥mo npu onpedeseHHOM 3HAUe-
HUU nopadka 0podHOU NPOU3sOOHOU uMeem Mecmo HO8bLlL U0 Heycmouuusocmu u Cuc-
mema CMmaHOo8UMCS HeYycmouuusoti N0 OMHOWEHUID K ONnpedeseHHOMY B0AHOBOMY UUCAY
0as 3a0aHH020 3HAUeHUS OPOOHOU npou3sodHol. B pesyavmame HeoOHOPOOHDBLE 803MY-
WeHUS C IMUM B0AHOBBLM UUCAOM CTMAHOBAMCS HEYCMOUUUBLLMU U NPUBISIM K PHOP-
MUPOBAHUIO NPOCMPAHCMEEHHO-HEOOHOPOOHDBLL KOALOAMEABHBLL CMPYKMYP 8 cucmeme.
ITposedero xomnwvromepHoe MO0CAUPOBAHUE CUCTEMDbL 0N KYOUUECKOU HeauHelUHOCTU.
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