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WELL-POSEDNESS OF LORD — SHULMAN THERMOPIEZOELECTRICITY
VARIATIONAL PROBLEM

On the basis of initial boundary wvalue Lord — Shulman thermopiezoelectricity
problem we formulate the corresponding variational problem in terms of vector of
elastic displacements, electric potential, temperature increment and vector of heat
fluxes. Using energy balance equation of the variational problem, we establish the
sufficient conditions for regularity of input data of the problem and prove the
uniqueness of its solution. For proving the existence of the general solution of the
problem we use Galerkin semidiscretization by spatial variables and show that the
limit of the sequence of its approximations is a solution of variational problem of
Lord — Shulman thermopiezoelectricity. This fact allows us to construct a reason-
able procedure for calculation an approximation of the solution of this problem.

The classical theory of linear thermopiezoelectricity describes the interac-
tion of thermal, electrical and mechanical fields in pyroelectric material and
was introduced by R. D. Mindlin [17]. The further study of this theory was
performed by W. Nowacki [18]. Eliminating the electrical field from the scope,
we obtain a classical thermoelasticity model. The main drawback of the latter
theory (and therefore the classical thermopiezoelectricity theory too) is the
assumption of infinite speed of propagation of thermal signals in the materials.
To overcome it, Lord and Shulman [16] proposed a modified theory of ther-
moelasticity (LS-theory), where the classical Fourier’s law of heat conduction
is replaced by Maxwell — Cattaneo equation with introduction of so-called
«relaxation time». Similar generalizations of the thermoelasticity model can be
found in [2]. Chandrasekharaiah was the first researcher to apply the LS-the-
ory to thermopiezoelectricity [10]. Nowadays a some few generalized theories
of thermoelasticity and thermopiezoelectricity is known, namely Green —
Lindsay, Chandrasekharaiah — Tzou, Green — Naghdi etc. A comprehensive
review of the existing generalization theories can be found in [8, 11, 13, 14].
Researchers used different techniques to the solutions of the generalized
thermopiezoelectricity problems (see [9, 12, 19]).

In authors’ previous works [3, 5, 6, 20] the classical thermopiezoelectricity
problem was considered. In our paper [21] forced vibrations of pyroelectric
materials under LS-theory has been studied. In this article, using similar
techniques as in [7], we construct the corresponding variational problem for
LS-theory of thermopiezoelectricity and prove its well-posedness.

In Section 1 the initial boundary value problem of Lord — Shulman ther-
mopiezoelectricity is described. Section 2 is dedicated to construction of the
corresponding variational problem. Energy balance law is obtained in Section
3 and it is then used as an important technique for investigation of the varia-
tional problem. In Section 4 a priori energy estimates are obtained by means
of transformations applied to energy balance law. In order to prove the exis-
tence of variational problem solution, finite element semidiscretization is done
as described in Section 5. Finally, in Section 6 the well-posedness of the varia-
tional problem is proved.

1. Initial boundary value problem of Lord — Shulman thermopiezo-

electricity. Let QO be the bounded connected domain of points x = (x;,...,x4) €
e R? with Lipschitz continuous boundary dQ =T, and n = {n,}%, is a unit

outer normal vector, n; = cos(ﬁi). Also let us consider time interval [0,T],
0<T<+w. Our goal is to find wvector of elastic displacements

u= {ui(x,t)}fﬂ, electric potential p = p(x,t), temperature change 0 = 0(x,t),
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and heat flux vector q = {qi(x,t)}il, which satisfy the following equations in

Qx(0,T] (here and everywhere below the ordinary summation over
repetitive indices is assumed):

pu; — f;)—o,,; =0, (1)
Dlrc,k + Jk,k =0, (2)
p(TyS —w)+q;, =0, (3)
tq; +9; = —h0 ;. (4)

The above expressions (1)—(4) are equation of motion, Maxwell’s equation in
differential form, heat conduction equation and modified Fourier’s law (also
known as Maxwell — Cattaneo equation). The parameter ¢, > 0 is a so-called

«relaxation time». Putting ¢, = 0 into equation (4) eliminates heat flux q from

the set of independent variables and we come to the equations of the classical
thermopiezoelectricity problem [5, 6].

In the equations (1)—(4) are used

— the constitutive relations for stress tensor

G, = cijkmakm(u) — cijkm(kae + aijkmakm(u') — ekijEk(p) s (5)
— electric displacement vector

Dy, = ApmE,, (D) + ekijsij(u) +m0, (6)
— entropy density

pS = pch[;le + cijkmakmaij(u) + . E . (p). (7)

Vector J, is the electric current density, generated by a free electric charge

density. We assume that pyroelectric material is not an ideal dielectric, and
the electric current flows through the pyroelectric specimen and satisfies
standard Ohm’s law, ie.

J. =z, E,, (D). (8)
Strain tensor €,, and electric field vector E, are assumed to satisfy the

relations
1
€im (u) = E(uk,m + um,k) ’

E.(p)=-py, 9)
where comma in the subscript stands for the partial derivative by the spatial
variable, ie. g, = dg/ox) .

In (5)—(8) notation p is a mass density of pyroelectric material, c, is its
specific heat and 7T, is a fixed uniform reference temperature of the
specimen. Notation f; is a vector of volume mechanical forces and w
and c

represents volume heat forces, a are viscosity and elasticity

ijkm ijkm
coefficients of a pyroelectric material with the common properties of
symmetry and ellipticity, and e, are coefficients of piezoelectricity tensor
with property

Crij = Cxji -
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Coefficients 2., %;, Ay, Oy, are the symmetrical and elliptical electric
conductivity, dielectric susceptibility, heat conductivity and thermal expansion

coefficients respectively. =, are pyroelectric coefficients, which satisfy the
inequality [1, 18]
LionYicYm + 20 Y& +pe,& 20 VEy, e R.

The system of partial differential equations (1)—(4) is complemented by
boundary conditions

u; =0 on r,x[0,T, r,cTI, mes(,)>0,
o;n; =06, on r,x[0,T, TI,=T\T,,

p=0 on pr[O,T], F,cl, mes(,)>0,
(D), +J;,)m,, =0 on [, x[0,T], Tycl, T,NT,=4d,

I(Dllc+‘]k)nkdy:1 on [, x[0,T], T,=T\(TyNT,),
r

e

E, (p)-n.E, (p)n, =0 on r,x[0,T],

0=0 on [y x[0,T], TycI, mes(Ty) >0,

qmn; =0 on L, x[0,T, I, =I\T, (10)
and the initial conditions

ul,_y =u, u,|t:[) =Vy Pliog =Py

0l,_g = 0y, ), =9 in Q. (11)

Here © = {c_ii(x,t)}f:0 and I =1I(x,t) represent vector of mechanical loading

and external electric current, respectively.
Also, for convenience, similar to [10], we introduce artificial coefficients

®;; to satisty the following condition:

To@ A j = iy s

where 5, are the elements of the unit matrix. Coefficients ®,;; also satisfy

ellipticity conditions. Then the modified Fourier’s law (4) can be rewritten in
the following form:

to@q; +@uq, = —T,'0 ;. (12)

We will use equation (12) instead of (4) in our further analysis.
2. Variational problem statement. Let us introduce the spaces of admis-
sible elastic displacements, electric potentials, temperature increments (rela-

tive to the initial temperature T ), and heat fluxes, respectively:
V={veH'@]":v=0 on T},
P={reHYQ):r=0 on [,, r=const on r,},
Z={{eH(Q):¢=0 on Ty},
H:{yeH(div;Q):yi,divyeLZ(Q),yini =0 on Fq}.
We denote ®:= VxPxZxH and the dual space ® := V' xP'xZ xH' .
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The initial boundary value problem of thermopiezoelectricity (1)—(3), (5)—
(12) admits the following variational formulation:

find: Vv = (u,p,0,q) € L*(0,T;®)  such that
m(u'(t),v) + a(u'(t), v) + c(u(t),v) — e(p(t), v) -
- B(6(2),v) = (15(t),v),
x(D'(t),7) + 2(p(t), ) + n(B'(t), ) + e(r, (1)) = (£,(t),7),
s(0'(),€) + Ty (div q(t), ) +
+ (&, p'(1) + BC,u'(1) = (£4(1),C),
to(q'(t),y) - T, (divy, 6(t)) + =(q(t),y) =0 Vte(0,T],
m@'(0) - v,,v) =0,  c(u(0)-u,,v)=0,
x(p(0) —py,7) =0,  s(6(0)-6y,0) =0,
x(q(0)-qy,y) =0 Vy=(v,1,(,y)e®, (13)

where bilinear and linear forms are defined by the following expressions:

m(u,v) = Ipuivi dx, a(a,v) = jaijkmaij(u)skm (v)dx,
Q Q

cla,v) = j ci].kmsij(u)skm(v) dax,
Q

e(r,v) = IekijEk(r)aij(v)dx VuveV,
Q
2(p,7) = [ 2 B (P)E,, (1) da,

Q

1P, 7) = [ Aem B (P)E,, (r)dx  Vp,reP,
Q

BC,v) = J Cijkm(lkmeij(v)@ dax,
Q

(1) = [ mEy (r)G da,
Q

$(0,8) = jpchO—lec; de V(eZ,
Q

©(q,y) = [ gy, dx  Va,y € H,

Q
(1,,v) = jpfivi dx + j cv,dy VveV,
Q o
(¢, ry=-Irl. VreP, (es,c;>:jT0—1pwc;dx VieZ. (14)
Q

Here divy =y, for each vector valued function y = y(x) € H'(Q), and

(z,w) = jzw dax Vz,w e L2(Q),
Q
denotes the inner product. Note that the bilinear forms in (14) have clear
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physical interpretation [3] and due to continuity and ellipticity of some of
them we can introduce the following energy norms:

IV, =m,v), VP =ev,v), v =a(v,v) VveV,
|7l = x(r,m), 7 =2rr)  vreP,

ICl? =560 veez, |yl ==(y,y) VyeH.

3. Energy balance law. We assume the variational problem (13) admits a
solution ¥ = (u,p,0,q). Then we substitute ¢ = (v,r,{,y) =y into (13) and
after summation we obtain the following integral identity:

L@, + 1 la@I + [ + [P + 2500, pe) + [0+

+[la O +llp@2 +la@Ii] = (N@©), w(t)) VYt e(0,T], (15)
where
(N,@):=(L_,v)+(l,,my+(Ly,C) Ve =(v,7,0,y) e®.

Integrating (15) over any time interval [0,t] < [0,T] we obtain a so-called
energy balance equation for LS-thermopiezoelectricity:

SO, + 1 la@l +lu@l + IO +2x(6(), p(e) + [0 ] +
t
[ WG +Ip@IE + a1 ds =
0

= SO, +t laI +[u©] +[pO)]; +
+27(6(0), p(0)) + |6(0)|*] +

+j (N(s),y(s))d vt €[0,T]. (16)
Here '
L@, + 1 la] 2] = Klw()]
is the kinetic energy,
SVl =S [®IE + I +2m(00), p®) + [00]] = Elw(®)]
is the potential energy, and

W)y = o' O +[p®)]2 + a2

is the energy dissipation of the considered pyroelectric specimen.
In this terms the relation (16) can be rewritten in a shorter form:

t
SIWOL, +t la®I +Iwle]+ [ ws)lg ds =
0

%["“ O, +t la©] +|wO)g]+

t

j (N(s),¥(s))ds Vtel0,T]. (17)
0
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4. A priori energy estimates for LS-thermopiezoelectricity. The energy
identity (17) will be a basis for our future estimations. Here we use the tech-
nique similar to the one described in [15].

Taking into account initial conditions of the problem (13) and using
Cauchy — Schwarz inequality we obtain

[w©l,, <lvol,,- (18)
In similar way we receive

lwOle <lwole.  TaOI, <[ayl, (19)

where
Y, = (uo,poyequo)'

Again, using Cauchy — Schwarz inequality we obtain
t t

[ (N(s), w(s))ds < %j INGIE +[ws)5]ds vt elo,T]. (20)
0 0

Substitution of the above estimates (18)—(20) into (17) gives the following a
priori estimation:

t
SIC@E, + 6 la®IZ +Iv@la] + [ lw)lg ds <
0
t
< LIvol?, +tollaol? +[woll )+ L ] INGIE s +
0

t
+%j lws)|3 ds  vtelo,T],
0
or more precisely

t
W@, +t la@IE + lw®lg] +2] lws) ds <
0
t
< lvy ||fn + o [l "i +wo ”fp] +I INGs)[ ds +
0
‘ 2
] WO, 41l + Tyl +
0

S
+2[ [yl dc}ds vt e [0,T]. (21)
0
Now, applying the Gronwall’s lemma to (21) we get

t
[a'@, +to la@I +Iw)l +2 [ W)l ds < v, |}, +
0

t
g |ag 2 + | wolp + [ INGIZds] vt eo,T], (22)
0

where value C = const > 0 is independent from the variables of our interest.

Remark 1. The expression (22) shows that the most complete estimation
of dynamic behavior of a pyroelectric specimen can be done by the following
norm:
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t
lwolly =[O, +t la®E +lw®l +2] lws)pds vt e[0,T].
0

Proposition 1. The estimate (22) make sense if the input data of the LS-
thermopiezoelectricity problem (13) satisfy the following regularity conditions:

v, € [L*Q)Y, NeLX0,T;®),

Vo = (ug,pg,0y,4,) € [H(Q)]? x LX(Q) x LP(Q) x [LA(Q)]". (23)
Moreover, a solution y = (u,p,0,q) of the problem (13), if one exists, is

characterized by the following inclusions:

u' e L”(0,T;[L*(Q)]*) N LX0,T; V), weL”0,T;V)NL*0,T;V),
p e L0, T; L*(Q)NL*0,T;P),  0eL7(0,T; L*(Q) N L(0,T;E),

q € L*(0, T5[LX(Q)]Y) N L*(0, T; H) , (24)
and stability inequality

t
lv@) < c[llvo 12+ to lao |2+ [wollp + | NG ds} vte[0,T], (25)
0

where the value C =const >0 is independent from the wvariables of our
interest.
Proposition 2. A solution y = (u,p,0,q) of the problem (13), if one exists,

18 unique.

P r o of We prove this assertion by contradiction. That is, assume the
contrary, namely, there exist different solutions w,(t) and W,(t)of the
problem (13). Then their difference W(t) =y, (t)— Y,(t) # 0satisfies the
homogeneous equation of (13). Hence, by the Proposition 1 we have

vl <0 vtelo,1],

which contradicts the assumption y(t) # 0. ¢

5. Finite element semidiscretization. In order to prove the existence of a
solution Wy = (u,p,0,q) of the problem (13) and to get an effective numerical

algorithm for finding it, we use the finite element method.
To start discretization of the problem (13), we firstly triangulate the do-

main Q. Let 3, be a shape regular triangulation of the domain Q consisting

of closed simplicial elements, J, = {K}. We denote by hy = |K|l/d the local

mesh size for each element K, which is assumed to intersect at most one

electrode surface I, or ' and h = maxh, . Moreover, we suppose that we

e’ -
Ke3y

can generate a sequence of nested grids {3,} with h — 0, for example, by
the bisection method.
On the triangulation 3, we define a piecewise polynomial finite element

space ®, =V, xP, xZ, xH, < ® with the components
V, ={veVNI[CQ]" :v|, €P,(K) VKe3,},
P, ={rePNCE):v|, eP, (K) VKe3J,},

Z, ={r eENCQ):v|, € P, (K) VKe3,},
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and

H, ={ycH:y|, eRT, (K) VKe3,},

where P, (K) is the space of polynomials of degree at most m =1 defined on

K, and RT,,(K) is the space of Raviart — Thomas polynomials

RT, (K) =[P, (K)* +xP, _(K), x:=(x;,..., %)

(see [4] for details). Here and below we assume that a set of spaces {®,} is

dense in separable space ®, ®, c @, ,if A>h.

Then for each h >0 we define the semidiscrete finite element appro-

xXimation

VY, in such way:

given: h >0, N=(,/¢,¢y)e V' xP xZ,

find:

(Vg "y, Py, By, 4g) € [LH(Q)]? x V x L2(Q) x L}(Q) x [L2(Q)]°,

v, = (u,,p,,0,,4q,) € L*(0,T;®,) such that
m(uj, (t),v) + a(u, (), v) + c(u, (£), v) - e(p, (), v) -

= B(6, (1), v) = (L, (1), v),

1Py (),7) + 2(py, (), 7) + (0}, (£), 1) + e(r, ), (1)) = (€, (1), 7)),
$(0},(£),0) + Ty ' (div @y, (£), &) + (G, Py (1)) + BG, wy (1) = (£4(1),6),
tox(q, (), y) - Ty (divy, 0, (1) + 2(q, (£),y) =0 Vte(0,T],
m(u;, (0) - vy, v) =0,  c(u,(0)-u,v)=0,
1(0r(0) = py.m) =0, 5(0,(0)-6,,5) =0,

x(qh(o) - q()vy) =0 V(p = (V5 T;va) € ¢h . (26)

Since dim @, < +oo, the problem (26) is the Cauchy problem for system

of ordinary differential equations of the following kind.:

MU'"(t) + AU'(t) + CU(t) - ETP(t) - B'6(t) = L_(t),

XP'(t) + [170'(t) + ZP(t) + EU'(t) = L, (1),

SO’ (t) + [IP'(t) + W' F(t) + BU'(t) = Ly (t)

K[F(t) + t,F'(t)] - Wo(t) = 0 Vte(0,T], (27)
MU'©0) =V, cuw© =0’ = XP0)=P°,

S6(0)=0", KF(0)=F". (28)

The initial value problem (27), (28) is nonsingular, therefore this problem
is solvable. Moreover, taking into account the Proposition 1 we obtain the

following
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Proposition 3. Let the input data of the LS-thermopiezoelectricity problem
(13) satisfy the regularity conditions (23).
Then for each h > 0 there exists one and only one solution
Y, = (uhvph,eh,qh)
of the problem (26) such that

t
w1 = | Iwo 1 lan .+ ol + [ INGIE as] ve <071, 29)
0

where C = const > 0 is independent from the variables of our interest.

6. Existence of the solution for LS-thermopiezoelectricity problem. Now
we are ready to formulate and prove the main result of this article.

Theorem 1. Let us assume that the input data of LS-thermopiezo-
electricity problem are characterized by regularity conditions (23). Then the
variational problem (13) has a unique and stable solution ¥y = (u,p,0,q) which

is characterized by the properties of regularity (24) and stability (25).
P r oo f. We can conclude from (29) that when h — 0, the sequence of
semidiscrete approximations {y,} ({u;} respectively) generates of a bounded

subset in L2(0,T;<I>) (Lw(O,T;[LQ(Q)]d) respectively). Therefore, we can select
from the {y,} ({u,} respectively) a subsequence {y,} ({u}} respectively)
such that y, ({u'A} respectively) *-weakly converges to ¥y (u’ respectively)

in L*(0,T;®) (L”(0, T;[L*(Q)]*) respectively).
We will now verify that y is a solution of the problem (13). We introdu-
ce the space of functions ¢ of the form

= {0 = (v Ly e CO,T;®,): 9|, _p = 0}.

Substituting @ € W, to the equations of (26) and integrating them on (0,T)

by parts, we obtain:
T

J [-m(u}, V) + a(u, v) + c(u,, v) - e(p,, v) — B0, v) — (1_,v)|dt =
0
= m(u; (0),v) = m(v,,v),
T
I [—X(ph,r') +2(py,,T) + (0, 7) + e(r,uy) - (Ee,r>] dt =
0
= x(pp(0),7) = x(py, 1),
T
[ =50, €)+ Ty (div g, € + 7(&, ) + BG uh) = (¢, £)] de =
0
= 5(0,,(0),8) = s(6,,6),
T
[ [-ty2(a,,¥") - Ty ' (div y,0,) + @(q;, y)]dt = tye(q,(0),y) =
0
=tyx(ay,y) VO =(v,7,Cy)eW,.

Passing h — 0 and again using integration by parts we get the following
system of equations:
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T
J [m(u",v) + a(u’,v) + c(u,v) - e(p,v) - B(O,v) — (1_,v)]dt =
0

== m(u’(o) - V07 V) )

[x(p',7) + 2(p, ™) + n(®',7) + e(r,u’) — (£, 7)]dt = —3(p(0) — Dy, T)

S =3

[s(6',8) + Ty ' (div @, §) + (&, p') + B(C, w) = (£ (2),C)]dt =

S —

= _8(9(0) - e[)7€) )
T
[ ltox(a’,y) - Ty (div y, 0) + =(q,y)]dt =
0

= —tOEB(q(O) _q07y) V‘P = (virigiy) € WA' (30)

Since set @, is dense in space @, equations (30) are true for each

(0 NS Cl([O,T];CI)). Therefore, we can conclude, that

m(u'(t),v) + a(u'(t), v) + c(u(t), v) — e(p(t), v) = B(B(t), v) = (15(t),v),
x(P'(t),7) + 2(p(t), 7) + (O (t), ) + e(r,u'(t)) = (£,(t),7),

s(8'(t), €) + T, (div q(t),8) + m(&, p'(1)) + B(G, u'(1) = (L4 (2),6),
toe(d'(t),y) - Ty (divy,0(t)) + 2(q(t),y) =0 Vt e (0,T],

m(u'(0) - vy, v) =0, x(p(0) —py,7) =0,  s(6(0)-6,,8)=0,

x(q(o)_qo,)’)zo V(P:(Vy"'y(;y)’)eq)'
Finally, from the unused initial condition of (26) we get

c(uy,v) = c(u,(0),v) > c(u(0),v) =0 VveV.

Conclusions. The initial boundary value Lord — Shulman thermopiezo-
electricity problem has been converted to the corresponding variational prob-
lem. Starting with energy balance law, we has been able to establish the suf-
ficient conditions for regularity of the problem of input data, which guarantee
the uniqueness and continuous dependence of the solution of the variational
problem. We have also presented the constructive proof of existence of
solution by means of Galerkin semidiscretization by spatial variables. Such
approach allows us to construct a reasonable procedure for determination the
approximate solution of the problem with use of the finite element method.
The complete numerical scheme for solving Lord — Shulman thermopiezo-
electricity variational problem can be obtained by complementing Galerkin
semidiscretization by spatial variables with discretization in time. For example,
one-step recurrent scheme (like in our previous works [3, 6]) can be used for
this purpose.
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KOPEKTHICTb BAPIALIWHOI 3A0AYI TEPMOITE30ENEKTPUKA
JIOPOA - WWYJIbMAHA

Ha ocnosi mouamxoso-kpatiogoi 3adaui mepmon’e3oenexmpuru Jopda — Llyavmana
chopmyavo8ano 8i0N08IOHY il 8apiayitiny 3adauy 8 mepminaxr 8eKmopa NPYIHUL 3Mi-
WeHdb, eneKmpuyHoZ0 NOMeHYIaNY, NPUPOCTY Mmemnepamypu ma 6eKmopa Meniosur
NoOMmoxKi8. 3 BUKOPUCNAHHAM eHePemuUuyH020 PIBHAHHA 8aPiayitinol 3a0aui 86CMaHO8AeHO
docmammi ymosu pezyaaprocmi exioHuxr danux 3adaui, a maxox 0ogedeno eOuHicMmbd il
p0o38’a3KYy. ¥ 0ogedeHHT ICHYBAHHA Y3A2AAbHEHO20 PO38’A3KY 8UKOPUCMAHO HanigducKkpe-
musayito I'anbopKina 3a NPOCMOPoSUMU 3MIHHUMU T NOKAZAHO, ULO 2PAHUYSL NOCAI008-
IIyavmana, wo O0ae modxcausicms nodbydysamu oOIPYHMOBAHY NMPOYedypy O6UUCIeHHS
anpoxcumayii po3e’a3Ky yiei 3adaut.

KOPPEKTHOCTb BAPUALIMOHHOW 3AOAYM TEPMOMNLE3OJNEKTPUYECTBA
JIOPOA - LUYNIbMAHA

Ha ocHosaHuu Hauarvho-Kpaesoli 3adauu mepmonwvezoarexmpuuecmea Jlopda — Ilyas-
MAHA CPHOPMYAUPOBAHA COOMBEMCMBYOULASL ell 8APUAYUOHHAA 3a0aUa 8 MePMUHAX 8eK-
mopa Ynpysux cmewenull, aieKxmpuieckoz0 NOMeHYuUaLd, NPUPLULLHUSL Mmemnepamypol
U 8eKMopa menaosvlx nomoxos. C ucnosb3oearuem IHepemuseckozo YypasHeHus 8apua-
YUOHHOU 3a0auU YCMAHOBAEHBL OOCTMAMOURDBLE YCAOBUSL DPELYALPHOCTNU UCLOOHBLL Oar-
HuLX 3a0auu, a makdce 0oxadana eduHcmeeHHOCMD ee peuwerus. B dokasameawvcmee cy-
ULeCmMmeo8aHUsl 0000ULEHHO20 PeueHUs. UCTI0AB308AHA Noayduckpemudayus Iarepruna no
NPOCMPAHCMBEHHBLM NEPEeMEHHBLU U NOKA3AHO, 4MOo npeder mocaedosamesbHocmMu ee
NPUBAUNCCHUY SBALeMCS PeuleHUem 8APUAYUOHHOU 3a0aUU MePMONbe30ILeKmpPuLecmasa
Jlopda — Ilyavmana, umo O0aem B03MOHCHOCMH NOCMPOUMD OOOCHOBAHHYIO NPOYedypy
BHLUUCACHUSL ANNPOKCUMAYUUU PeUuteHUs IMOU 3a0auu.
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