В. В. Панасюк, М. П. Саврук

ДО ПИТАННЯ ПРО ВИЗНАЧЕННЯ КОНЦЕНТРАЦІЇ НАПРУЖЕНЬ У РОЗТЯГНУТІЙ ПЛАСТИНІ З ДВОМА ОТВОРАМИ

Наведено короткий огляд досліджень пружної взаємодії двох отворів у розтягнутій пластині. Особливу увагу приділено вивченню концентрації напружень на контурах близько розміщених отворів. Числові результати отримано методом сингулярних інтегральних рівнянь для двох однакових еліптичних отворів. За допомогою граничного переходу знайдено коефіцієнти концентрації напружень у вершинах напівнескінченних параболічних вирізів. Проведено порівняння числових даних з відомими аналітичними розв'язками для двох кругових отворів і колінеарних тріщин.

Дослідження концентрації напружень біля отворів в елементах конструкцій розпочав ще в 1898 році Ґ. Кірш. У Львові такі дослідження започаткував Г. М. Савін упродовж 1945–1952 рр. Наукові здобутки Львівської школи механіків синтезовано та узагальнено в монографіях Г. М. Савіна [10, 11]. У цих монографіях в основному було розглянуто задачі концентрації напружень біля одного криволінійного отвору з використанням методу Колосова – Мусхелішвілі [2] та побудови функцій конформних відображень у вигляді рядів. Плоску задачу про концентрацію напружень навколо двох однакових кругових отворів у нескінченній пружній ізотропній площині розглянув Ч. Лінг [24] (див. також [10]). Розв'язок задачі отримано у вигляді рядів Фур'є за допомогою біполярних координат. Для двох нерівних кругових отворів вперше такий розв'язок побудував Я. С. Підстригач [6, 9] (див. також [7]). Дослідження цієї проблеми стало темою його кандидатської дисертації [8], яку він виконав під керівництвом акад. Г. М. Савіна. На той час це було значним досягненням у цій галузі науки.

Нижче методом сингулярних інтегральних рівнянь розглянуто задачу про взаємодію двох еліптичних отворів у пружній ізотропній площині. Основну увагу зосереджено на вивчення концентрації напружень, коли віддаль між контурами отворів є малою. У цьому випадку максимальні напруження на контурі отворів стають нескінченно великими. У зв'язку з тим виникають значні труднощі обчислювального характеру при дослідженні концентрації напружень біля близько розташованих отворів. Асимптотичну поведінку напружень при зближенні отворів аналітичними методами удається дослідити лише у випадку двох однакових кругових отворів і колінеарних тріщин. Сучасні комп'ютери та нові числові методи розв'язування інтегральних рівнянь дають змогу числовим шляхом визначити порядок особливості максимальних напружень і знайти числовий коефіцієнт при цій особливості для отворів різної конфігурації. Знання особливості напружень має важливе значення при розробці прямих числових методів розв'язування подібних задач. Такі дослідження можна використати також для отримання числових розв'язків нових задач за допомогою граничного переходу. Саме таким шляхом нижче знайдено коефіцієнти концентрації напружень у вершинах напівнескінченних параболічних вирізів.

Два кругові отвори. Розглянемо розв'язок задачі про концентрацію напружень біля двох нерівних кругових отворів, побудований Я. С. Підстригачем [6, 9]. Нехай пружна ізотропна пластина послаблена двома нерівними круговими отворами L_1 і L_2 з радіусами R_1 і R_2 . Центри отворів лежать на осі Ox в точках ($-d_2$,0) і ($0,d_1$) (рис. 1). Введемо біполярні координати ξ , η за допомогою співвідношень

$$x = \frac{\tilde{a} \sin \eta}{ch\eta - \cos\xi}, \qquad \qquad y = \frac{\tilde{a} \sin\xi}{ch\eta - \cos\xi}, \qquad (1)$$

де *ã* – сталий параметр розмірності довжини.

112 ISSN 0130-9420. Мат. методи та фіз.-мех. поля. 2008. - 51, № 2. - С. 112-123.

Розглянемо координатну лінію $\eta = \alpha$. Вилучивши параметр ξ з рівностей (1), знайдемо, що крива $\eta = \alpha$ є колом

$$(x - \tilde{a} \operatorname{cth} \alpha)^2 + y^2 = \tilde{a}^2 \frac{1}{\operatorname{sh}^2 \alpha}$$

з центром у точці ($\tilde{a} \operatorname{cth} \alpha, 0$) на осі Ox і радіусом

$$R = \tilde{a} \frac{1}{|\mathrm{sh}\alpha|}.$$
 (2)

Таким чином, належним вибором величин α_i можна добитися, щоб координатні лінії $\eta = \tilde{\alpha}_i, i = 1, 2$, збігалися з контурами отворів $L_i, i = 1, 2$. Такі значення $\tilde{\alpha}_i$ визначають співвідношення

$$\begin{split} & \mathrm{sh}\,\tilde{\alpha}_1 = \frac{M}{2m\lambda_0}, \qquad \mathrm{sh}\,\tilde{\alpha}_2 = -\frac{M}{2\lambda_0}, \qquad \lambda_0 = \frac{d_1 + d_2}{R_1 + R_2}, \qquad m_0 = \frac{R_1}{R_2}, \\ & M = \sqrt{(m_0^2 + 1)(\lambda_0^2 - 1)^2 + 2m_0(\lambda_0^4 - 1)}. \end{split}$$

Параметр \tilde{a} тепер можна знайти з рівності (2), поклавши $R = R_1$, $\eta = \alpha_1$.

Бігармонічне рівняння для функції напружень U у біполярних координатах (1) зведено до лінійного диференційного рівняння зі сталими коефіцієнтами для функції gU [19]

$$\left(\frac{\partial^4}{\partial \eta^4} + 2\frac{\partial^4}{\partial \eta^2 \partial \xi^2} + \frac{\partial^4}{\partial \xi^4} - 2\frac{\partial^2}{\partial \eta^2} + 2\frac{\partial^2}{\partial \xi^2} + 1\right)(gU) = 0, \qquad (3)$$

де $g = (ch\eta - cos\xi)/\tilde{a}$.

Уважатимемо, що на контурах отворів L_i , i=1,2, задано нормальні $\sigma_\eta^{(i)}$ та дотичні $\tau_{\xi\eta}^{(i)}$ напруження, які можна подати у вигляді тригонометричних рядів

$$\sigma_{\eta}^{(i)} = \sum_{n=0}^{\infty} \sigma_n^{(i)} \cos n\xi, \qquad \tau_{\xi\eta}^{(i)} = \sum_{n=1}^{\infty} \tau_n^{(i)} \sin n\xi, \qquad (4)$$

а на нескінченності напруження відсутні, тобто

$$(gU)_{\infty} = 0.$$
 (5)

Розв'язок рівняння (3) можна знайти методом відокремлення змінних. Задовольнивши умови однозначності зміщень, візьмемо його у вигляді

$$\frac{1}{a}gU = D_1\eta \operatorname{ch} \eta + K(\operatorname{ch} \eta - \cos \xi) \ln (\operatorname{ch} \eta - \cos \xi) + \sum_{n=1}^{\infty} f_n(\eta) \cos n\xi,$$

де

$$\begin{split} f_n(\eta) &= A_n \mathrm{ch}\,(n+1)\eta + B_n \mathrm{ch}\,(n-1)\eta + C_n \mathrm{sh}\,(n+1)\eta + D_n \mathrm{sh}\,(n-1)\eta\,, \\ f_1(\eta) &= A_1 \mathrm{ch}\,2\eta + B_1 + C_1 \mathrm{sh}\,2\eta - D_1\eta, \qquad n>1\,. \end{split}$$

Довільні сталі A_n, B_n, C_n, D_n треба вибрати так, щоб задовольнити крайові умови (4). Стала K визначається з умови на нескінченності (5), яка зводиться до рівняння

$$\sum_{n=1}^{\infty} (A_n + B_n) = 0 ,$$

коли врахувати, що нескінченно віддалена точка площини має координати $\xi=\eta=0\,.$

Урахувавши відомі [19] вирази нормальних σ_{η} і дотичних $\tau_{\xi\eta}$ напружень у біполярних координатах через функцію gU, з крайових умов (4) отримуємо систему лінійних алгебричних рівнянь для визначення невідомих сталих. У конкретних випадках зовнішнього навантаження вдається аналітично виразити шукані сталі A_n , B_n , C_n , D_n через відомі коефіцієнти $\sigma_n^{(i)}$ і $\tau_n^{(i)}$. Я. С. Підстригачем побудовано такі розв'язки, коли на краях отворів діють сталі тиски, різні на різних контурах, а також у випадку всебічного розтягу пластини за відсутності навантаження на контурах отворів.

Зауважимо, що аналітичний розв'язок цієї задачі у вигляді рядів Фур'є можна отримати також методом Мусхелішвілі, використавши конформне відображення пружної області на кругове кільце. Саме таким шляхом Геддон [22] побудував розв'язок цієї задачі за одновісного розтягу на нескінченності під довільним кутом до лінії центрів отворів.

Зупинимося на випадку двовісного розтягу на нескінченності зусиллями $\sigma_y^{\infty} = p$ і $\sigma_x^{\infty} = q$ пружної площини з двома вільними від напружень рівними отворами ($R_1 = R_2 = R$, $d_1 = d_2 = d$, $\tilde{\alpha}_1 = \tilde{\alpha}_2 = \alpha$). Використовуючи біполярні координати (1), Ч. Лінг [24] побудував розв'язок задачі у вигляді рядів Фур'є. Для визначення колових напружень σ_{ξ} на контурах отворів ним отримано формулу

$$\sigma_{\xi} = 2T(\operatorname{ch} \alpha - \cos \xi) \left[K \operatorname{sh} \alpha \left(1 + 4 \sum_{n=1}^{\infty} \frac{\operatorname{sh} n\alpha \cos n\alpha}{\operatorname{sh} 2n\alpha + n\operatorname{sh} 2\alpha} \right) \mp 2 \sum_{n=1}^{\infty} \frac{n(n \operatorname{sh} n\alpha \operatorname{sh} \alpha - \operatorname{ch} n\alpha \operatorname{ch} \alpha) \cos n\xi}{\operatorname{sh} 2n\alpha + n \operatorname{sh} 2\alpha} \right],$$
(6)

де

$$K = \frac{\frac{1}{2} \pm \frac{1}{2} \pm 2\mathrm{sh}^{2}\alpha \sum_{n=1}^{\infty} \frac{n}{\mathrm{sh} \, 2n\alpha + n \, \mathrm{sh} \, 2\alpha}}{\frac{1}{2} + \mathrm{th} \, \alpha \, \mathrm{sh}^{2}\alpha - 4\sum_{n=2}^{\infty} \frac{e^{-n\alpha} \, \mathrm{sh} \, n\alpha + n \, \mathrm{sh} \, \alpha \, (n \, \mathrm{sh} \, \alpha + \mathrm{ch} \, n\alpha)}{n(n^{2} - 1)(\mathrm{sh} \, 2n\alpha + n \, \mathrm{sh} \, 2\alpha)}}.$$
(7)

Тут верхні знаки відповідають поздовжньому розтягу зусиллями $T=q~(q\neq 0,~p=0),$ а нижні — поперечному розтягу зусиллями $T=p~(p\neq 0,~q=0)$.

Наведений розв'язок неефективний для значень безрозмірного параметра $\gamma = \frac{d}{R} - 1 < 1$. На основі розв'язку (6) Ю. А. Устинов [17, 18] отримав наближені формули для коефіцієнтів концентрації напружень k_A, k_B в точках A і B (рис. 1) на контурах отворів для малих значень параметра γ :

$$\begin{aligned} k_A &= \frac{\sigma_A}{p} = 2 \left[\frac{2}{\tilde{\varepsilon}^2} \operatorname{sh}^2 \tilde{\varepsilon} (K_1 + \tilde{m} K_2) + 1 - \tilde{m} \right] \operatorname{ch} \tilde{\varepsilon} \frac{\operatorname{ch} \tilde{\varepsilon} + 1}{\operatorname{sh} 2\tilde{\varepsilon} + 2\tilde{\varepsilon}}, \quad 0 < \tilde{\varepsilon} \le 1, \\ k_B &= \frac{\sigma_B}{p} = 3.87 - 1.49 \,\tilde{\varepsilon} + 1.23 \,\tilde{\varepsilon}^2 - \tilde{m} \left(0.981 - 0173 \,\tilde{\varepsilon} - 0018 \,\tilde{\varepsilon}^2 \right), \\ &\qquad 0 \le \tilde{\varepsilon} \le 0.3, \end{aligned}$$

де $\tilde{\epsilon} = \ln \left(1 + \gamma + \sqrt{2\gamma + \gamma^2} \right), \ \tilde{m} = \frac{p}{q}.$

Сталі K_1 (поперечний розтяг)
і K_2 (поздовжній розтяг) визначають з рівнянь

$$K_{s}\left(0.716 - 0.0393\,\tilde{\epsilon}^{2} + \frac{2\,\mathrm{sh}^{4}\,\tilde{\epsilon}}{\tilde{\epsilon}^{2}(\mathrm{sh}\,2\tilde{\epsilon}+2\tilde{\epsilon})}\right) = \frac{1}{2} + (-1)^{s}\,\frac{1}{2} + (-1)^{s}\,\frac{\mathrm{sh}^{2}\,\tilde{\epsilon}}{\mathrm{sh}\,2\tilde{\epsilon}+2\tilde{\epsilon}} - (-1)^{s}\,\frac{\mathrm{sh}^{2}\,\tilde{\epsilon}}{\tilde{\epsilon}^{2}}(0.769 - 0.179\tilde{\epsilon}^{2} + 0.341\tilde{\epsilon}^{4}), \qquad s = 1, 2.$$
(9)

Звідси випливає, що $k_A \to 2.22 \gamma^{-1/2}$ (q = 0) і $k_A \to 1.97 \gamma^{-1/2}$ (q = p), коли $\gamma \to 0$. У формулах (7) і (9) виправлено деякі неточності, допущені Ю. А. Устиновим [18].

Зауважимо, що метод біполярних координат дає змогу не тільки розглянути граничний випадок, коли параметр $\gamma \rightarrow 0$, але також отримати розв'язки задач, коли контури двох колових отворів перетинаються, тобто для криволінійного отвору з негладким краєм, утвореного двома дугами однакового [5, 10, 11, 19, 25] чи різних радіусів [19]. Зокрема, на підставі цих розв'язків у замкненому вигляді (через інтеграл Фур'є) отримано коефіцієнт інтенсивності напружень у кутовій вершині симетричного лункоподібного отвору [1].

Дві колінеарні тріщини однакової довжини [4]. Нехай розтягнена на нескінченності пластина послаблена двома колінеарними тріщинами однакової довжини 2ℓ (рис. 2). Відомий точний розв'язок цієї задачі. Вирази для коефіцієнтів інтенсивності напружень у ближніх $(K_{\rm I}^{-})$ та віддалених $(K_{\rm I}^{+})$ вершинах тріщин мають вигляд

$$K_{\rm I}^{\pm} = \pm \frac{p\sqrt{\pi\ell}}{\lambda\sqrt{1\pm\lambda}} \bigg[1\pm\lambda - \frac{E(\lambda)}{K(\lambda)} \bigg], \qquad (10)$$

де K(λ), E(λ) – повні еліптичні інтеграли першого та другого роду відповідно; $\lambda = \ell/d$; 2d – віддаль між центрами тріщин.

Враховуючи розвинення відношення $E(\lambda)/K(\lambda)$ для малих значень параметра λ:

$$\frac{E(\lambda)}{K(\lambda)} = 1 - \frac{1}{2}\lambda^2 - \frac{1}{16}\lambda^4 + O(\lambda^6)$$

та його асимптотику при $\lambda \rightarrow 1$

$$rac{E(\lambda)}{K(\lambda)}pprox -rac{1}{\ln\sqrt{1-\lambda}}\,,$$

запишемо замкнений наближений вираз для цього відношення

$$\frac{E(\lambda)}{K(\lambda)} = \frac{1 - (1 - \lambda) \ln \sqrt{1 - \lambda}}{1 - \ln \sqrt{1 - \lambda}},$$

який узгоджується з точним значенням (10), коли $\lambda \to 0$ та $\lambda \to 1$.

Наближені формули для коефіцієнтів інтенсивності напружень (10) набудуть вигляду

$$K_{\rm I}^{+} = \frac{p\sqrt{\pi\ell}(1-2\ln\sqrt{1-\lambda})}{\sqrt{1+\lambda}(1-\ln\sqrt{1-\lambda})},$$

$$K_{\rm I}^{-} = \frac{p\sqrt{\pi\ell}}{\sqrt{1-\lambda}(1-\ln\sqrt{1-\lambda})}.$$
(11)

Відносні похибки цих формул не перевищують 0.3% (для $K_{\rm I}^+)$ та 1.1% (для K_{I}^{-}) в усьому діапазоні зміни параметра λ .

Зі співвідношень (11) випливають такі асимптотики для $\lambda \to 1$:

$$K_{\rm I}^+ \to p\sqrt{2\pi\ell}, \qquad K_{\rm I}^- \to -\frac{p\sqrt{\pi\ell}}{\sqrt{1-\lambda}\ln\sqrt{1-\lambda}}.$$
 (12)

Розглянемо симетричний розтяг пружної площини з двома напівнескінченними тріщинами, віддаль між вершинами яких дорівнює 2a, зосередженими силами P, що прикладені в точках (0, b) та (0, -b) на осі Oy (рис. 3).

Коефіцієнт інтенсивності напружень у вершині тріщини

$$K_{\rm I} = \frac{Pb}{\sqrt{\pi a}\sqrt{a^2 + b^2}} \left[1 - \frac{2a^2}{(1+x)(a^2 + b^2)} \right],\tag{13}$$

де x = 3 - 4v — для плоскої деформації та x = (3 - v)/(1 + v) — для плоского напруженого стану; v — коефіцієнт Пуассона.

Спрямувавши параметр *b* до нескінченності, отримаємо розв'язок задачі

$$K_{\rm I} = \frac{P}{\sqrt{\pi a}} \,,$$

коли на нескінченності задано розтягувальне навантаження, головний вектор якого дорівнює *P*.

Два еліптичні отвори. Розглянемо двовісний розтяг зусиллями p і q нескінченної ізотропної пластини з двома однаковими еліптичними отворами L_k , k = 1, 2, контури яких віль-

рами L_k , $\kappa = 1,2$, контури яких вільні від навантаження. Віднесемо кожний контур L_k до локальної системи координат $x_k O_k y_k$. В основній декартовій системі координат xOy точки O_k визначаються комплексними координатами $z_1^0 = d$ і $z_2^0 = -d$, а осі $O_k x_k$

Рис. 3

утворюють кути $\alpha_1 = 0$ і $\alpha_2 = \pi$ з віссю Ox (рис. 4, P = 0).

Першу основну задачу плоскої теорії пружності для нескінченного тіла з гладкими криволінійними отворами, контури яких не перетинаються, розв'язуватимемо методом сингулярних інтегральних рівнянь [12]. Комплексні потенціали напружень такої задачі мають вигляд

$$\begin{split} \Phi(z) &= \Phi_0(z) + \frac{1}{2\pi} \sum_{k=1}^2 \int_{L_k} \frac{g'_k(t_k) \exp(i\alpha_k)}{T_k - z} dt_k, \qquad T_k = t_k \exp(i\alpha_k) + z_k^0, \\ \Psi(z) &= \Psi_0(z) + \frac{1}{2\pi i} \sum_{k=1}^2 \frac{M_k}{(z - z_k^0)^2} + \\ &+ \frac{1}{2\pi} \sum_{k=1}^2 \int_{L_k} \left[\frac{\overline{g'_k(t_k)} \exp(-i\alpha_k)}{T_k - z} \overline{dt_k} - \frac{\overline{T_k} g'_k(t_k) \exp(i\alpha_k)}{(T_k - z)^2} dt_k \right], \end{split}$$

де $g'_k(t_k)$ – шукана неперервна функція на контурах отворів; потенціали $\Phi_0(z)$ і $\Psi_0(z)$, які визначають основний напружено-деформований стан у суцільній площині без отворів, дорівнюють

$$\Phi_0(z) = p + q/4,$$
 $\Psi_0(z) = p - q/2,$

$$M_k = i \int\limits_{L_k} \left[\overline{T_k} \, g_k'(t_k) \exp\left(i lpha_k
ight) dt_k - T_k \overline{g_k'(t_k)} \exp\left(-i lpha_k
ight) \overline{dt_k} \,
ight].$$

Система двох сингулярних інтегральних рівнянь задачі має вигляд [12]

$$\sum_{k=1}^{2} \int_{L_{k}} \left[\mathscr{K}_{nk}(t_{k},t_{n}')g_{k}'(t_{k})dt_{k} + \mathscr{L}_{nk}(t_{k},t_{n}')\overline{t_{n}'(t_{k})}\overline{dt_{k}} \right] - \frac{1}{2i} \sum_{k=1}^{2} \frac{M_{k}\exp\left(-2i\alpha_{n}\right)}{(\overline{T_{n}'}-\overline{z_{k}^{0}})^{2}} \frac{\overline{dt_{n}'}}{dt_{n}'} + a_{n}\frac{ds_{n}'}{dt_{n}'} = \pi p_{n}(t_{n}'), \quad n = 1, 2, \quad (14)$$

де s'_n – дугова абсциса точки $t'_n \in L_n$; $T'_n = t'_n \exp{(i\alpha_n)} + z_n^0$;

$$\begin{split} \mathcal{K}_{nk}(t_k,t_n') &= \frac{\exp\left(i\alpha_k\right)}{2} \left\lfloor \frac{1}{T_k - T_n'} + \frac{\exp\left(-2i\alpha_k\right)}{\overline{T_k} - \overline{T_n'}} \frac{dt_n'}{dt_n'} \right\rfloor, \\ \mathcal{E}_{nk}(t_k,t_n') &= \frac{\exp\left(-i\alpha_k\right)}{2} \left[\frac{1}{\overline{T_k} - \overline{T_n'}} - \frac{T_k - T_n'}{(\overline{T_k} - \overline{T_n'})^2} \frac{\overline{dt_n'}}{dt_n'} \exp\left(-2i\alpha_k\right) \right], \\ p_n(t_n') &= -\left\{ \Phi_0(T_n') + \overline{\Phi_0(T_n')} + \frac{\overline{dt_n'}}{dt_n'} \left[T_n' \overline{\Phi_0'(T_n')} + \overline{\Psi_0(T_n')} \right] \right\}. \end{split}$$

До лівої частини інтегральних рівнянь (14) додано нульові функціонали

$$a_n = \int_{L_n} g'_n(t_n) dt_n, \qquad n = 1, 2,$$

які забезпечують безумовну розв'язність і єдиність їх розв'язку.

Вибравши локальні системи координат симетричними відносно початку координат і врахувавши такого ж типу симетрію пружної області та зовнішнього навантаження, отримаємо

$$g'_1(t) = g'_2(t) = g'(t), \qquad t \in L_1 = L.$$

Останні умови дають змогу звести комплексні потенціали напружень до вигляду

$$\Phi(z) = \Phi_0(z) + \frac{1}{\pi} \int_L \frac{Tg'(t)}{T^2 - z^2} dt, \qquad T = t + d ,$$

$$\Psi(z) = \Psi_0(z) + \frac{1}{\pi} \int_L \left\{ \frac{T}{T^2 - z^2} \overline{g'(t)} dt - \frac{\overline{T}(T^2 + z^2)}{(T^2 - z^2)^2} g'(t) dt \right\} + \frac{z^2 + d^2}{\pi (z^2 - d^2)} \left\{ \int_L \left[\overline{t} \ g'(t) dt - t \overline{g'(t)} dt \right] - i d \int_L \left[g'(t) dt + \overline{g'(t)} dt \right] \right\}.$$
(15)

Систему двох інтегральних рівнянь (14) зведемо при цьому до одного сингулярного інтегрального рівняння

$$\int_{L} \left\{ \mathcal{K}(t,t')g'(t)dt + \mathcal{L}(t,t')\overline{g'(t)}\overline{dt} \right\} = \pi p(t'), \qquad t' \in L, \qquad (16)$$

де

$$\begin{aligned} \mathscr{K}(t,t') &= \frac{T}{T^2 - T'^2} + \left[\frac{\bar{T}}{\bar{T}^2 - \bar{T}'^2} - \frac{\bar{T}(\bar{T}'^2 + a^2)}{(\bar{T}'^2 - a^2)^2} \right] \frac{\overline{dt'}}{dt'} + \frac{ds'}{dt'}, \qquad T' = t' + d , \\ \mathscr{L}(t,t') &= \frac{\bar{T}}{\bar{T}^2 - \bar{T}'^2} + \left[\frac{2T'\bar{T}\bar{T}' - T(\bar{T}^2 + \bar{T}'^2)}{(\bar{T}^2 - \bar{T}'^2)^2} + \frac{T(\bar{T}'^2 + a^2)}{(\bar{T}'^2 - a^2)^2} \right] \frac{\overline{dt'}}{dt'}. \end{aligned}$$

Тут s' – дугова абсциса точки $t' \in L$.

a

Запишемо параметричне рівняння еліптичного контуру отвору у вигляді

$$t = \ell \omega(\xi) = \ell(\cos \xi + im \sin \xi), \qquad 0 \le \xi \le 2\pi, \qquad (17)$$

де m = c/l; l і c – велика і мала півосі еліпса.

Зробивши заміну

$$t = \ell \omega(\xi), \qquad 0 \le \xi \le 2\pi, \qquad t' = \ell \omega(\eta), \qquad 0 \le \eta \le 2\pi$$
,
запишемо інтегральне рівняння (16) у канонічному вигляді

$$\frac{1}{\pi}\int_{0}^{\pi} \left[M(\xi,\eta)u(\xi) + N(\xi,\eta)\overline{u(\xi)} \right] d\xi = p(\eta), \qquad 0 \le \eta \le 2\pi$$

де введено позначення

$$\begin{split} M(\xi\eta) &= \ell \, \hat{\mathcal{K}}(\omega(\xi), \omega(\eta)), \qquad \qquad N(\xi\eta) = \ell \, \hat{\mathcal{L}}(\omega(\xi), \omega(\eta)), \\ u(\xi) &= g'(\omega(\xi)) \, \omega'(\xi), \qquad \qquad p(\eta) = p(\omega(\eta)). \end{split}$$

Шукана 2*π*-періодична неперервна функція *u*(ξ) має квазіособливості

у вершинах контуру L на великій осі еліпса для малих значень параметра ε , що ускладнює отримання достатньо точних числових розв'язків у цьому випадку. Останнім часом з метою покращення точності розв'язування такого типу рівнянь використовують різного типу нелінійні перетворення змінної інтегрування, що зумовлює згущення квадратурних вузлів і вузлів колокації в околі вершини контуру. Такі перетворення, по суті, призводять до зміни параметричних рівнянь криволінійного контуру, які дають змогу отримати точніші числові розв'язки. Зауважимо, що параметричне рівняння еліптичного контуру у вигляді (17) з цього погляду не є ефективним, оскільки призводить до згущення квадратурних вузлів на ділянках контуру з мінімальною кривиною.

У цьому випадку використано заміну змінних [23]

$$\xi = G(\tau) = \tau - (1/2) \sin 2\tau, \quad 0 \le \tau \le 2\pi, \qquad \eta = G(\theta), \quad 0 \le \theta \le 2\pi$$

Функція $G(\tau)$ однозначно відображає відрізок $\tau \in [0, 2\pi]$ у відрізок $\xi \in [0, 2\pi]$. У результаті приходимо до інтегрального рівняння

$$\frac{1}{\pi}\int_{0}^{2\pi} \left[M(\xi,\eta)u^{*}(\tau) + N(\xi,\eta)\overline{u^{*}(\tau)} \right] G'(\tau) d\tau = p^{*}(\theta), \qquad 0 \le \theta \le 2\pi$$

де $u^*(\tau) = u(G(\tau)), p^*(\tau) = p(G(\theta)).$

Дискретним аналогом інтегрального рівняння є систем
а2nлінійних алгебричних рівнянь

$$\frac{1}{\pi} \sum_{k=1}^{2n} \left[M(\xi_k, \eta_m) u^*(\tau_k) + N(\xi_k, \eta_m) \overline{u^*(\tau_k)} \right] G'(\tau_k) = p^*(\theta_m) ,$$

$$m = 1, \dots, 2n , \qquad (18)$$

де

$$\begin{split} \xi_k &= G(\tau_k), \qquad \tau_k = \frac{\pi (2k-1)}{2n}, \qquad k = 1, \dots, 2n \,, \\ \eta_m &= G(\theta_m), \qquad \theta_m = \frac{2\pi (m-1)}{2n}, \qquad m = 1, \dots, 2n \,. \end{split}$$

Порядок системи (18) можна зменшити вдвоє, якщо врахувати симетрію задачі відносно осі Ox.

Після розв'язання системи алгебричних рівнянь за формулами (18) знаходять комплексні потенціали напружень, за якими можна визначити напружено-деформований стан у всій пружній області. У випадку, коли контури отворів вільні від навантаження, нормальні напруження на контурі отвору можна знайти безпосередньо через функцію $u^*(\tau)$ [16]

$$\begin{split} \sigma_s(t) &= 4\operatorname{Re}\left[\Phi_0(t) + \Phi^+(t)\right] = 4\operatorname{Re}\Phi_0(t) - 4\operatorname{Im}g'(t) = \\ &= 4\operatorname{Re}\Phi_0(t) - 4\operatorname{Im}\left[\frac{u(\xi)}{\omega'(\xi)}\right] = 4\operatorname{Re}\Phi_0(t) - 4\operatorname{Im}\left[\frac{u^*(\tau)}{\omega'(\xi)}\right], \quad t \in L. \end{split}$$

Числові результати отримано для напружень $\sigma_s(t)$ у вершинах отвору A і B (σ_A і σ_B) в залежності від відносної віддалі між отворами $1 - \lambda$ ($\lambda = \ell/d$) для різних значень параметра m, тобто різних відношень малої та великої півосей еліпса. На рис. 5 наведено такі залежності для значення m = 1 (кругові отвори) за поперечного розтягу. У граничному випадку, коли віддаль між отворами прямує до нуля, відносне напруження σ_B/p наближається до значення $\sigma_B/p = 3.861$, що добре узгоджується з даними Ч. Лінга [24] ($\sigma_B/p = 3.869$) та розв'язком (8), а напруження σ_A прямує до нескінченності.

Для малих віддалей між отворами (рис. 6) числові результати добре апроксисуються кривою $\sigma_A/p = -2.008 + 2.199/\sqrt{1-\lambda}$ (суцільна лінія), побудованою методом найменших квадратів. Звідси екстраполяцією отримуємо коефіцієнт при особливості максимальних напружень на контурі кругового отвору $\sigma_A\sqrt{1-\lambda}/p = 2.199$, який близький до значення 2.22, що випливає з розв'язку (8).

Поведінку максимальних напружень на контурах кругових отворів при їх зближенні досліджували також числовим способом за допомогою інтегральних рівнянь [21]. Порівняння даних роботи [21] (квадратики) з обчисленими тут (суцільна крива) наведено на рис. 7. Автори праці [21] для коефіцієнта при особливості максимальних напружень на контурі кругового отвору отримали шляхом екстраполяції дещо менше значення: $\sigma_A \sqrt{1-\lambda}/p = 2.13$.

Знаючи коефіцієнт при особливості напружень, можна побудувати для напружень σ_A апроксимувальні залежності, які виконуються у всьому діапазоні зміни відносної віддалі між отворами. У розглядуваному випадку одновісного розтягу отримано наближену формулу

σ_A	$\int 3 - \lambda^2 (0.916 - 1.931\lambda),$	$0 \le \lambda < 0.7,$
\overline{p}	$\left(2.199/\sqrt{1-\lambda}-1.949+2.438\sqrt{1}\right)$	$\overline{-\lambda}$, $0.7 \le \lambda \le 1$,
_		

відносна похибка якої не перевищує 1% для всіх значень параметра $\lambda\,,\,0\leq\lambda\leq 1\,.$

Залежності контурних напружень у вершині A еліптичного отвору від відносної віддалі між отворами наведено на рис. 8 для одновісного розтягу для різних відношень півосей еліпса c/ℓ . Апроксимація за допомогою методу найменших квадратів числових даних показала, що і для еліптичних отворів залишається така ж сама особливість напружень σ_A при їх зближенні (типу квадратного кореня), як і у випадку кругових отворів. Для знаходження коефіцієн-

Таблиця 1

тів при цій особливості на рис. 9 (одновісний розтяг) та рис. 10 (всебічний розтяг) наведено залежності функції $\sigma_A \sqrt{1-\lambda}/p$ від параметра $1-\lambda$ для різних значень $\varepsilon = \rho/\ell = c^2/\ell^2$ (ρ — радіус кривини у вершині A), отримані числовим шляхом (суцільні лінії) та за допомогою екстраполяції функціями типу $\sigma_A \sqrt{1-\lambda}/p = a_1 + a_2 \sqrt{1-\lambda}$ для малих значень відносних віддалей між отворами (штрихові лінії). Тут $\sigma_0 = p(1-q/p+2/\sqrt{\varepsilon})$ — напруження у вершині A для одного еліптичного отвору ($\lambda = 0$).

Числові значення коефіцієнтів при особливості напружень σ_A наведено в табл. 1. Зауважимо, що зі зменшенням відношення півосей еліпса цей коефіцієнт зростає. Таке зростання можна пояснити тим, що у випадку, коли еліптичний отвір переходить у тріщину ($\varepsilon \rightarrow 0$), змінюється тип особливості від степеневого до степенево-логарифмічного, як це випливає з асимптотики (12).

c/l	$\sqrt{1-\lambda} \ \sigma_A/p$		σ_B/p			
	q = 0	q = p	q = 0		q = p	
1	2.20	1.94	3.86	3.83	2.89	2.83
1/2	3.93	3.70	6.66	6.66	5.70	5.66
1/4	7.44	7.23	12.26	12.32	11.34	11.32
1/8	14.5	14.3	23.53	23.63	22.6	22.63
1/16	28.6	28.3	45.87	46.25	45.2	45.25

Залежності відносних контурних напружень σ_B/σ_0 у вершині *В* еліптичного отвору від відносної віддалі між отворами наведено на рис. 11 (одновісний розтяг) та рис. 12 (двовісний розтяг).

При зближенні отворів ($\lambda \to 1$) напруження σ_B наближаються до скінченного значення, близького до результату, який отримуємо за формулою для еквівалентного еліпса [5], тобто для еліптичного отвору з таким же радіусом кривини ρ у вершині A і вдвічі більшою великою піввіссю 2ℓ :

$$\sigma_e = p(1 - q/p + 2\sqrt{2/\varepsilon}).$$

Обчислені за цією формулою значення наведено у табл. 1 справа від штрихової вертикалі.

Два напівнескінченні параболічні вирізи. Розглянемо нескінченну пружну площину, послаблену двома симетричними напівнескінченними параболічними вирізами з осями симетрії на осі Ox і віддалю 2a між вершинами. Крайова задача плоскої теорії пружності для такої області, за визначенням Г. П. Черепанова [20], відноситься до сингулярних задач, розв'язки яких неможливо отримати, коли на нескінченності задане стале навантаження. Тому вважатимемо, що на нескінченності напруження відсутні, а пластина розтягується зосередженими силами P, прикладеними в точках (0,b) та (0,-b) на осі Oy. Попробуємо отримати розв'язок цієї задачі за допомогою граничного переходу з відповідної задачі для двох еліптичних отворів (рис. 4, p = q = 0), коли віддаль між ближніми вершинами є сталою і дорівнює 2a, а велика піввісь еліпса ℓ нескінченно зростає. При цьому задачу для двох еліптичних отворів необхідно розв'язати для зовнішнього навантаження, що визначається комплексними потенціалами

$$\begin{split} \Phi_0(z) &= \frac{bP}{\pi(1+x)} \frac{1}{z^2 + b^2}, \\ \Psi_0(z) &= \frac{xbP}{\pi(1+x)} \frac{1}{z^2 + b^2} + \frac{bP}{\pi(1+x)} \frac{z^2 - b^2}{(z^2 + b^2)^2} \end{split}$$

Коли відносний радіус кривини ρ/a у вершині вирізу малий, то наближене значення максимальних напружень у цій вершині можна визначити за формулою [13]

$$\sigma_{\rm max} = 2K_{\rm I}/\sqrt{\pi\rho} \; , \label{eq:sigma_max}$$

де $K_{\rm I}$ — коефіцієнт інтенсивності напружень для двох напівнескінченних тріщин (13). Для відношення $\rho/a = 1$ у табл. 2 наведено апроксимувальні формули для відносних напружень σ_A/σ_n ($\sigma_n = P/2a$) у вершині A еліптичного отвору, отримані для малих значень параметра ρ/ℓ ($0 \le \rho/\ell \le 10^{-5}$) числовим шляхом ($\nu = 0.3$, плоский напружений стан). Перші доданки у цих формулах є наближеними значеннями коефіцієнтів концентрації напружень у вершині параболічного вирізу. На основі цих даних для параболічних вирізів побудовано апроксимувальну залежність відносних напружень σ_A/σ_n :

$$\frac{\sigma_A}{\sigma_n} = \frac{1.87 + 2.89 (a/b)^2}{\left[1 + (a/b)^2\right]^{1.1}}\,, \qquad 0.1 \le \frac{a}{b} \le 1\,.$$

Якщо екстраполювати цю залежність для a/b = 0, то отримаємо зна-

Таблиця 2

чення $\sigma_A/\sigma_n = 1.87$ для випадку, коли на нескінченності задано розтягувальне навантаження, головний вектор якого дорівнює *P*. Відповідне значення коефіцієнта концентрації напружень для двох гіперболічних вирізів [3] буде $\sigma_A/\sigma_n = 1.56$.

Зауважимо, що наведений вище спосіб знаходження розв'язку задачі для параболічних вирізів не є ефективним, оскільки при числовому розв'язуванні необхідно використовувати два граничні переходи. Тут лише

b/a	Апроксимувальні формули
1	$\sigma_A / \sigma_n = 2.216 - 0.493 (\rho / \ell)^{0.203}$
2	$\sigma_A / \sigma_n = 2.021 - 0.897 (\rho/\ell)^{0.212}$
5/2	$\sigma_A / \sigma_n = 1.982 - 1.063 (\rho/\ell)^{0.217}$
10/3	$\sigma_A / \sigma_n = 1.935 - 1.307 (\rho/\ell)^{0.237}$
5	$\sigma_A / \sigma_n = 1.899 - 1.671 (\rho/\ell)^{0.254}$

продемонстровано можливість побудови таких розв'язків. Набагато ефективніше використовувати для цієї мети, наприклад, задачу про періодичну систему отворів у пружній площині, що не вимагає подвійних граничних переходів. Саме таким шляхом при використанні єдиного підходу до проблеми концентрації напружень біля кутових гострих і закруглених вирізів [14, 15] буде отримано коефіцієнти інтенсивності та концентрації напружень для двох таких вирізів.

Автори висловлюють подяку докторові А. Казберуку за допомогу у підготовці цієї статті.

- 1. Морозов Н. Ф. Математические вопросы теории трещин. Москва: Наука, 1984. 256 с.
- 2. *Мусхелишвили Н. И*. Некоторые основные задачи математической теории упругости. – Москва: Наука, 1966. – 708 с.
- 3. *Нейбер Г.* Концентрация напряжений. Москва-Ленинград: Гостехиздат, 1947. 204 с.
- 4. Панасюк В. В., Саврук М. П., Дацышин А. П. Распределение напряжений около трещин в пластинах и оболочках. Киев: Наук. думка, 1976. 444 с.
- 5. *Петерсон Р.* Коэффициенты концентрации напряжений. Москва: Мир, 1977. 304 с.
- 6. *Підстригач Я. С.* Напруження в площині, ослабленій двома нерівними круговими отворами // Доп. АН УРСР. – 1953. – № 6. – С. 456–460.
- 7. Підстригач Я. С. Вибрані праці. Київ: Наук. думка, 1995. 460 с.
- Подстригач Я. С. Напряжения около двух неравных круговых отверстий в упругой плоскости //Автореф. дис. ... канд. физ.-мат. наук. – Львов, 1954. – 7 с.
- Подстригач Я. С. Напряжения около двух неравных отверстий в плоском поле // Вопросы машиноведения и прочности в машиностроении. – 1954. – 4, вып. 3. – С. 60–71.
- 10. Савин Г. Н. Концентрация напряжений около отверстий. Москва-Ленинград: Гостехиздат, 1951. 496 с.
- 11. *Савин Г. Н.* Распределение напряжений около отверстий. Киев: Наук. думка, 1968. 888 с.
- 12. Саврук М. П. Двумерные задачи упругости для тел с трещинами. Киев: Наук. думка, 1981. 324 с.

- Саврук М. П. Коэффициенты интенсивности напряжений в телах с трещинами // Механика разрушения и прочность материалов/ Справ. пособие под ред. В. В. Панасюка – Киев: Наук. думка, 1988. – 2. – 620 с.
- Саврук М. П., Казберук А. Единый подход к решению задач о концентрации напряжений около острых и закругленных угловых вырезов // Прикл. механика. - 2007. - 43, № 2. - С. 70-87.
- Саврук М. П., Казберук А. Зв'язок між коефіцієнтами інтенсивності та концентрації напружень для гострих і закруглених кутових вирізів // Фіз.-хім. механіка матеріалів. – 2006. – 42, № 6. – С. 17–26.
- 16. Саврук М. П., Осив П. Н., Прокопчук И. В. Численный анализ в плоских задачах теории трещин. – Киев: Наук. думка, 1989. – 248 с.
- Устинов Ю. А. Концентрация напряжений в полуплоскости и плоскости с круговыми отверстиями при растяжении // Изв. АН СССР. Механика. – 1965. – № 1. – С. 145–148.
- Устинов Ю. А. Решение некоторых задач для двусвязных областей со сближенными круговыми границами // Концентрация напряжений. – Киев: Наук. думка, 1965. – 1. – С. 270–275.
- 19. Уфлянд Я. С. Биполярные координаты в теории упругости. Москва: Гостехиздат, 1950. 232 с.
- 20. Черепанов Г. П. Механика хрупкого разрушения. Москва: Наука, 1974. 640 с.
- Duan Z. P., Kienzler R., Herrmann G. An integral equation method and its application to defect mechanics // J. Mech. Phys. Solids. - 1986. - 34, No. 6. - P. 539-561.
- Haddon R. A. Stresses in an infinite plate with two unequal circular holes // Quart. J. Mech. Appl. Math. - 1967. - 20. - P. 277-291.
- Johnston P. R. Application of sigmoidal transformations to weakly singular and near-singular boundary element integrals // Int. J. Numer. Meth. Eng. - 1999. - 45. - P. 1333-1348.
- 24. Ling C.-B. On the stresses in a plate containing two circular holes // J. Appl. Phys. 1948. 19, No. 1. P. 77-82.
- 25. Ling C.-B. The stresses in a plate containing an overlapped circular hole // J. Appl. Phys. 1948. 19, No. 4. P. 405-411.

К ВОПРОСУ ОБ ОПРЕДЕЛЕНИИ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ В РАСТЯНУТОЙ ПЛАСТИНЕ С ДВУМЯ ОТВЕРСТИЯМИ

Изложен краткий обзор исследований упругого взаимодействия двух отверстий в растянутой пластине. Особое внимание уделено изучению концентрации напряжений на контурах близко размещенных отверстий. Численные результаты получены на основе метода сингулярных интегральных уравнений для двух одинаковых эллиптических отверстий. Используя метод предельного перехода, определены коэффициенты концентрации напряжений в вершинах полубесконечных параболических вырезов. Проведено сравнение численных данных с известными аналитическими решениями для двух круговых отверстий и коллинеарных трещин.

TO QUESTION OF DETERMINATION OF STRESS CONCENTRATION IN THE STRETCHED PLATE WITH TWO HOLES

A short review of investigations of elastic interaction of two holes in the stretched plate is presented. Special attention is paid to study of stress concentration on the contours of closely located holes. Numerical results are obtained by the method of singular integral equations for two identical elliptic holes. By passing to the limit, the stress intensity factors are found at the vertices of half-infinite parabolic notches. Comparison of numerical data is made with the known analytical solutions for two circular holes and collinear cracks.

Фіз.-мех. ін-т ім. Г. В. Карпенка НАН України, Львів Одержано 10.04.08