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IMPACT INDENTATION OF A RIGID BODY INTO AN ELASTIC LAYER. 
ANALYTICAL AND NUMERICAL APPROACHES* 
 

A plane contact-impact problem is considered for an elastic layer subjected to in-
dentation of a rigid body moving with a given velocity. An exact analytical solu-
tion is obtained in the case of a blunt contour of the indenter shape. Results of the 
solution are presented for stresses developed with time in a layer of a finite thick-
ness. Stress pattern under multiple reflections is analyzed. A numerical solution of 
the problem is obtained on the basis of the simplified model of the elasticity theory 
having a single displacement. The explicit finite difference algorithm is developed 
on the basis of the mesh dispersion minimization technique resulting in precise 
calculations of discontinuities. Calculated stresses and force of resistance to pres-
sing are presented in the cases of irregular shapes of the indenter contour (re-
ctangle, wedge and their combination).  

 
 1. Introduction. Impact interaction of a rigid body with deformable me-
dia and structures is a topical subject of contemporary solid mechanics. Of the 
large number of publications devoted to this problem, only the generalizing 
works are cited herein. Review [24] presents the state of investigations using 
numerical approaches (primarily the method of finite elements). Monograph 
[1] is devoted to the development of analytical approaches to the solution of 
problems about the action of impact on an elastic medium. A generalizing mo-
nograph in the field of contact interaction [4] and a review [2] reflect the mul-
titude of approaches to the study of a body’s impact interaction with elastic 
and liquid media. In the general case the indentation problem is formulated as 
a non-stationary mixed initially-boundary problem of theory of elasticity with 
an a priori unknown (temporally varying) boundary, which must be determi-
ned in the course of the solution. The problem statement includes: 

• equations of dynamic deformation of the impacted solid; 
• the motion equation of the indenter; 
• the ratio presenting the resistive force (drag) as a function of a priori 

unknown dimensions of the contact zone and surface stresses; 
• the equation connecting the contact zone size with the indenter 

displacement; 
• the corresponding boundary and initial conditions. 

* This research was supported by the Center of Advanced Studies 
of Mathematics at Ben-Gurion University of the Negev. 
The overwhelming majority of publications (at least of those in which 

analytical methods are used) are devoted to the problem of impact by rigid or 
deformable indenter against a halfspace that precludes the possibility of ana-
lyzing the waves reflected from the boundaries of the impacted solid. Studies 
of indenter interaction with solids of finite size are much less represented. Po-
siting such a problem appears topical in the practical aspect as well − in parti-
cular, in view of the wide use of laminate materials in modern aircraft and 
shipbuilding. It is noteworthy that scale effect is among the determinant qua-
litative factors for problems of stresses and fracture in impact interaction (see 
e.g. [14, 15]): the structure element under impact loading is destroyed by 
stresses whose level is formed due to superposition of waves reflected from 
boundary surfaces. The classical Hertz theory of collision is known to be appli-
cable in dynamics at large time values, i. å. after the wave processes have fa-
ded in the solid. The Saint – Venant wave theory of rod collision is well deve-
loped only for quasi-onedimensional problems and does not take into account 
energy transfer in directions different from the impact direction. It is there-
fore necessary to develop more adequate models and investigation methods 
for dynamic processes of indentation.  
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The present publication is devoted to the construction of such ap-
proaches. As the object under impact an elastic layer is considered (plane 
statement) as the simplest body enabling the study of the character of the 
effect of multiply reflected waves on the formation of the stress state. This 
paper consists of two parts. In the first part a precise analytical solution is 
obtained about non-stationary indentation of a parabolic cylinder (with axis 
perpendicular to the problem plane) into the surface of an elastic layer. The 
character is determined of the development of stresses resulting from the 
superposition of the reflected waves at different physical and mechanical 
characteristics of the layer material.  

In the second part a numerical solution is obtained on the basis of the so-
called theory of elasticity with a single displacement. This model was introdu-
ced in [16] and used in a set of dynamical problems [5, 18, 19, 21, 22], in which 
one displacement predominates. The explicit finite difference algorithms are 
used together with the mesh dispersion minimization (MDM) approach, resul-
ting in precise calculations of discontinuities. The MDM, originally created in 
[20] for homogeneous hyperbolic problems, then has been upgraded in [8–11, 
13, 17] for computation of more complicated processes of wave and fracture 
propagation. MDM is based on a generalized concept of the Courant condition 
that relates mesh parameters to wave velocity, which reflects properties of 
the material at hand. Difference presentation of original differential equations 
exhibits some typical domains of influence, and the idea behind MDM is to 
properly adjust these domains so as to improve convergence. To this end, pha-
se velocities of high-frequency components of the continuous models have to 
be considered, and the mesh to be set so that the propagation velocities indu-
ced by them approximate the former as closely as possible. An important 
technical advantage of MDM is that it utilizes the same mesh for both high-
gradient and smoothed solution components. A satisfactory correspondence of 
analytical and computer solutions opens the way for using the latter to solve 
contact-impact problems, in which the indenter has an irregular contour. Cal-
culation results are presented for dynamic pressing in of an indenter having a 
contour with angle points (rectangle, wedge and their combination). The stress 
and drag are calculated in dependence on time and the indenter parameters. 

2. Problem statement. A rigid indenter at time 0t =  reaches the surface 
of elastic layer 0z =  and begins 
to press into it. The pressing-in 
process is specified by the in-
denter’s velocity 0 ( )V t  perpen-

dicular to the layer’s surface. 
The impact velocity is assumed 
to be much less than that of the 
elastic waves in the layer, while 
the penetration depths are in-
significant. This enables the formulation of a linear problem of theory elasti-
city, with the boundary conditions remaining valid for the undisturbed layer 
surface. Wå refer the layer to Cartesian coordinates ,  (0 , )x z z h x≤ ≤ − ∞ < < ∞ ,  
so that axis x  is directed along the free surface and axis y  into the layer 
(Fig. 1). Introduce dimensionless notations  
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(the line above the notations will be omitted below). Here R  is the characte-
ristic linear dimension of the indenter, 0w  is its displacement counted from 

the undisturbed surface of the upper layer, 0V  and M  are its movement ve-

locity and mass respectively, pc  and sc  are respectively velocities of longitu-

dinal and shear waves in the layer, γ  is the density of the layer material, K  

is its uniform compression modulus, ,λ µ  are Lame’s constants, ju  are com-

ponents of the displacement vector, jkσ  are components of the stress tensor. 

 The behavior of the elastic medium is described by potentials Φ  and Ψ , 
which in the case of a plane problem satisfy wave equations  
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and are connected with displacements and stresses by relationships  
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 The initial conditions for wave potentials are zero.  
 The boundary conditions of the problem are set on the front and back 
surfaces 0z =  and z h= . The boundary conditions at the layer front surface 

0z =  are: equality of layer and indenter displacements normal to the surface 
in the contact zone, absence of normal stress zzσ  outside the contact zone and 

of tangential stress xzσ  (i. e. friction between layer and indenter) 
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Besides, it is necessary to see that stress zzσ  in the contact zone should re-

main compressing in the obtained solution: 

 
0

0,           zz z
x x∗

=σ > < . (5) 

Normal displacements and shear stresses are zero àt the layer back surface  

 0,        0,          z xzu z h= σ = = .  (6)  

The boundaries of the contact zone will be the intersection points of the in-

denting body contour ( )x t∗  and plane 0z = ; if the surface of the moving bo-
dy is set in the space of variables , ,z x t  by equation ( , )z F t x= , the indica-

ted points ( )x t∗  will be the roots of equation  
 ( , ) 0F t x = .  (7) 
 System (1)–(7) formulates the problem of indenter and layer interaction 
at the given impact velocity. 
 3. Analytical solution. The formulated problem admits an analytical solu-
tion on the condition that the indenter contour is a sufficiently smooth, gently 
changing curve. Let the flatness of the indenter be such that at small times of 

interaction boundary point ( )x t∗  under conditions (4) moves with velocity ex-
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ceeding that of the elastic waves. As a result the latter do not emerge on the 
free layer surface, and conditions on boundary 0z =  are 

  ( )0 0 0
0

( ) ( , ),    0,         0z
xz z

z

u
H x x V t V t x x

t
∗

=
=

∂
= − = σ = ≥

∂
. (8) 

Here ( )H ⋅  is the Heaviside unit function. The condition on the back side re-
mains unchanged  

 0,           0z xzz h z h
u = == σ = .  (9)  

 The solution to be obtained here, apart from its independent significance, 
also serves below to test the numerical algorithm. 
 To solve problem (2), (8), (9) the Laplace integral transform in time with 
parameter s  (upper index L ) and the Fourier integral transformation with 
parameter ξ  (upper index F ) are used. In the image space the wave equa-
tions (with account taken of initial conditions) will take the form 
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while the boundary conditions will be as 
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The general solution of equations (10) takes the following form: 
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Here ( , ), ( , ), ( , ), ( , )A s A s B s B sξ ξ ξ ξ   are the functions to be determined. By sa-
tisfying boundary conditions (11), the following expression is obtained for the 

image of normal stress LF
zzσ : 
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where  
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 Now function 0 ( , )V t x  is to be concretized. Assume that the front surface 

of the indenter in plane Ozx  is parabolic, while the velocity of its pressing in 
is constant and equals some value 0V . Then it is easy to see that function 

0 ( , )V t x  is the following: 
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The problem thus consists in the conversion of expression (13), with functions 
T  and V  getting the forms of (14) and (15). 
 For stresses zzσ  on axis z  (i. e. we set 0x =  in the Fourier image) we 

obtain  
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 Then we introduce substitution sη = ξ   and denote 
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Formula (17) is obtained, which is a precise analytical expression for 
normal stress ( , )zz t zσ  at arbitrary point of the layer on axis z . It consists of 

four infinite sums: each m -th item of the first (second) sum represents the 
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m -th expansion wave reflected from the front (back) surface of the layer; 
each m -th item of the third (fourth) sum represents the m -th shear wave 
reflected from the front (back) surface of the layer. Keeping a finite number 
of items N  in these sums, we obtain the value of stress with account taken of 
N  reflections, which is the exact solution of the considered problem on the 

time interval 2 .z Nh zt +< <
α α

 

 Some results obtained with formula (17) are shown in Fig. 2–4. The in-
denter shape is given by expression (15), 0 0.01,  1V a= = . To estimate the in-

fluence of shear rigidity on normal stresses in the layer, parameter β  is va-
ried. Here and below compression stresses are taken positive.  
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 Fig. 2 (relatively low shear rigidity 0.1β = ) shows how the normal stress 

zzσ  at point 0z x= =  changes with time. Dimensionless thicknesses of the 

layer are 0.2, 0.4h =  and 0.6  (the dashed curve corresponds to an infinite 

layer). Stress 0(0,0)zz Vσ =  at the initial moment of interaction, once after that 

(0,0)zzσ  decreases with time up to the moment of the first reflected wave 

incoming. Then a step-wise shape of zzσ  is realized due to following multiple 

reflections. The amplitudes of discontinuities (caused by fronts of reflected 
waves) are decreased after each reflection, and average values of (0,0)zzσ  

increase linearly with the course of time and inversely proportional to the 
normal rigidity of the layer or, which is the same, proportional to its thickness 
for the same Lame parameters. 

The same process can be seen in Fig. 3, where stresses are depicted in the 
case of relatively high shear rigidity 0.5β = . A similar step-wise shape of 

(0,0)zzσ  is observed in the comparison with the previous case, while the dif-

ference is that significant growth of (0,0)zzσ  is realized once after the colli-

sion and preserved at the entire time interval. The above-mentioned linear 
dependence on time is realized, as well as the dependence of its slope on the 
layer thickness.  

Normal stresses at three axial points: 0z =  (the front surface), /2z h=  

(the layer middle) and z h=  (the back surface) are depicted in Fig. 4 
corresponding to the layer of relatively median shear rigidity 0.3β = . The 
stress gaps are distinctly visible at moments of incoming wave fronts. The 
integral qualitative effects remain the same as in the previous cases.  

4. Numerical solution. In this section, results of computer simulations are 
presented of the problem under consideration for some non-blunted shapes of 
the indenter with angle points. Such points are sources of singularity in 
stresses arising in the indentation process. To the best of the present authors’ 
knowledge, closed analytical solutions are absent for the considered impact-
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contact problems, while some asymptotic estimations exist and in the case of à 
halfspace can be found, for example, in [3, 6, 7]. As was shown in [7], normal 
stresses in the vicinity of the singular point (the punch edge) rise as 

 
0 2

ln( )
( , ) ,        

1
zz z

t
X t t

X=
σ → ∞

−
 ,  (18)  

where X  is the distance from the punch edge. Note that this square depen-
dence is the same as in the static problem.  
 As was said above, in numerical formulation of the plane contact-impact 
problem we will use a simplified equation obtained from the plane problem of 
theory of elasticity by elimination of one of two displacements [16] (due to 
corresponding physical-geometrical assumptions). The more accurate formula-
tion is that the following inequalities between stress components are fulfilled: 

 2   z zx
zz p

u uu
c

z x z
∂ ∂∂

⇒ σ γ
∂ ∂ ∂

  , 

 2   z zx
xz p

u uu
c

x z x
∂ ∂∂

⇒ σ γ
∂ ∂ ∂

  . (19) 

As a result, displacement xu  is eliminated in the considered process of normal 
indentation, and the governing equation with respect to the normal displace-
ment ( , , ) ( , , )zu x z t u x z t≡  (similar to the anti-plane one)  

 2
zz s xxu u c u′′ ′′= +   (20) 

is obtained in the case of the modified plane problem.  
 Boundary conditions are modified now as  

 00 :     ( , ),    ;         0,    uz u V x t x x x x
z∗ ∗

∂= = ≤ = >
∂

 ; 

 :     0z h u= = . 

Because we have a single displacement, shear boundary conditions at 0z =  
and z h=  are not required now. In this simplified formulation neither longi-
tudinal displacement xu  nor stress xxσ  are determined, while in the shear 
stress one of the components is absent. Under some systems of loading the 
considered model is in good correspondence with the original theory of elasti-
city. Below we compare the results obtained by this model with the analytical 
solution presented in Section 3. We note in advance that model (20) possesses 
higher rigidity in comparison with theory of elasticity; it can play the role of 
the upper estimate for the former. Note also that partial justification for this 
model can be found in the fact that it correctly described the qualitative rela-
tion (18) and its results obtained for a parabolic indenter have a good corres-
pondence to the analytical solution. However, the main reason for its use is 
methodological: the explicit algorithm designed below and applied to the mo-
del allows front discontinuities and singular components of the solution to be 
calculated without parasite effects of mesh discretization. This point requires 
additional explanations.  
 A lot of computer algorithms are designed to solve similar contact-impact 
problems, while the question how to accurate describe wave fronts and high 
gradients still remains open. In diverse numerical tools including those used in 
so-called commercial hydrocodes (see, for example [12, 23, 24]), artificial visco-
sity is introduced to eliminate parasite oscillations arising in front vicinities 
(and fronts are spread together with them). Note that implicit schemes pos-
sessing an infinite influence domain (or dependence domain) are not intended 
for description of wave fronts at all. Thus, mesh dispersion, rather than the 
approximation problem, is the main obstacle for accurate calculations of con-
tact-impact problems by explicit algorithms. Beginning from [18], the Mesh 
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Dispersion Minimization (MDM) algorithms are designed allowing the above-
mentioned mesh effect to be significantly decreased or eliminated altogether. 
The latter was successfully realized in diverse 1D theoretical and practical 
problems [8–11, 13, 17, 19, 20], while 2D problems, to the best of the present 
authors’ knowledge, were calculated without mesh dispersion only using a 
mixed numerical-analytical approach, in which one spatial coordinate was 
separated to a set of Fourier harmonics [9]. 
 The MDM relates parameters of discrete mesh to wave velocities: the spa-
tial step divided by the corresponding velocity is equal to the time step. To 
elucidate the main concept of the MDM, we present below an example of the 
simplest 1D wave equation, where such a procedure is completely realized. 
Let a semi-infinite straight elastic rod be subjected to a step stress on its end. 
Formulation of the problem is the following: 

 2 2
0 0  ( / );    (0, ) ( );   ( ,0) ( ,0) 0u c u c E ESu t H t u x u x′′ ′= = ρ = = =  , (21) 

where E  is Young’s modulus, ρ  is the density, S  is the cross-section, 0c  

(below 0 1c = ) is the sound velocity in the rod, u′  and u  are spatial and time 

derivatives. Dispersion relation obtained from (21) by Fourier analysis is  

 1c = ,  (22) 
where c  is the phase speed. The solution of (21) is of course dispersionless. 
Stresses, for example, are the following:  

 0( , ) ( , ) ( )x t Eu x t H t x′σ ≡ = σ − .  (23)  

 Problem (21) discretized by the explicit scheme is  

 1 1 2
1 1  2 2 ,    /k k k k k k

i i i i i iu u u u u u u u t x+ −
+ −

′′= ⇒ − + = δ − + δ = ∆ ∆ ( ) , 

 0 0
0 1 0 0(0, ) ( )  Eu t H t u u x−

′ = σ ⇒ = + ∆ σ , 

 1 0( ,0) ( ,0)    0i iu x u x u u−= ⇒ = = . (24) 

There ,  ;  x i x t k t x= ∆ = ∆ ∆  and t∆  are spatial and temporal steps of the 

difference mesh, i  and k  are the coordinates of the current mesh node. The 
dispersion relation corresponding to the discrete case is  

 21  arcsin sin
2

q x
c c

q t
∆ = ⇒ = ± δ ⋅ ∆  

, (25) 

where q  is the wavelength. It can be seen that phase speed c  depends on the 
wavelength here: waves do propagate dispersionally. 
 The dispersion equation (25) has an infinity of modes that relate to arcsin 
periodicity. However, if  ( 1)x t∆ = ∆ δ = , dispersion relation (22) and its dis-
crete analog (25) coincide. Thus in this case the discrete solution turned out to 
be also dispersionless. Remind that equality 1δ =  is the limiting value of the 
Currant stability criterion: 1δ ≤ . Discrete equation (24) in case 1δ =  is re-
written as  

 1 1 0 0 1 0
1 1 1 0 0,   ,   0k k k k

i i i i i iu u u u u u x u u+ − −
+ − −= + − = + ∆ σ = = .  (26)  

Its solution 

 0 , ,

0, ,
k
i

i k

i k

σ ≤σ =  >
  (27)  

which is analytically obtained by induction, coincides with the D’Alambert 
analytical solution (22) in the mesh nodes. So, mesh dispersion is eliminated in 
scheme (26). This simple example is at the basis for the MDM technique. The 
MDM principle rule – influence domains of continual and discrete equations 
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must be as close as possible – preserves in more complicated problems. As to 

model (20) possessing two influence domains, 2 2
pr x y c t≡ + =  and sr c t= , 

it is impossible to obtain the same domains in its discrete analog built by 
conventional homogeneous algorithms. However, a special presentation of 
discrete derivatives results in an MDM algorithm allowing domain pz c t=  to 

be superposed in continual and discrete models. This way is presented below. 
 First, due to the problem symmetry we consider a quarter of the plane. 
Similar to the simplest example (24) we denote ,  t z∆ ∆  and x∆  as 3D mesh 
steps, ,  t k t z j z= ∆ = ∆  and x i x= ∆ , where 0, , ,   0, ,k K i I= =   and 

0, , ,  /j J J h z= = ∆ . Integer K  and I  will be chosen from a condition of 
absence of influence of artificial boundary x I x= ∆  on the xzt -domain of 
interest. For second derivations from (20) we use following discretizations: 
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4

k k k k
j i j i j i j iU u u u+ −= + +( ) , (28) 

in which the first two are conventional explicit, while the third is written re-

latively a median value , k
j iU  for the three nearest points on the z -axis. As 

can be seen, the accuracy level of calculations ( 2 2 2( ) ( ) ( )t z x∆ + ∆ + ∆ ( ) ) in the 
discrete analog of (20) built with (28) remains the same as in a conventional 

case (i. e. in the case , ,
k k
j i j iU u≡ ). For a system of closed 1D equations the ap-

proximation similar to (28) was originally introduced in [5]. As far as the 
present authors know, such algorithms for 2D spatial problems have not yet 
been designed. 
 The dispersion equation for continual model (19) is  

 2 2 2 2

z xp sc q c qω = +   (29) 

( ω  is the frequency, xq  and zq  are components of the wave vector), while 

for its discrete analog with (28) taken into account we have  

 
2 2

2 2 2
2 2

sin sin sin cos
2 2 2 2( ) ( )

p z zs x
c q z q zc q xt t
z x

∆ ∆∆ω∆ = ∆ + ⋅
∆ ∆

. (30) 

 If / 1z t zδ ≡ ∆ ∆ =  is taken, waves of the minimal short length in z -direc-

tion propagate with the maximal speed pc c= . The minimal length including 

three mesh nodes is 2z zλ = ∆ , while the minimal wave number is 12z
z

q ≡ π =
λ

 

1
z

= π
∆

. Notably short waves form front discontinuities. In a case similar to 

the one considered, when front discontinuities propagate along a single 
direction, such fronts are to be precisely calculated. The designed scheme is 
stable at pz c t∆ = ∆  independently from x∆ .  

  Below we present a set of results calculated by discrete model (20) with 
approximation (28) for indentation of a layer by punches of finite width 2  
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and various contours of the indenter head. First, an indenter with parabolic 
contour is considered to compare analytical and numerical solutions. In Fig. 5a 
the problem geometry is shown, while in Fig. 5b dependences ( ,0)zz xσ  vs. 

time are depicted at the layer surface 0z =  in points 0,  0.04x =  and 0.1 . 

The layer thickness is taken 0.2h = , the punch width is infinite ( ∞ ), 
1α =  and 0.5β =  – all the parameters are the same as were chosen in the 

analytical solution shown in Fig. 3. Steps of the difference mesh are x∆ =  
0.002z t= ∆ = ∆ =  (recall that the numerical approach determines the average 

stress acting on an area with length equal to the spatial step).  
 The comparison shows a good correspondence of two approaches. The 
computer solution (curve for 0x = , Fig 5b) turns out higher by ~2% than that 
in the analytical one (curve for 0.2h = , Fig 3) at the common time interval. 
However, as comparisons show, in cases of low β  this convergence is more 

significant and increases if β  decreases. This fact can be explained by too 
high common rigidity of the simplified model.  
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Fig. 5 

Note that in practice, not stresses but the drag is the more required pa-
rameter. The drag shown in Fig 5c − solid line 1 − is normalized by the punch 

length: 
/

0,

00

( )1( )
i x

i

i

k t
F k t

V

= ∆

=

σ ∆
∆ = ∑



 . As can be seen, the average value of F  is 

approached by a straight line 2 once after one-two reflections. Comparison 
with the drag obtained in the case of the simplest 1D spring model of the ef-

fective rigidity equal to 2 /pc hγ   (straight line 3) shows that an insignificant 

divergence is observed in the considered cases. So, in practice the latter very 
rough estimate can be used for the drag formed after multiple reflections. In 
results presented in Fig 5c and all the figures below we use punch width   as 
the length measurement unit, while stresses are normalized by punch velocity 

0V . Besides, layer parameters 1α =  and 0.5β =  are taken. We also show re-

sults related to the positive part of the plane, only implying that the same de-
pendencies relate to the negative part due to the symmetry.  

The calculation results shown in Fig. 6 are related to indentation of the 
plane punch into the semi-infinite layer. The problem geometry is depicted in 
the inset. In Fig. 6a dependences of normal stresses (0,0)zzσ , (0.5 ,0)zzσ   and 

drag F  vs. time are depicted, while in Fig. 6b dependences ( ,0)zz xσ  vs. time 

are depicted in the contact surfaces 0z =  in the vicinity of singular point 
0.9, 0.95, 0.98, 0.99, 1.0x = . As calculations show, the distribution of stresses in 

the edge vicinity approaches (with time) asymptotic dependence (18). Thus, 
we can suppose that the simplified model used here is justified within the 
field of the taken parameters of the problem. 
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 Normal stresses in the contact surface 0z =  and drag ( )F t  are depicted 

in Fig. 6 (a semi-infinite layer) and Fig. 7 (a finite thickness 1h = ). Stresses 

zzσ  vs. time at several points in the contact surface 0,  0, 0.5, 0.9z x= =  and 

drag F are shown in Fig. 7a, and stresses in the vicinity of singular point 
0,  0.95, 0.99, 1.0z x= =  – in Fig. 7b. Influence of the singularity at punch 

edge x =   results in a significant growth of altitudes with time, while re-
flections intensify this process. A rapid rise of stresses at singular points and 
discontinuities at moments of incoming of reflected waves can be seen.  

5

10

15

0 2 4 6 t

x = 0

F

a)

0.9

σzz(x,0)
z = 0

0.5

 

10

20

30

0 2 4 6 t

x = 0.95

1

b)

0.99

σzz(x,0)
z = 0
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For plane punch acted onto a semi-infinite layer (h ∞ ) in Fig. 8 and 9 
distributions of zzσ  are shown in the layer along axes x  (in several z -cross-

sections: 0, 0.05, 0.1, 0.25, 0.5, 1, 2, 3, 5, 6z = ) and along axes z  (in three ver-

tical cross-sections 0, 0.5, 1x = ) for some moments of time ( 1, 3, 6t = ). Maxi-
mal amplitudes of stresses reaching in the singular point are shown in upper 
left corners.  
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Fig. 8 

Stresses zzσ  decrease with their propagation from the source (due to the 

wave divergence). In addition, a set of qualitative effects is observed caused 
by a complexity of the acting source – the continuous interaction of a con-
stant initial force at the punch base and increasing forces at the vicinity of 
punch edges. Stress distribution ( , )zz ix zσ  along the x -direction in various z -

cross-sections of the layer relatively close to the face surface 0z =  is qualita-
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tively similar to that observed in 0z = , the difference is that in 0z =  the vi-
cinity of the projection of the singular point 1x =  the stress altitude rapidly 
decreases (Fig. 8), while its maximum moves from the edge to the punch me-
dian. Along with wave propagation deep into the layer, x -distribution of zzσ  

is continuously spread, the altitude of zzσ  decreases in the vicinity of cross-

section 1x =  and increases with approaching the axis of symmetry 0x = . 
This process is arrested in a small (decreasing with time) domain behind the 
front pz c t= . At the front itself 1zzσ = , and the influence of punch edges is 

absent, except for a small vicinity of the projection of singular point 1x = , 
where stresses rapidly decrease up to zero. It can been seen, with distribu-
tions in Fig. 9 in mind, that zzσ  propagation across the layer is similar to a 

quasi-stationary process.  

0.5

1

1.5

0 0.25 0.5 0.75 z

x = 0

a)

0.5, 1

σzz(x, z)
t = 1

    

0.5

1

1.5

2

0 1 2 z

x = 0

b)

0.5

t = 3

1

0.5

    

0.5

1

1.5

2

0 2 4 z

x = 0

c)

0

t = 6

1

0.5

 
Fig. 9 

Calculation results related to wedge indentation into a semi-infinite layer 
are presented in Fig. 10, 1=  (the problem geometry is shown in the inset in 
Fig. 10b). The problem formulation corresponds to the case when the external 
loading (normal velocity) appears at the moment 0t =  at point (0,0)  and then 
moves along the surface 0z =  with constant speed. The latter is determined 
by the value of the wedge shape. Let tg= ϕæ , where ϕ   is half of the angle 

at the wedge apex, then the speed of the moving loading is 0V = æ .  
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Stresses ( ,0)zz xσ  and drag F  vs. time are depicted for a set of wedge 

angles at some points of the contact surface. The problem has three singular 
points: 0, 1x =  and 1− . Interaction of stresses radiating from these points 
determines the main peculiarities of the wave process. The smaller æ , the 
higher the contribution of singularity at 0x =  (the wedge apex) and the 
lesser at 1x =  (the wedge edge). A surprising result is a relatively weak 
dependence of the drag on æ . As was said above, the reason for it is the 
complicated character of interacting stresses at the contact surface. 
 In Fig. 11 and Fig. 12 analogous results are shown in the case of a 
partially truncated wedge of a finite width. The problem geometry can be 
seen in Fig. 11a. There are four singular points are: 0.2x = ±  and 1x = ± . 
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The stress pattern and drag vs. time are shown in Fig. 11b up to the time 
when reflections from the layer back appear. Note that a self-similar part of 
the wave process is clearly observed here: the same constant stress amplitude 
equal to 0.8667 is revealed in points at the contact surface up to the moment 
when the influence appears of waves radiating from singular points.  
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In Fig. 12 stresses at some points of the contact surface and drag are 
depicted within the time interval including multiple reflections. Significant 
influence of wave fronts is preserved at internal points of the contact surface 
at the entire shown time interval, while at points close to the edge stress 
curves behave as gradually smoothed. The drag, as in the case of the 
spherical shape of the indenter head, is approached by the same straight line 
(compare dashed curves in this figure and in Fig. 5c).  
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УДАРНЕ ВДАВЛЮВАННЯ ТВЕРДОГО ТІЛА В ПРУЖНИЙ ШАР.  
АНАЛІТИЧНИЙ І ЧИСЕЛЬНИЙ ПІДХОДИ 
 
Ðîçãëÿäàºòüñÿ ïëîñêà êîíòàêòíà çàäà÷à äëÿ ïðóæíîãî øàðó, ÿêèé ï³ääàºòüñÿ 
óäàðó òâåðäèì ³íäåíòîðîì, ùî ðóõàºòüñÿ ³ç çàäàíîþ øâèäê³ñòþ. Ó âèïàäêó çà-
òóïëåíîãî ³íäåíòîðà îäåðæàíî òî÷íèé àíàë³òè÷íèé  ðîçâ’ÿçîê çàäà÷³. Ðåçóëüòà-
òè íàâåäåíî äëÿ íàïðóæåííÿ ÿê ôóíêö³¿ ÷àñó äëÿ øàðó ñê³í÷åííî¿ òîâùèíè. Àíà-
ë³çóºòüñÿ çì³íà íàïðóæåííÿ â ðåçóëüòàò³ áàãàòîêðàòíèõ â³äáèòü õâèëü. ×èñåëü-
íèé ðîçâ’ÿçîê ö³º¿ çàäà÷³ îòðèìàíî íà áàç³ ñïðîùåíîãî âàð³àíòó òåîð³¿ ïðóæíîñ-
ò³ ç îäíèì ïåðåì³ùåííÿì. Ðîçâèíóòî ñê³í÷åííîð³çíèöåâèé àëãîðèòì ðîçðàõóíê³â 
íà îñíîâ³ òåõí³êè ì³í³ì³çàö³¿ ÷èñåëüíî¿ äèñïåðñ³¿, ùî ï³äâèùóº òî÷í³ñòü îá÷èñ-
ëåíü â îêîë³ ðîçðèâ³â ôóíêö³é. Îá÷èñëåí³ íàïðóæåííÿ ³ ñèëó îïîðó ïðåäñòàâëåíî 
äëÿ ê³ëüêîõ íåðåãóëÿðíèõ ôîðì ³íäåíòîðà (ïðÿìîêóòíèê, êëèí ³ ¿õ êîìá³íàö³¿). 
 
УДАРНОЕ ВДАВЛИВАНИЕ ТВЕРДОГО ТЕЛА В УПРУГИЙ СЛОЙ.  
АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ ПОДХОДЫ 
 
Ðàññìàòðèâàåòñÿ ïëîñêàÿ êîíòàêòíàÿ çàäà÷à äëÿ óïðóãîãî ñëîÿ, ïîäâåðæåííîãî 
óäàðó òâåðäûì, äâèæóùèìñÿ ñ çàäàííîé ñêîðîñòüþ, èíäåíòîðîì. Â ñëó÷àå çà-
òóïëåííîãî èíäåíòîðà ïîëó÷åíî òî÷íîå àíàëèòè÷åñêîå ðåøåíèå. Ðåçóëüòàòû 
ïðåäñòàâëåíû äëÿ íàïðÿæåíèÿ êàê ôóíêöèè âðåìåíè äëÿ ñëîÿ êîíå÷íîé òîëùèíû. 
Àíàëèçèðóåòñÿ èçìåíåíèå íàïðÿæåíèÿ â ðåçóëüòàòå ìíîãîêðàòíûõ îòðàæåíèé 
âîëí. ×èñëåííîå ðåøåíèå ýòîé çàäà÷è ïîëó÷åíî íà îñíîâå óïðîùåííîãî âàðèàíòà 
òåîðèè óïðóãîñòè ñ îäíèì ïåðåìåùåíèåì. Ðàçâèò êîíå÷íîðàçíîñòíûé àëãîðèòì 
ðàñ÷åòîâ, îïèðàþùèéñÿ íà òåõíèêó ìèíèìèçàöèè ÷èñëåííîé äèñïåðñèè, ÷òî 
ïîâûøàåò òî÷íîñòü âû÷èñëåíèé â îêðåñòíîñòè ðàçðûâîâ ôóíêöèé. Âû÷èñëåííûå 
íàïðÿæåíèÿ è ñèëà ñîïðîòèâëåíèÿ ïðåäñòàâëåíû äëÿ íåñêîëüêèõ íåðåãóëÿðíûõ 
ôîðì èíäåíòîðà (ïðÿìîóãîëüíèê, êëèí è èõ êîìáèíàöèè). 
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