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LONGITUDINAL WAVES PROPAGATION IN PLATES IN THE PRESENCE
OF TRANSVERSAL MAGNETIC FIELD

The problem on longitudinal wave propagation in a plate in the presence of a
constant transversal magnetic field is studies. The asymptotic behavior of
tangential displacement of the points of the plate median surface is found. It is
established that the wave of a given initial shape finally turns into a quasi-
harmonic one.

The works [1—3, b, 6] are devoted to study of processes of vibration and
wave propagation in electroconductive bodies. In proposal work a problem of
longitudinal wave propagation in plates in presence of external transversal
magnetic field is investigated.

1. Let the thin elastic layer (the plate) with 2h constant thickness, with
c limited electroconductivity is situated in external magnetic field with
B(0, 0, B;;) constant vector of magnetic induction. In case of plane problem

(wave propagation is independent from y coordinate) for longitudinal waves
we have the following system of equations [1]:
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where E, p, v are the elastic characteristics of plate, U(x,t) — the displace-

ments of points of middle plane of plate, ¢ — the electrodynamical constant,
Y(x,t) and f(x,t) — the unknown functions of the perturbed electromagnetic

field, hli — the components of the perturbed magnetic field on the surfaces of
the plate, A — a typical size for that problem (the length of half-wave of plate
elastic vibration).

System (1) is closed system concerning unknown functions U, f,V, hf’ yhi.

From this system we can determine the velocity of longitudinal waves in
presence of magnetic field.

The solution of (1) system is introduced as running waves, which are
propagate along plate

Q@ = @, exp (i(ot - kx)), ®, = const, (2)
where ® is the frequency of vibrations, k — the wave number.
Substituting (2) into (1) and letting A =1/k [2], for determination of
phase velocity we get the following characteristic equation:
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For ideal conductive plate from (3) by ¢ — © we have the following dis-
persion equation:
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From equations (3) and (4) it is seen that the presence of magnetic field
causes dispersion: the phase velocity is dependent from kh parameter. In
absence of magnetic field (Bj; = 0), the phase velocity is equal to velocity of

elastic longitudinal wave propagation. With increasing of 1/kh, the phase
velocity increase and magnetic field can cause an increase of phase velocity
about 2.5 times [7].

2. The equation (4) was obtained from (3) by ¢ — «. The equation (4)
can be obtained also directly from governing equations of the problem. For
this purpose determine ¥ from second equation of system (1) and substitute
it into the other equations.

By ¢ — o and noting that B, %(fU < 0,f, we get the following sys-
c

tem of equations:
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Indeed substituting the (2) to the system of equations (5), we get the disper-
sion equation (4).

Now let’s get the values U(x,t) under the following initial conditions:

U(x,0) = B(x), 0.U(x,0) = y(x), f(x,0)=0. (6)

The boundary conditions in this case are the followings: all of functions
and then derivatives with respect to x is equal to 0 at x = £ . Applying the
Laplace’s right-side transformation by the variable t and Fourier’s
transformation by the variable x on the system of equations (5), with account
of (6) conditions, we get:
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Here [7'(oc,p)is the Fourier’s transforming of U'(.x‘,p) function, U'(.x‘,p) — the
Laplace’s transforming of U(x,t) function,
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B'(e) = | plr)expliox)dz,  y'(e)= [ y(x)exp(iox)dix.

For determination of U(x,t) it is necessary to make the opposite trans-
formation of Laplace and Fourier in (7). Consider the case when ah <1 and
at t =0 we have B(x) =0, y(x) =7,0(x) (y, = const, d(x) is the Dirac’s func-
tion). If magnetic field is absent then from (7) we have
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As one can from (8) we haven’t dispersion. From (7) in presence of magnetic
field for U(x,t) we get
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The presence of magnetic field leads to that to the following: the media has a
dispersion, i.e. w is a nonlinear function of k. In this case it is impossible to
calculate the integral (9) exactly. Applying the method of stationar phase on
the (9) integral large wvalues of t, and fixed x/t for U(x,t) we get the

following asymptotic behavior:
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So, we obtain that the wave of origin form U|t_0 =0, atUL_O = 7,9(x)

finally converts to quasiharmonic wave (with 0.257 phase), which has a wave
number k;, and o, frequency, dependent on x/t. The amplitude of this

wave is depend on x/t and damping proportionally to 1/«/—t . In the
neighborhood of the given value of x and by a fixed value of t, we may
consider the k, and o, as constants [4].
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NOLWWUPEHHA NMNO3J0BXHIX XBUIb Y NNMACTUHAX NMPU HAABHOCTI
MOMNEPEYHOIO MAIHITHOr O nond

Locaidxncyemuves 3a0aua npo NOWUPEHHS NO3008HCHBOT X8UAL 8 NAACTNMUHL NPU HASABHOC-
mi NOCMIUHOZ0 NONEPeUH020 MAZHIMHO20 NOoAS. 3HAUOEHO ACUMNMOMUUNY N08edTHKY
MAH2EHYIAALHO0 NePeMIWEeHHS MOUOK CepeOUHHOT NAOWUHU maacmunKu. Bemawnosne-
HO, WO XBUAS 13 3a0AHOI0 MOUAMKOB010 POPMOIO 8 KiHUEeBOMY DPAXYHKY Nepemseoproemsb-
Cs 8 K8a312APMOHIUHY LBUATO.

PACMPOCTPAHEHUE NMPOAOJIbHbIX BOJTH B MIACTUHAX NPU HANTU4YUU
MOMNEPEYHOIO MArHUTHOI'O NonsA

Hccaedyemcesa 3adaua o pacnpocmpaneruu NPoooabHOU 80AHBL 8 NAACMUHE NPU HAAU-
YUU NOCMOAHHOZO NONepeuHoz0 MazHumHoz0 noas. Hatlideno acummmomuueckoe mnose-
OJeHue MAHEHYUAABHOZO Tepemeu,eHuss mouex CPeOUHHOU MAOCKOCMU MAACTRUHKU.
Yemanosaeno, umo goana ¢ 3a0AHHOU HAUAALHOU POPMOU 8 KOHEUHOM cueme npespa-
uaemcs 8 K8a3uzaPMOHULECKY10 80AHY.
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