В. П. Шевченко, С. В. Закора

ПРО ВЗАЄМОВПЛИВ БЛИЗЬКО РОЗМІЩЕНИХ КРУГОВИХ ОТВОРІВ ІЗ ЖОРСТКИМИ КОНТУРАМИ У СФЕРИЧНІЙ ОБОЛОНЦІ

Розглянуто задачу про напружений стан пологої ізотропної сферичної оболонки з двома круговими отворами з жорсткими контурами, що не деформуються. Чисельно досліджено випадки досить близького розташування контурів як однакових, так і нерівних радіусів в оболонці під внутрішнім тиском. Виявлено значне збільшення напружень на перемичці між контурами при їх зближенні.

Чисельні результати для ізотропної пологої сферичної оболонки під дією внутрішнього тиску з двома однаковими круговими отворами, підкріпленими кільцями великої жорсткості, наведено в роботах [1, 2]. При цьому мінімальна ширина перемички складала 0.7 від радіуса отвору. У праці [3] для циліндричної оболонки було відмічено, що значне збільшення небезпечних напружень відбувається при близькому розташуванні абсолютно жорстких шайб. Тому в пропонованій роботі досліджуються випадки близького розташування двох кругових отворів (у тому числі й нерівних) з абсолютно жорсткими контурами в сферичній оболонці.

Постановка та розв'язування задачі. Розглянемо пологу ізотропну

сферичну оболонку товщини h з двома нерівними круговими отворами з жорсткими контурами, що не деформуються (рис. 1). Припускаємо, що оболонка навантажена рівномірним внутрішнім тиском інтенсивності p = const. Основний напружений стан оболонки описується безмоментним розв'язком суцільної оболонки:

$$T_{r}^{0} = p_{0}h, \qquad T_{\theta}^{0} = p_{0}h, \qquad S_{r\theta}^{0} = 0, \qquad (1)$$
$$= \frac{pR}{2}.$$

де $p_0 h = \frac{pR}{2}$.

Збурений напружений стан, що вноситься отворами, визначатимемо виходячи з основного диференціального рівняння теорії пологої сферичної оболонки [1]:

$$\Delta\Delta\Phi - \frac{i}{cR}\Delta\Phi = 0.$$
⁽²⁾

Тут Δ – оператор Лапласа; Φ – комплексна функція; R – радіус серединної поверхні оболонки; $c = h/\sqrt{12(1-v^2)}$, де v – коефіцієнт Пуассона.

Припускаємо, що контур Γ_q кожного отвору є абсолютно жорстким і таким, що не деформується. У роботі [2] застосовувалися граничні умови для підкріплюючого кільця. На відміну від [2], задаватимемо деформаційні граничні умови, що дозволяють точніше врахувати недеформованість абсолютно жорсткого контуру. Вони мають вигляд

$$\varepsilon_{\tau\tau}\big|_{\Gamma_q} = 0, \qquad x_{\tau\tau}\big|_{\Gamma_q} = 0, \qquad x_{\tau\nu}\big|_{\Gamma_q} = 0, \qquad x_{n\tau}\big|_{\Gamma_q} = 0.$$
(3)

Тут введено полярні координати $x_q + iy_q = r_q e^{i\theta_q}$, де q — номер контуру отвору, q = 1, 2, на якому задаються граничні умови. Вирази для деформаційних крайових величин, що увійшли у (3), є такими:

160 ISSN 0130-9420. Мат. методи та фіз.-мех. поля. 2009. - 52, № 4. - С. 160-165.

У граничних умовах (3), (4) враховано жорсткий поворот краю отвору навколо нормалі до оболонки.

Розв'язок $\Phi = Ehc \cdot U$ рівняння (2) визначаємо як суму циліндричної і полігармонічної (степеневої) частин: $U = U_c + U_p$. Функції U_c і U_p задовольняють умови симетричного розміщення контурів щодо осі x, спадають за абсолютною величиною при $r \to \infty$ і мають вигляд

$$U_c(\rho_q, \theta_q) = \sum_{q=1}^m \sum_{n=0}^\infty c_{qn} H_n^{(1)}(\sigma \rho_{qk}) \cos n\theta_{qk}, \qquad (5)$$

$$U_p(\rho_q, \theta_q) = \sum_{q=1}^m \sum_{n=0}^\infty a_{qn} \frac{1}{\rho_{qk}^n} \cos n\theta_{qk} \,. \tag{6}$$

Тут c_{qn} , a_{qn} – комплексні невідомі сталі; $H_n^{(1)}(\sigma \rho_{qk})$ – функція Ганкеля,

$$\begin{split} \sigma &= \frac{i-1}{\sqrt{2}}, \ i \ - \ \text{уявна одиниця;} \ \rho_{qk} = \frac{r_{qk}}{\sqrt{cR}} \ - \ \text{відносна безрозмірна величина,} \\ \text{де } r_{qk} \ - \ \text{радіус-вектор із початком у центрі } O_k \ \text{контуру } \Gamma_k \ \text{і кінцем на} \\ \text{контурі } \Gamma_q \ (\text{рис. 1}); \ \theta_{qk} \ - \ \text{кут між віссю } Ox \ \text{і радіус-вектором } r_{qk}, \ k = 1, 2; \\ \text{якщо } k = q \ \text{, то } \rho_{qk} = \rho_{0q} \ , \ \theta_{qk} = \theta_{0q} \ . \end{split}$$

Для відокремлення змінних у функціях U_c , U_p в q-й системі координат застосуємо методику, запропоновану в [2], яка базується на використанні теореми Графа для циліндричних функцій у (5) і розвинень у ряд Лорана кожного з членів степеневої частини розв'язку (6). В результаті отримаємо

$$U_{c}(\rho_{q},\theta_{q}) = \sum_{q=1}^{2} \sum_{n=0}^{\infty} \left\{ J_{n}(\sigma\rho_{0q})e_{n} \sum_{p=0}^{\infty} e_{np}c_{3-qp} \left[H_{n-p}^{(1)}(\sigma\ell) + (-1)^{n} H_{n+p}^{(1)}(\sigma\ell) \right] + c_{qn} H_{n}^{(1)}(\sigma\rho_{0q}) \right\} \cos n\theta_{q} ,$$

$$U_{c}(\rho_{c},\theta_{c}) =$$

$$(7)$$

$$F_{p}(\rho_{q},\theta_{q}) = \\ = \sum_{q=1}^{2} \sum_{n=0}^{\infty} \left[\sum_{p=1}^{\infty} \frac{e_{np}(-1)^{p}(p+n-1)! \rho_{0q}^{n}}{(p-1)! n! \ell^{p+n}} a_{3-qp} + a_{qn} \frac{1}{\rho_{0q}^{n}} \right] \cos n\theta_{q} .$$
(8)

Тут $J_n(\sigma \rho_{0q})$ – функція Бесселя першого роду; $\ell = L/r_{01}$ – відносна безрозмірна величина відстані між центрами контурів,

$$e_n = \begin{cases} 1/2, & n = 0, \\ 1, & n \neq 0, \end{cases}$$
 $e_{np} = \begin{cases} 1, & q = 1, \\ (-1)^{n+p}, & q = 2. \end{cases}$

Вирази для зусиль і моментів, що відповідають однорідним розв'язкам (5)-(8), згідно з [1, 2] мають вигляд

$$\begin{split} T_r &= \frac{1}{\rho} \operatorname{Im} \left(\frac{\partial U}{\partial \rho} + \frac{1}{\rho} \frac{\partial^2 U}{\partial \theta^2} \right), \quad T_{\theta} &= \operatorname{Im} \frac{\partial^2 U}{\partial \rho^2}, \quad S_{r\theta} &= -\operatorname{Im} \frac{\partial}{\partial \rho} \left(\frac{1}{\rho} \frac{\partial U}{\partial \theta} \right), \\ G_r &= -c \operatorname{Re} \left(\frac{\partial^2 U}{\partial \rho^2} + \frac{v}{\rho} \frac{\partial U}{\partial \rho} + \frac{v}{\rho^2} \frac{\partial^2 U}{\partial \theta^2} \right), \qquad G_{\theta} &= -(1+v)c \operatorname{Re} \nabla^2 U - G_r \,, \\ H_{r\theta} &= -(1-v)c \operatorname{Re} \frac{\partial}{\partial \rho} \left(\frac{1}{\rho} \frac{\partial U}{\partial \theta} \right), \qquad Q_r &= -\sqrt{\frac{c}{R}} \operatorname{Re} \frac{\partial}{\partial \rho} \nabla^2 U \,, \end{split}$$

161

$$Q_r^* = Q_r + \frac{dH_{r\theta}}{ds}, \qquad Q_{\theta} = -\sqrt{\frac{c}{R}} \frac{1}{\rho} \operatorname{Re} \frac{\partial}{\partial \theta} \nabla^2 U, \qquad (9)$$

$$\operatorname{de} \nabla^2 = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \theta^2}.$$

Підставляючи зусилля і моменти із (9) з урахуванням (7), (8) у граничні умови (3), (4) і прирівнюючи члени при однакових гармоніках, отримуємо нескінченну систему алгебраїчних рівнянь щодо дійсних і уявних частин невідомих a_{qn} , c_{qn} . До цієї системи згідно з [1] необхідно додати ще умови рівності нулю складових головного вектора і головного моменту зовнішніх сил, прикладених до контуру, тоді $a_{q0} = 0$, $a_{q1} = 0$. Отриману систему розв'язуємо методом редукції.

Визначені внаслідок розв'язання цієї системи значення a_{qn} , c_{qn} підставляємо у формули (5), (6) і знаходимо функції напружень U_p , U_c . Далі за формулами (9) знаходимо зусилля і моменти, які при переході до напрямів **б**, **t** перетворюємо за відомими формулами [1] і які залежатимуть ще від кутів φ_a (див. рис. 1).

Чисельні дослідження проведено для оболонки з коефіцієнтом Пуассона v = 0.3 під дією внутрішнього тиску з двома круговими отворами з контурами, що не деформуються, при різних значеннях радіусів контурів і ширини перемички між ними.

Обчислено коефіцієнти концентрації мембранних і згинальних, а за ними — і відносних еквівалентних напружень відповідно до енергетичної теорії міцності [1]:

$$\begin{aligned} k_{\theta}^{\mathrm{T}} &= (T_{\theta} + T_{\theta}^{0}) \frac{1}{p_{0}h}, \qquad k_{r}^{\mathrm{T}} = (T_{r} + T_{r}^{0}) \frac{1}{p_{0}h}, \qquad k_{\theta}^{\mathrm{B}} = 6G_{\theta} \frac{1}{p_{0}h^{2}}, \\ k_{r}^{\mathrm{B}} &= 6G_{r} \frac{1}{p_{0}h^{2}}, \qquad \tau_{r\theta}^{\mathrm{T}} = (S_{r\theta} + S_{r\theta}^{0}) \frac{1}{p_{0}h}, \qquad \tau_{r\theta}^{\mathrm{B}} = 6H_{r\theta} \frac{1}{p_{0}h^{2}}, \qquad (10) \\ k_{\theta} &= k_{\theta}^{\mathrm{T}} \pm k_{\theta}^{\mathrm{B}}, \qquad k_{r} = k_{r}^{\mathrm{T}} \pm k_{r}^{\mathrm{B}}, \\ k_{r\theta} &= \tau_{r\theta}^{\mathrm{T}} \pm \tau_{r\theta}^{\mathrm{B}}, \qquad k_{eq} = \sqrt{k_{r}^{2} + k_{\theta}^{2} - k_{r}k_{\theta} + 3k_{r\theta}^{2}}. \end{aligned}$$

Відносним еквівалентним напруженням $k_{\rm eq}^{\rm Ext}$ на зовнішній поверхні оболонки у формулах (11) відповідає знак «плюс», а еквівалентним напруженням $k_{\rm eq}^{\rm Int}$ на внутрішній поверхні — знак «мінус».

На рис. 2–5 і в табл. 1, 2 введено такі позначення відносних безрозмірних величин: $\rho_{0q} = \frac{r_{0q}}{\sqrt{cR}}$ – радіуси жорстких контурів, $s = \frac{S}{r_{01}}$ – ширина перемички між контурами. По вертикальній осі на рис. 2, 4 відкладали значення відносних еквівалентних напружень $k_{\rm eq}^{\rm Int}$ як найбільших в оболонці. Біля кожної кривої вказано відповідне для неї значення величини відносної ширини перемички *s*. Параметр η , що відкладається по горизонтальній осі, приймає такі значення:

1) $\eta = 2(q-1) + \theta_q/\pi$ при $2(q-1) \le \eta \le 2q-1$. У розглянутому тут випадку симетрії щодо осі Ox параметр η описує половину контуру Γ_q і тому $0 \le \theta_q \le \pi$;

2) $\eta=1+(x_1-r_{01})/S$ при $1\leq\eta\leq 2$ — по перемичці S, тобто, коли $r_{01}\leq x_1\leq r_{01}+S\;.$ 162

У випадку двох однакових жорстких контурів та симетрії стосовно осей Ox і Oy епюри напружень наведено тільки на першому контурі Γ_1 і далі по перемичці до її середини, тобто для $1 \le \eta \le 1.5$.

Для порівняння з [2] для сферичної оболонки з двома однаковими круговими жорсткими контурами з радіусами $\rho_{01} = \rho_{02} = 2.8743$ виконано розрахунки, результати яких наведено на рис. 2, 3 і в табл. 1. У роботі [2] найменша ширина перемички, для якої були наведені результати, становила s = 0.7. На рис. 2 бачимо, що при такій ширині перемички найбільше напруження $k_{\rm eq}^{\rm Int}$ залишається на жорсткому контурі отвору і трохи (на 2.6%) більше, ніж при s = 2. Але, як видно на рис. 2, починаючи з s = 0.1 і при подальшому зменшенні перемички, максимальне напруження $k_{\rm eq}^{\rm Int}$ зміщується на перемичку *BC* і значно зростає: при s = 0.02 напруження $k_{\rm eq}^{\rm Int}$ у

3.3 рази, а при s = 0.01 - y 5.2 разів більше, ніж при s = 0.7. До цього ж випадку двох однакових жорстких контурів з радіусами $\rho_{01} = \rho_{02} = 2.8743$ відносяться рис. З для s = 0.03 і табл. 1 – для s = 0.05, де наведено значення напружень $k_r^{\rm T}$, $k_r^{\rm B}$, $k_{\theta}^{\rm T}$, $k_{\theta}^{\rm B}$, $k_{\rm eq}^{\rm Ext}$, $k_{\rm eq}^{\rm Int}$. З рис. З і табл. 1 бачимо, що найбільший внесок до зростання $k_{\rm eq}^{\rm Int}$ вносить раді-

				1	аолици т			
k	$\rho_{01}=\rho_{02}=2.8743,\ s=0.05$							
	точка А,			точка В,	точка С,			
	$\boldsymbol{\theta}_1 = \boldsymbol{0}$,	$\theta_1 = \pi/2 \ ,$	$\theta_1=5\pi/8$,	$\boldsymbol{\theta}_1$ = $\boldsymbol{\pi}$,	s/2,			
	$\eta = 0$	$\eta = 0.5$	$\eta=0.625$	η = 1	$\eta = 1.5$			
k_r^{T}	1.2953	1.2054	1.1079	3.1608	3.1735			
$k_{ heta}^{\mathrm{T}}$	0.3886	0.3616	0.3324	0.9482	0.8832			
k_r^{B}	-0.6093	-1.0880	-1.3690	-0.9453	-0.9356			
$k_{ heta}^{ ext{B}}$	-0.1828	-0.3264	-0.4107	-0.2836	-0.2912			
$c_{\rm eq}^{\rm Ext}$	0.6097	0.1043	0.2736	1.9691	2.0084			
$k_{\rm eq}^{\rm Int}$	1.6928	2.0384	2.2063	3.6496	3.6658			

альне напруження k_r^{T} і у декілька разів менший – k_r^{B} .

На рис. 4, 5 і в табл. 2 наведено результати розрахунків для випадку двох нерівних кругових жорстких контурів з $\rho_{01} = 6$ і $\rho_{02} = 2$ при різних значеннях ширини перемички, віднесеної до радіуса більшого контуру. Зі зменшенням ширини перемички тут також, як і у випадку двох рівних контурів, спостерігається збільшення напружень на перемичці. При $s \leq 0.05$ небезпечна, тобто найбільш напружена, зона знаходяться у точці *D* перетину меншого контуру з перемичкою.

Розрахунки для кривих на рис. 4, 5 виконано для випадку кругових отворів з $\rho_{01} \neq \rho_{02}$, тобто роз-Таблиця 2

міщених так, як показано на рис. 1. На рис. 4 бачимо, що при s = 0.02 напруження у точці D на 31% більші, ніж у точці В перетину більшого контуру Γ_1 з перемичкою і в 2.2 рази перевищують найбільші напруження $k_{\rm eq}^{\rm Int}$ при *s* = 0.1. При *s* = 0.01 – відповідно на 26% і в 3.2 рази. Рис. 5 і табл. 2 (аналогіч-

но, як рис. 3 і табл. 1) свідчать про те, що найбільший внесок

	$\rho_{01}=6\;,\;s=0.04\;,\;\rho_{02}=2$					
k	точка А,	точка В,	точка С,	точка D,	точка Е	
	$\theta_1 = 0$	$\theta_1 = \pi$	s/2	$\theta_2 = 0$	$\theta_2 = \pi$	
k_r^{T}	1.1570	2.5436	2.5785	2.5805	1.3939	
$k_{ heta}^{ ext{T}}$	0.3471	0.7631	0.6831	0.7742	0.4182	
$k_r^{\rm B}$	-0.9847	-0.3521	-0.5992	-0.8605	-0.2903	
$k_{ heta}^{ extsf{B}}$	-0.2954	-0.1056	-0.1923	-0.2582	-0.0871	
$k_{ m eq}^{ m Ext}$	0.1531	1.9478	1.7853	1.5288	0.9810	
$k_{ m eq}^{ m Int}$	1.9036	2.5738	2.8429	3.0584	1.4969	

в сумарні напруження $k_{\rm eq}^{\rm Int}$ вносять радіальні напруження $k_r^{\rm T}$ і $k_r^{\rm B}$.

Достовірність отриманих результатів.

 Перевіряли задоволення граничних умов шляхом безпосереднього обчислення заданих зусиль і моментів у точках контурів Γ_1 та Γ_2 з використанням рядів (5) і (6), тобто без застосування теореми Графа та ряду Лорана. Обчислення проводили на ПК у середовищі пакета Maple-10. Точність обчислень можна регулювати, задаючи значення системної змінної Digits, а також задаючи число гармонік п у розв'язках (5), (8). Так, для випадку двох однакових контурів (див. результати, наведені в табл. 1) при n = 45 і Digits = 57, похибка виконання граничних умов при чисельній реалізації не перевищувала 0.06 % від найбільших напружень в суцільній оболонці (тобто від 1). У випадку двох неоднакових контурів, результати обчислень яких наведено в табл. 2, похибка виконання граничних умов не перевищувала 0.12% при n = 70 i Digits = 77.

 Перевіряли виконання вихідного рівняння (2) функцією Ф з обчисленими в результаті розв'язання нескінченної системи алгебраїчних рівнянь коефіцієнтами a_{qn} , c_{qn} . Абсолютна похибка не перевищувала 10^{-54} при Digits = 57.

- Для порівняння з результатами для сферичної оболонки з одним жорстким включенням [4] були проведені розрахунки при s = 100, тобто, коли взаємовплив жорстких контурів відсутній. Отримано повне співпадіння результатів з [4] для ізотропної оболонки при $\delta = 0$.

Висновки. Наведені в роботі чисельні дослідження для сферичної оболонки показали, що при зменшенні ширини перемички між жорсткими контурами, що не деформуються, напруження на ній зростають і можуть збільшитися у декілька разів (у розглянутих вище прикладах у 2–5 разів). Проведений таким чином аналіз чисельних результатів дозволяє визначити, в якому місці сферичної оболонки виникають небезпечні зони найбільшої концентрації напружень, оцінити їх величину, а також ефективність підкріплень кругових отворів. Отримані результати разом із розробленою в середовищі Maple-10 програмою розрахунку можуть бути використані в інженерній практиці.

У подальших дослідженнях перспективним є розв'язання аналогічних задач для багатозв'язної трансверсально-ізотропної сферичної оболонки з отворами та включеннями.

- 1. Гузь А. Н., Чернышенко И. С., Чехов Вал. Н., Чехов Вик. Н., Шнеренко К. И. Теория тонких оболочек, ослабленных отверстиями. – Киев: Наук. думка, 1980. – 636 с. – (Методы расчета оболочек: В 5 т.; Т. 1.)
- 2. Гузъ А. Н., Чернышенко И. С., Шнеренко К. И. Сферические днища, ослабленные отверстиями. Киев: Наук. думка, 1970. 324 с.
- Закора С. В. Растяжение цилиндрической оболочки с конечным числом жестких включений // Теорет. и прикл. механика. – 1981. – № 12. – С. 71–77.
 Закора С. В., Чехов Вал. Н. Напряженное состояние трансверсально-изотропной
- Закора С. В., Чехов Вал. Н. Напряженное состояние трансверсально-изотропной сферической оболочки с жестким круговым включением // Прикл. механика. – 2005. – 41, № 12. – С. 67–73.

Te came: Zakora S. V., Chekhov Val. N. Stress state of a transversely isotropic spherical shell with a rigid circular inclusion // Int. Appl. Mech. - 2005. - 41, No. 12. - P. 1384-1390.

О ВЗАИМОВЛИЯНИИ БЛИЗКО РАСПОЛОЖЕННЫХ КРУГОВЫХ ОТВЕРСТИЙ С ЖЁСТКИМИ КОНТУРАМИ В СФЕРИЧЕСКОЙ ОБОЛОЧКЕ

Рассмотрена задача о напряжённом состоянии пологой изотропной сферической оболочки с двумя круговыми отверстиями с жёсткими недеформируемыми контурами. Численно исследованы случаи весьма близкого расположения контуров как одинаковых, так и неравных радиусов в оболочке под внутренним давлением. Обнаружено значительное увеличение напряжений на перемычке между контурами при их сближении.

ON INTERACTION OF CLOSE LOCATED CIRCULAR HOLES WITH RIGID CONTOURS IN A SPHERICAL SHELL

The problem on the stress state of a shallow isotropic spherical shell with two circular holes with rigid undeformable contours is considered. The cases of close enough location of contours of both identical and unequal radii in a shell at uniform pressure are numerically investigated. The considerable increase of stresses on a bridge between contours at their coming together is found.

Донецьк. нац. ун-т, Донецьк

Одержано 06.03.09