Т. Я. Соляр

ВИЗНАЧЕННЯ НЕСТАЦІОНАРНИХ ТЕМПЕРАТУРНИХ ПОЛІВ І НАПРУЖЕНЬ У КУСКОВО-ОДНОРІДНИХ КІЛЬЦЕВИХ ПЛАСТИНКАХ НА ОСНОВІ ЧИСЕЛЬНО-АНАЛІТИЧНОЇ ФОРМУЛИ ОБЕРНЕННЯ ПЕРЕТВОРЕННЯ ЛАПЛАСА

Досліджено нестаціонарні температурні поля і спричинені ними напруження в кусково-однорідних кільцевих пластинках. Алгоритм розв'язування задачі ґрунтується на безпосередньому обчисленні зображення Лапласа та модифікованій формулі Пруднікова для його обернення.

Вивчення температурних напружень в неоднорідних елементах конструкцій при різних технологічних процесах є важливим напрямком термомеханіки. Для розв'язання задачі теплопровідності часто використовують інтегральне перетворення Лапласа [1]. Однак для тіл складної форми при знаходженні оригіналів функцій в аналітичному вигляді і подальших розрахунках виникають значні математичні труднощі. Так, отриманий у [3] аналітичний розв'язок задачі термопружності для однорідної нескінченної пластинки з круговим отвором є достатньо складним для обчислень. Розроблено значну кількість різноманітних методів чисельного обернення перетворення Лапласа для різних типів задач, ефективних для виконання обчислень у багатьох конкретних випадках (див., наприклад, [4–7]).

У цій роботі запропоновано алгоритм розрахунку нестаціонарних температурних полів і напружень для пластинок з довільною кількістю кілець на основі безпосереднього обчислення оригіналу через трансформанту Лапласа за допомогою модифікованої формули Пруднікова [2].

Розглядається задача про визначення нестаціонарних температурних полів і напружень у кусково-однорідних кільцевих пластинках, які нагріваються шляхом конвективного теплообміну з середовищем змінної в часі температури. Приймаємо, що задача осесиметрична, між кільцями мають місце умови ідеального теплового і механічного контакту, на кожній із границь пластинки задано нормальні зусилля або переміщення.

Нехай кільцева пластинка складається з N кілець. Позначимо через ℓ_j , a_j , λ_j відповідно ширину, коефіцієнт температуропровідності, коефіцієнт теплопровідності j-го кільця, r_0 – радіус внутрішньої границі.

Рівняння теплопровідності для *j*-го кільця має вигляд

$$\frac{\partial^2 t_j}{\partial r^2} + \frac{1}{r} \frac{\partial t_j}{\partial r} - \operatorname{Bi}_j t_j - \frac{\partial t_j}{a'_j \partial \theta} = 0 \qquad \text{при} \qquad r_{j-1} < r < r_j.$$
(1)

Тут r – координата, віднесена до деякого характерного розміру H плас- $\alpha^{z} H^{2}$

тинки; Ві $_{j}=rac{lpha_{j}^{z}H^{2}}{\lambda_{j}h};\ lpha_{j}^{z}$ — коефіцієнти тепловіддачі з плоских границь; h —

півтовщина пластинки; $\theta = \frac{a_k \tau}{H^2}$, τ – час; $a'_j = \frac{a_j}{a_k}$; k – вибраний номер

деякого кільця.

Граничні умови за конвективного теплообміну будуть

$$\lambda_{1} \frac{\partial t_{1}}{\partial n} + \alpha_{1} t_{1} = \alpha_{1} f_{1} \qquad \text{при} \qquad r = r_{0},$$

$$\lambda_{N} \frac{\partial t_{N}}{\partial n} + \alpha_{N} t_{N} = \alpha_{N} f_{N} \qquad \text{при} \qquad r = r_{N},$$
 (2)

ISSN 0130-9420. Мат. методи та фіз.-мех. поля. 2009. - 52, № 3. - С. 201-208. 201

де α_1/H , α_N/H — коефіцієнти тепловіддачі з границь першого та останнього кілець; f_1 і f_N — температури середовищ, що омивають ці границі.

Перетворення Лапласа від температур
и t_{j} запишемо у вигляді

$$\tilde{t}_{j} = \tilde{T}_{j-1}f_{j}(r) + \tilde{Q}_{j-1}g_{j}(r), \qquad j = 1, \dots, N ,$$
(3)

де \tilde{T}_{j-1} , \tilde{Q}_{j-1} — відповідно зображення температури та віднесеного до H

потоку тепла на лівій межі *j*-го кільця, $\tilde{Q}_{j-1} = -\lambda_j \frac{\partial \tilde{t}_j}{\partial r} \Big|_{r=r_{j-1}}$,

$$\begin{split} f_{j}(r) &= \left[K_{1}(p_{j}r_{j-1})I_{0}(p_{j}r) + I_{1}(p_{j}r_{j-1})K_{0}(p_{j}r)\right]\frac{1}{\Delta_{j}},\\ g_{j}(r) &= \left[-K_{0}(p_{j}r_{j-1})I_{0}(p_{j}r) + I_{0}(p_{j}r_{j-1})K_{0}(p_{j}r)\right]\frac{1}{\Delta_{j}\lambda_{j}p_{j}} \end{split}$$

Тут $p_j = \sqrt{\operatorname{Bi}_j + s/a_j}$; *s* – параметр перетворення Лапласа за часовою координатою; $\Delta_j = K_1(p_jr_{j-1})I_0(p_jr_{j-1}) + I_1(p_jr_{j-1})K_0(p_jr_{j-1})$; $I_j(z), K_j(z)$ – функції Бесселя уявного аргументу. Звідси випливає, що зображення температури і віднесеного до *H* потоку тепла на внутрішній ($\tilde{T}_{j-1}, \tilde{Q}_{j-1}$) і зовнішній (\tilde{T}_j, \tilde{Q}_j) границях кільця пов'язані матричним співвідношенням вигляду [1]

$$\begin{pmatrix} \tilde{T}_j \\ \tilde{Q}_j \end{pmatrix} = M_j \begin{pmatrix} \tilde{T}_{j-1} \\ \tilde{Q}_{j-1} \end{pmatrix}, \qquad j = 1, \dots, N , \qquad (4)$$

де $\,M_{j}\,$ – квадратна матриця з елементами

$$\begin{split} m_{11}^{(j)} &= f_j(r_j), \qquad m_{12}^{(j)} = g_j(r_j), \\ m_{21}^{(j)} &= -\lambda_j p_j \big[K_1(p_j r_{j-1}) I_1(p_j r_j) - I_1(p_j r_{j-1}) K_1(p_j r_j) \big] \frac{1}{\Delta_j}, \\ m_{22}^{(j)} &= \big[K_0(p_j r_{j-1}) I_1(p_j r_j) - I_0(p_j r_{j-1}) K_1(p_j r_j) \big] \frac{1}{\Delta_j}. \end{split}$$

На основі формули (4) маємо

$$\begin{pmatrix} \tilde{T}_j \\ \tilde{Q}_j \end{pmatrix} = D_j \begin{pmatrix} \tilde{T}_0 \\ \tilde{Q}_0 \end{pmatrix},$$
 (5)

де $D_j = M_j * M_{j-1} * ... * M_1$; \tilde{T}_0 , \tilde{Q}_0 — температура і віднесений до H потік тепла на границі першого кільця. Підставляючи ці співвідношення у граничні умови, для визначення величин \tilde{T}_0 , \tilde{Q}_0 отримуємо систему рівнянь вигляду

$$\begin{split} \tilde{Q}_0 &+ \alpha_1 \tilde{T}_0 = \alpha_1 \tilde{f}_1, \\ (-d_{22} + \alpha_N d_{12}) \tilde{Q}_0 &+ (-d_{21} + \alpha_N d_{11}) \tilde{T}_0 = \alpha_N \tilde{f}_N, \end{split}$$
(6)

де d_{ij} — елементи матриці D_N ; \tilde{f}_1 , \tilde{f}_N — зображення Лапласа від функцій f_1 , f_N . Тут використано співвідношення

$$\tilde{T}_N = d_{11}\tilde{T}_0 + d_{12}\tilde{Q}_0, \qquad \qquad \tilde{Q}_N = d_{21}\tilde{T}_0 + d_{22}\tilde{Q}_0.$$

Формули (5), (6) дають змогу розраховувати зображення температур і потоків тепла на межах довільного кільця, на основі яких зображення від температури у довільних точках пластини визначають за формулою (3).

Визначення напружень. Розглянемо спочатку детальніше випадок, коли межі пластинки ненавантажені. Приймемо, що відомі зображення радіальних напружень і переміщень на внутрішній границі j-го кільця, які позначимо через σ_{j-1} , u_{j-1} . Тоді зображення Лапласа від напружень і переміщень, що відповідають знайденій температурі, набудуть вигляду [3]

$$\begin{aligned} \sigma_{r} &= \sigma_{j-1} s_{11}(r) + u_{j-1} s_{12}(r) - \Theta_{j}(r) ,\\ \sigma_{\phi} &= \sigma_{j-1} s_{31}(r) + u_{j-1} s_{32}(r) + \Theta_{j}(r) - E_{j} \alpha_{tj} \tilde{t}_{j}(r) ,\\ u &= \sigma_{j-1} s_{21}(r) + u_{j-1} s_{22}(r) + (1 + v_{j}) r \Theta_{j}(r) , \end{aligned}$$

$$(7)$$

де $\alpha_{t,j}, E_j$ – коефіцієнт лінійного температурного розширення та модуль Юнга j-го кільця,

$$\begin{split} \Theta_{j}(r) &= \frac{E_{j}\alpha_{t,j}}{r^{2}} \int_{r_{j-1}}^{r} r\tilde{t}_{j}(r) dr ,\\ s_{11}(r) &= \frac{1}{2} \bigg[(1+\nu_{j}) + (1-\nu_{j}) \frac{r_{j-1}^{2}}{r^{2}} \bigg], \qquad s_{12}(r) = \frac{E_{j}}{2} \bigg(\frac{1}{r_{j-1}} - \frac{r_{j-1}}{r^{2}} \bigg), \\ s_{21}(r) &= \frac{1-\nu_{j}^{2}}{2E_{j}} \bigg(r - \frac{r_{j-1}^{2}}{r} \bigg), \qquad s_{22}(r) = \frac{1}{2} \bigg((1-\nu_{j}) \frac{r}{r_{j-1}} + (1+\nu_{j}) \frac{r_{j-1}}{r} \bigg), \\ s_{31}(r) &= \frac{1}{2} \bigg[(1+\nu_{j}) - (1-\nu_{j}) \frac{r_{j-1}^{2}}{r^{2}} \bigg], \qquad s_{32}(r) = \frac{E_{j}}{2} \bigg(\frac{1}{r_{j-1}} + \frac{r_{j-1}}{r^{2}} \bigg). \end{split}$$
(8)

Зазначимо, що

$$\Theta_j(r) = \tilde{T}_{j-1}A_j(r) + \tilde{Q}_{j-1}B_j(r)\,,$$

де

$$\begin{split} A_{j} &= \frac{E_{j}\alpha_{t,j}}{r^{2}p_{j}\Delta_{j}} \big[K_{1}(p_{j}r_{j-1})i_{j}(r) + I_{1}(p_{j}r_{j-1})k_{j}(r) \big], \\ B_{j} &= \frac{E_{j}\alpha_{t,j}}{r^{2}\Delta_{j}\lambda_{j}p_{j}^{2}} \big[-K_{0}(p_{j}r_{j-1})i_{j}(r) + I_{0}(p_{j}r_{j-1})k_{j}(r) \big], \\ i_{j}(r) &= rI_{1}(p_{j}r) - r_{j-1}I_{1}(p_{j}r_{j-1}), \\ k_{j}(r) &= -rK_{1}(p_{j}r) + r_{j-1}K_{1}(p_{j}r_{j-1}). \end{split}$$

На основі співвідношень (7) знаходимо нормальні напруження і переміщення на зовнішній границі кільця у вигляді

$$Z_{j} = S_{j} Z_{j-1} + K_{j} \Theta_{j}(r_{j}), \qquad (9)$$

де

$$Z_j = \begin{pmatrix} \sigma_j \\ u_j \end{pmatrix}, \qquad S_j = \begin{pmatrix} s_{11}(r_j) & s_{12}(r_j) \\ s_{21}(r_j) & s_{22}(r_j) \end{pmatrix}, \qquad K_j = \begin{pmatrix} -1 \\ (1+v_j)r_j \end{pmatrix}.$$

Формулу (9) розглядаємо як рекурентну при $j=1,\ldots,N$. Тоді отримаємо

$$Z_j = C_j \begin{pmatrix} \sigma_0 \\ u_0 \end{pmatrix} + P_j, \qquad j = 1, \dots, N , \qquad (10)$$

де $C_j = S_j * S_{j-1} * \dots * S_1$, величини P_j дорівнюють значенням Z_j , які визначаються за рекурентною формулою (9) при $Z_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

У співвідношеннях (10)
 $\sigma_0=0$. Для визначення величини u_0 у (10) по-кладем
оj=N. Звідси отримаємо рівняння

$$\sigma_N = P_{N,1} + C_{N,11}\sigma_0 + C_{N,12}u_0, \qquad (11)$$

де $P_{N,1}$ – перший елемент матриці P_N , а $C_{N,11}$, $C_{N,12}$ – елементи першого рядка матриці C_N , $\sigma_N = 0$. Знайшовши сталу u_0 , величини Z_j , j = 1, ..., N, визначаємо за формулою (10). Зображення напружень у довільних точках пластинки знаходимо за формулою (7).

Аналогічно можна розглядати також і випадки інших граничних умов. Зокрема, нехай межа $r = r_0$ закріплена, а друга — вільна від навантажень. Тоді з формули (11) визначаємо величину σ_0 ($u_0 = \sigma_N = 0$). Зазначимо, що такий випадок має місце для суцільної пластинки (при $r_0 = 0$).

Знаходження оригіналів проводили за допомогою чисельно-аналітичної формули обернення [2]. Для використання цієї формули необхідно додатково визначити встановлені температуру і напруження у пластині. Їх визначали за наведеними вище формулами для зображень, у яких покладали s = 0, а у формулах (6) — $\tilde{f}_1 = f_{1,\infty}$, $\tilde{f}_N = f_{N,\infty}$, де $f_{1,\infty}$, $f_{N,\infty}$ — значення функцій f_1 і f_N при $\tau \to \infty$.

У роботі розглянуто випадок однорідних граничних умов. Нехай на границях пластинки задано ще нормальні напруження $\sigma_r(r_0) = \sigma_{r0}$, $\sigma_r(r_N) = \sigma_{rN}$. Тоді до знайдених напружень необхідно додати напружений стан, який визначається за формулою (10), у якій $P_j = 0$. У цій формулі $\sigma_0 = \sigma_{r0}$, а величину u_0 одержуємо з рівняння (11) при $P_{N,1} = 0$, $\sigma_N = \sigma_{r,N}$. Напруження у довільних точках знаходимо за формулами (7), (8) при $\Theta_j = 0$.

Приклади розрахунку температури і напружень. Введемо надалі відносні характеристики $\frac{E_j}{E_k} = \varepsilon_j, \ \frac{\lambda_j}{\lambda_k} = \Lambda_j, \ \frac{\alpha_{t,j}}{\alpha_{t,k}} = \alpha'_{t,j}.$

Приклад 1. Розглянемо пластинку, що складається з трьох кілець з безрозмірними значеннями радіусів $r_0 = 1$, $r_1 = 1.091$, $r_2 = 1.91$, $r_3 = 2$, яка моделює пластинку з внутрішнім та зовнішнім покриттями. Тут прийнято, що H — повна ширина пластинки. Усі характеристики відносили до даних другого кільця (тобто у наведених вище відносних характеристиках покладали k = 2). Усі відносні значення характеристик приймали однаковими, за винятком відносних значень коефіцієнтів лінійного температурного розширення, які покладали рівними $\alpha'_{t,1} = \alpha'_{t,3} = x$. Відносні коефіцієнти тепловіддачі покладали однаковими: $\frac{\alpha_1}{\lambda_1} = 0.1$, $\frac{\alpha_3}{\lambda_3} = 0.1$. При застосуванні формули обернення [2] (у вигляді швидкозбіжних рядів Фур'є) температуру визначали на часовому проміжку $0 < \theta < \ell$, при цьому параметри, які входять до неї, приймали такими: $\ell = 20$, c = 5. У рядах утримували 100÷200 членів, що забезпечувало точність розрахунків ~ 0.1%. Вважали, що $f_1 = f_3 = C$, C = const, тобто розглядали двосторонній нагрів.

На рис. 1*a* – рис. 1*г* відповідно для x = 0.5, 1, 2, 5 зображено розподіли відносних кільцевих напружень $\sigma_t^* = \sigma_t / CE_2 \alpha_{t,2}$ уздовж поперечного пере-

різу пластинки для значень часового параметра $\theta^* = 3$ (штрихпунктирні криві), $\theta^* = 10$ (пунктирні криві), $\theta^* = 20$ (штрихові криві), $\theta^* = 80$ (суцільні криві). Тут $\theta^* = \theta \cdot 100/\ell$. Кружечками зображено значення відносних температури та напружень, які відповідають усталеному режиму. Усі ці позначення зберігаються і на рис. 2-4.

Рис. 1

Із аналізу кривих, наведених на рисунках, випливає, що при двосторонньому нагріві однорідної пластинки напруження набувають найбільших значень у початковий момент часу. У кінцевий момент нагріву кільцеві напруження практично відсутні. При неоднакових відносних значеннях коефіцієнтів лінійного температурного розширення напруження зростають з часом. При цьому у покриттях напруження є стискувальними, якщо в них коефіцієнти лінійного температурного розширення є більшими, ніж в основному матеріалі пластинки, і розтягувальними – в протилежному випадку. Отже, вибором характеристик покриттів можна регулювати напружений стан композитної пластинки.

Приклад 2. Розглянуто випадок одностороннього нагріву пластинки, що складається із 11 (N = 11) кілець однакової ширини. При розрахунках температури приймали, що відносні значення коефіцієнта теплопровідності $rac{\lambda_j}{\lambda_k}$

= Λ_i дорівнюють параметру m, який набуває значень 0.1, 1, 5, 10 у не-

парних рядах і дорівнює одиниці — у парних. Як і в *прикладі 1*, усі характеристики відносили до даних другого кільця. Значення відносних коефіці-

єнтів тепловіддачі покладали такими: $\frac{\alpha_1}{\lambda_1}=0.01\,,\,\,\frac{\alpha_{11}}{\lambda_{11}}=0.5\,.$

Графіки розподілів уздовж радіуса пластинки віднесеної до величини C температури T у вказані вище моменти часу $\theta^* = 3, 10, 20, 80$ для значень m = 0.1, 1, 5, 10 зображено на рис. 2.

Розраховані відносні кільцеві $\sigma_t^* = \sigma_t / CE_2 \alpha_{t,2}$ та радіальні $\sigma_r^* = \sigma_r / CE_2 \alpha_{t,2}$ напруження для випадків, коли відносні значення коефіцієнта лінійного температурного розширення дорівнюють x = 0.25, 0.5, 1, 5, y непарних рядах та 1 — у парних, зображено відповідно на рис. 3 і рис. 4. Тут $\alpha'_{t,1} = \alpha'_{t,11} = x$.

Рис. 3

Рис. 4

Із проведених досліджень випливає, що температура і напруження істотно залежать від характеристик матеріалу. Проілюстровано можливість шляхом вибору термомеханічних характеристик покриттів створювати композитні кільця з наперед заданим характером розподілу напружень. Запропонований підхід є достатньо ефективний і дозволяє досліджувати складні задачі термомеханіки структурованих тіл.

- 1. *Карслоу Г., Егер Д.* Теплопроводность твердых тел. Москва: Наука, 1964. 487 с.
- 2. *Кушнір* Р. М., *Максимович* В. М., *Соляр* Т. Я. Визначення нестаціонарних температур на основі уточнених формул обернення перетворення Лапласа // Фіз.хім. механіка матеріалів. – 2002. – **38**, № 2. – С. 18–26.
 - Te came: Kushnir R. M., Maksymovych V. M., Solyar T. Ya. Determination of nonstationary temperatures with the help of improved formulas of the inverse Laplace transformation // J. Materials Sci. 2002. 38, No. 2. C. 172-184.
- Подстригач Я. С., Коляно Ю. М. Неустановившиеся температурные поля и напряжения в тонких пластинках. – Киев: Наук. думка, 1972. – 308 с.
- Campos R. G., Díaz F. M. Quadrature formulas for the Laplace and Mellin transform analytic-element method for transient porous-media flow // BIT Numer. Math. - 2009. - 49, No. 3. - P. 477-486.
- 5. Davis B., Martin B. Numerical inversion of the Laplace transform: survey and comparison of methods // J. Computat. Physics. 1979. 33, No. 1. P. 1-32.
- Kuhlman K. L., Neuman S. P. Laplace-transform analytic-element method for transient porous-media flow // J. Eng. Math. – 2009. – 64, No. 2. – P. 113–130.
- Levesque M., Gilchrist M. D., Bouleau N., Derrien K., Baptiste D. Numerical inversion of the Laplace-Carson transform applied to homogenization of randomly reinforced linear viscoelastic media // Comput. Mechanics. 2007. 40, No. 4. P. 771-789.

ОПРЕДЕЛЕНИЕ НЕСТАЦИОНАРНЫХ ТЕМПЕРАТУРНЫХ ПОЛЕЙ И НАПРЯЖЕНИЙ В КУСОЧНО-ОДНОРОДНЫХ КОЛЬЦЕВЫХ ПЛАСТИНКАХ НА ОСНОВАНИИ ЧИСЛЕННО-АНАЛИТИЧЕСКОЙ ФОРМУЛЫ ОБРАЩЕНИЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

Исследованы нестационарные температурные поля и вызванные ими напряжения в кусочно-однородных кольцевых пластинках. Алгоритм решения задачи базируется на непосредственном расчете изображений Лапласа и модифицированной формуле Прудникова для его обращения.

DEFINITION OF NON-STATIONARY TEMPERATURE FIELDS AND STRESSES IN PIECE-WISE HOMOGENEOUS CIRCULAR PLATES ON THE BASIS OF NUMERICAL-ANALYTICAL LAPLACE INVERSION FORMULA

The non-stationary temperature fields and stresses caused by them in the piecewise homogeneous circular plates have been studied. An algorithm of solution of the problem is based on the direct calculation of the Laplace presentation and the Prudnikov modified formula for its inversion.

Ін-т прикл. проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів Одержано 23.04.08