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ESTIMATES OF WEAK SOLUTIONS TO NONDIAGONAL PARABOLIC
SYSTEM OF TWO EQUATIONS

Estimates of L” -norms of weak solutions has been obtained for a model nondiago-
nal parabolic system of nonlinear differential equations with matrix of coefficients
satisfying special structure conditions. A technique based on estimating the certain
function of unknowns is employed to this end.

1. Introduction. In the present paper we study the boundedness of weak
solutions to the nonlinear nondiagonal parabolic system of two equations in di-
vergence form under special assumptions upon its structure.

It is well-known that the De Giorgi — Nash — Moser estimates are no lon-
ger valid in general for an elliptic system, the latter can be regarded as a spe-
cial case of the parabolic version. An example of an unbounded solution to the
linear elliptic system with bounded coefficients was built up by E. De Giorgi
in [4]. There is yet another example due to J. Necas and J. Soucek of a
nonlinear elliptic system with the coefficients sufficiently smooth, but the

weak solution not belonging to w2,

These two and many other examples prove that the regularity problem
for elliptic systems proves to be far more complicated then that for second or-
der elliptic equations.

Concerning systems of differential equations until now a priori estimates
of De Giorgi type has been extended only to a special class of parabolic sys-
tems of equations, the so-called weakly coupled systems.

Therefore there constitutes an interest the question of finding strongly-
coupled systems, whose solutions exhibit certain regularity.

The technique we are utilizing has been employed earlier in [6] for semi-
linear systems (see also [3, 7] and [5]), and consists in switching to new func-
tion, for which the estimate is established in a conventional way, whence the
final conclusion about each component of the vector function solution follows.
This technique allows to tackle nonlinear nondiagonal systems.

The main idea of our approach is as follows: instead of trying to establish
estimates for each component of solution (u,v) rather to introduce some new
function of components of the solution H(u,v) from whose estimate we shall
be able to derive the estimates for the components of solution (u,v).

In the present paper, although restricting ourselves to systems of second
order equations in divergence form possessing special structure, we demon-
strate boundedness of solution to nonlinear parabolic systems of equations in
which coupling occurs in the leading derivatives and whose leading coeffici-
ents depend on x, u, and v.

2. Basic notations and hypotheses. Here and onward we accept the follo-
wing notations: @ = Qx(0,T]; S=0Qx(0,T]; 0Q ={Qx{0}}U{06Qx(0,T]};
Q is a bounded domain in R™ with piecewise smooth boundary; x € Q; T >
>0; te(0,T]; n>2; i=1,...,n; j=12; and summation convention over re-
peated indices is assumed,; WOI’2(Q) is a space of functions in W"?(Q) vani-

shing on 0Q in the sense of traces for a.e. t € (0, T].
We shall be concerned with a system of two equations of the form:

1

J1+]ul +]v|’

u, —div (a,(x,u,v)Vu + b, (x,u,v)Vv) = f,(x,t)
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1

v, — div (ay(x, u,v)Vu + by(x, u, V)Vv) = f, (2, t) —s
L+ |u|+|v]

, () e@,

1)
fi(x,1) € LY(Q), > (n+2)/2. (2)
About the coefficients of the model system we suppose that there is a

function of two variables I:I(u, v) such that V x,u,v e R

C,(u* +v®) < H(u,v) < Cy(u® +v%), (3)
0£|ﬁu(u,v)|,|ﬁv(u,v)| < Cy(lul +1v)), (4)
0 <|H,,(u,v)|, [H,(uv)|, [H,u0v)|<C,, (5)

where C, >0, C,< o are constants; and there holds the following hypotheses

a, (2, u, ) H, (u,v) + ay(x,u, V)H, (u,v) = A(x,u,v)H, (u,0),

by (x, u, v)H, (u, ) + by (x,u, v)H, (u,v) = A(x,u,v)H, (u,v), (6)
and
a,H,, (u,v) +a,H,, (u,0) >0, (7
2(a,H,,, + a,H,, )~ N (a +~b2 )H,, * bH,, +a,H,, >0, (8)
(ag +b)H,, +bH  +a,H  2(bH,  +bH, )
where A is a measurable Q x R x R — R function such that
0 <A, £A(x,u,v) <A, Vx,u,v € R, 9)

A, , are numbers.

By parabolicity of system (1) it is meant that the part without derivatives
with respect to time is elliptic. The notion of ellipticity of a system of diffe-
rential equations is understood in the sense introduced in [1]. We assume that
the coefficients a,, a,, b;, b, are such that the system is parabolic.

Example. Here is the example of a parabolic model system satisfying our
hypotheses:

a,(u,v) = A(u,v) - @’ by (u,v) = A(u,v) = by (u, v)a,

K
o==%, K=u®+0v"+euv,

KU

C,|al

< < <=

C, < Alw,0) < Gy, %21 < G ap
c 1

< —3 o = ’

|bl|—(1+|oc|)’ e<igr G255 G>0 <

The boundary conditions of the Dirichlet type are assigned:
(U =gy, = g,)(x, 1) € Wy (Q), te(0,T),

(u,v)(x,0) = (uy,v,)(x). (10)

A solution to system (1) with Dirichlet data (10) is understood in the
weak sense, as in [2].

Definition. A measurable vector function (ul,uz) = (u,v) is called a weak
solution of problem (1)—(10) if

u! e C(0,T; L*(Q)) N L*(0, T; W'(Q))
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and for all t € (0,T]

J.u(p](xt)d.x'—i- ” {- u(p]t—l-au 0 2 +bu (p]x}dxdr—
Qx(0,T]

—J.uoq)](x 0)dx + ” f;9; 1 dxdr

Qx(0,T] L+ [+ [u?]
for all testing functions
@ e WH(0,T; L*(Q)) N L*(0, T; W, *(Q)) .
The boundary condition in (10) is meant in the weak sense.
About the coefficients of the system (1) it is additionally assumed that

they are measurable Q x R* 5> R Caratheodory functions that satisfy the el-
lipticity condition and are subject to the growth conditions:

A, >0 VreR? xeR", |a; (@, 7|, |bj(a,m)| < A, (11)
On the functions gj(.x',t), (uy,v,)(x) in boundary data (10) we assume to be

fulfilled the following assumptions:

g;(x,t) € L7(S),  (uy,v)(x) € L*(Qx{0}).

3. Estimates of L” -norms. Let us now turn our attention to the question
of boundedness of weak solutions to a system with whose coefficients satisty
assumptions (6)—(8). Our main result is the following.

Theorem 1. Let (u,v) be a solution to system (1). For the function H de-
fined by (3)—(5) the following estimate holds

"FI”L“J(Q) <C,

hence it is eastly seen that the same estimates take place for the components of
the solution themselves:

||u||L°°(Q) <C, "v"L‘”(Q) <C,
where constant C depends only on the data: n, fj, A1’2, mes @, ||g1 "Loo(s),
||g2 ||Lw(s), ||u0 ||L°°(Q)’ ||v0 ||L°°(Q)’ constants in the embedding theorems, constants
C1,2 in hypotheses (3)—(5), and is independent of u and v.

To prove the Theorem we need the well-known Stampacchia’s lemma.
Lemma 1. Let y(y) be a nonnegative nonincreasing function defined on

[k,,©) which satisfies

y(m) < ———— m {w)y® for  m>kz2xk,

_ k (m —L)°
with § >0 and & > 1. Then y(k, +d) =0, where d = CI/S{\V(ko)}(sfl)/sf/(&*l).

Forproof seelemma 4.1 [1, p. 8]

We make also use of the following lemma (see Prop. 3.1 [2, p. 7]).

Lemma 2. If u e L*(0,T;L*(Q)) N L*(0,T; W, *(Q2)) , then there holds the in-
equality

o g o

0<t<T

with q = 2(n +2)/n and constant C depending only on n.
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Proof of Theorem 1. Multiply the first equation of (1) by H, and add
the second one multiplied by H, (the H is to be defined later). Choose (H -k),
as a testing function with k >k, = max{"H(gl,gz)"Lw(S),||H(u0,v0)||Lw(Q)} it is

easy to check that this choice of testing function is admissible. After integra-
tionin 1t from 0 to t, t < T, and in x over the domain Q, this results in

t
1
3 j (H = 1) 450 (8) + j j {< a,Vu+bVu, H, (H-k)Vu + H, (H-k)Vo +
Q 0Q

+ H2Vu + H,H, Vv ) +( a,Vu + bV, H,, (H - k)Vu +

+ Hy (H = k)Vo+ HoVu + H,H, V0 )}t =

[ (H-k)
= [J M, + fH,) =2
00

Ji+]ul+|o|’

Xag 1s a characteristic function of the domain A(k,t) = {xreQ|H-k=0}.

We have

(a,Vu +b,Vo, H,,(H-k)Vu + H,,(H - k)Vo + H,Vu + H,H Vv )+

+ <a2Vu +b,Vuv, H, (H-k)Vu+H,  (H-k)Vov+ HiVu +
+H,H,Vo ) = {la,H] + a,H,H,]|Vul’ +[(, +b,)H,H, +
+bH? + a,H2(VuVo) + [b,H, H, + b,H2]|Vo*} +
+{la,H,, +a,H,,]|Vul> +[(a, +b,)H,, +bH,, +
+a,H,,|(Vuvo) + [bH,, +b,H, ]|Vo[*}(H - k).

Making the substitution
F(x)=Yx, H=F@H), H =FH, H, =FH,,
H, =FH +FH,, H, =F'HH, +FH,
H, =F'H>+FH,,,
according to hypothesis (6) the first group of terms in curly brackets gives
{...} = AH2 |Vul* + AH, H,(VuVv) + AH? |Vo]* =
2 192 ~ |2
= A|VH|* = AF?|VH|".
In virtue of hypothesis (7), (8) for the second group of terms in curly brackets
we have

{.}H-k) = AF"|VH| (H —T) + {[a,H,, +a,H,]|Vul* +
+[(a, +by)H,, +bH,, +a,H, [(VuVo)+[bH,, +
+b,H,, ||VoP}F'(H - k) > AF"|VA[* (F(H) - k).
Hence, making use of hypothesis (4), we get

L (ram - )xAk)(tHHA i VAL
Q

< [ [CIFIF(F() = F)1 age)
0Q

where it is denoted |f|=|f,|+|f,|. Recalling the definition of H and making

some transformations we can rewrite this as
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TR =) gy 0 et ] [ IVOE V)
o 0Q

O'—.H

<[ el -V, 7,

where y, - is a characteristic function of the set ANVEk)={x e Q]| Y

k> 0}. Since t € (0,T] is arbitrary, then taking the supremum we have
ksupj-r \/_ X J—(t)+kAII|V%/7 ‘/_|XA
0<t<T ¢
T
<[[eifnd@ i Ve,
00

older s inequality to the right of (12) we obtain
1-1/q-1/r
T sup [’ +chH|Vw| <cnw||qQ||f||TQ(HxA )
0<t<T ¢y

where w =

(12)
Applying generalized

%/E ~Vk) ,»and r has been selected such that
t>r>42+n)/(n+8),

since it is not difficult to check that the later inequality holds. From Lemma 2
it follows that:

T 1/2
lwll, o < (sup Iwz +J.J.|Vw|2J . (13)
0<t<T ¢y 00

Since without loss of generality we may assume k > 1, on the strength of this
inequality we get:

lwl? o < Clieg, Aplwlly g I £, o {w( T} T, (14)
here we’ve denoted:

T
\u(«/ﬁ) = Jmes A(ﬁ, t)dt.
0

Applying Young’s inequality to the right-hand side of (14) gives
lwl,o < ClyWI)} et (15)
Let us estimate:

(m =) {y(m)/ =

T 1/q T 1/q
-0 [ [ ) ([ [otim| <l
0Q 0Q

where m > k > k. Substituting this into (15) we come down to
(Im =) Tw(Ym) < Cly({(Ie) }100 = cly(VE) }. (16)
From the hypotheses on f]. and by the choice of r
(n+2)
5
hence 2 (n+2) (1 - n

1
5n+2) rj >1 and thus & > 1. On the strength of Lem-
ma 1 from relation (16) we can conclude that

v([k, +d) =0

T>7T>
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for some d sufficiently large, but finite, depending only on the data: n, fj,
Ay, "91||L°°(s)’ ||g2||L°°(S)’ ||u0||L°°(Q)’ "vO”Lw(Q)’ constants in the embedding

theorems and is independent of u and v. And thus
[l q <€
L™(Q)

It is not difficult to see that due to the Young inequality the same estimates
hold for the components (u,v) of solution themselves. Namely,

||u"L°°(Q) <C, ||u||L°°(Q) <G,

4. Conclusions. In the present paper we have established boundedness of
weak solution to strongly coupled semilinear parabolic system of second order
partial differential equations. The smooth properties of solutions to the sys-
tems of this kind are determined not just by smoothness of coefficients, right-
hand sides and boundary data, but strongly depend upon the structure of the
matrix of coefficients. We have demonstrated that in order for the solutions of
such systems to exhibit certain amount of regularity additional, besides ellip-
ticity, hypotheses upon the coefficients, like hypotheses (3)—(9), are needed.
We have shown that there are strongly coupled nonlinear systems, in our case

system (1), whose weak solutions are bounded. The L*-norms of these solu-
tions depend not just on norms of right-hand sides of equations, norms of
functions in boundary data (10), constants in the ellipticity condition and the

domain @, but also on the constants C,, C,, A;, A, from structure hypothe-
ses (3)—(5) and (9).
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OLIIHKU CNABKUX PO3B’A3KIB HEAIArTOHAJIbHOI MAPABOJIYHOI
CUCTEMM OBOX PIBHAAHb

Oyinku L” -Hopm cAabKUX PO38’A3Ki8 8CMAHO8AEHO 04 MO0LAbHOT Hedia2OHAAbHOT Na-
PABONTUHOT cucmemu HeATHIUHUX OUPePeHYIaAbHUX DPIBHAHL 3 Mampuyero KoediyicH-
mis, W0 3a0080AbHAE CNEYUIALLHI CMPYKMYPHL YMO8U. 3ACMOCOBYEMBCS MEXHIKA, ULO0
6a3yemsbes Ha OYIHYL Nednol PyHKYil 810 HedldoMUX.

OLIEHKW CNABbIX PELUEHUA HEAWATOHANbHOW NAPABEOJIMYECKON
CUCTEMbI ABYX YPABHEHUA

Oyenku L* -HOpM cAa0bLX Pewenutl noayuensl 04 modeabHoll HeduazoHatbHOt Napado-
AutecKol cucmemvl HeAuHelnblr OuPPeperHyuarbHble YpasHeHul ¢ mampuyell Koagpghu-
Yyuenmos, yo0osaemeopaowels cneyuaibiblim CmpyKmyproim ycaosusm. ITpumensemes
MeXHUKA, OCHOBBLBATOWLAACS HA OYeHKe OnpedeséHHol PYHKYUU OM HeUu38eCmHbLL.
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