
ISSN 0130–9420. Ìàò. ìåòîäè òà ô³ç.-ìåõ. ïîëÿ. 2009. – 52, ¹ 2. – Ñ. 7-16. 7 

UDK 517.983.54 
 
L. P. Plachta 
 
S -GRAPHS AND BRAID INDEX OF LINKS 
 

We study relationship between reduction operations on link diagrams and S -
graphs associated with them. We are motivated by the problem of computing the 
braid index of a link and some well known conjectures concerning the braid index 
of a link and the writhe of its diagrams. Possible counterexamples are discussed in 
terms of both S -graphs and link diagrams. We also indicate a relation of S -
graphs to singular links regarded up to an appropriate equivalence relation. 

 
1. Introduction. The present paper can be considered a continuation of 

the work [12]. For the reader’s convenience and the sake of self-contained-
ness, we recall here some definitions and facts from [12].  

The well-known conjecture in knot theory asserts that for every closed 
braid diagram D  which represents a link L  and has the smallest number of 
strands ( )b D  among all closed braids representing L , the writhe ( )w D  of D  

is uniquely determined. Moreover, for any closed braid D′  representing L  
that has ( )b D k+  strands, the following inequalities hold: 

 ( ) ( ) ( )w D k w D w D k′− ≤ ≤ + . 

We shall refer to this conjecture as Conjecture 1. 
By the result of Yamada [16], Conjecture 1 can be equivalently reformu-

lated in terms of closed braids (see [7, 12]). 
The first part of Conjecture 1 is known as the Jones conjecture. A stron-

ger version of it is known as the generalized Jones conjecture (see [4, 5]): 
Let   denote the set of all closed braid diagrams representing a link  . 

Let :Φ → ×    be a map with ( ) : ( ( ), ( ))D b D w DΦ =  for D ∈  , where 

( )w D  and ( )b D  denote the writhe and the number of strands, respectively, of 

the diagram D . Then there exists a unique w ∈   with ( ) (b xΦ = + +  {  

, ) | ,y w x y x y+ + − ∈ } . 

It is well known that the Morton – Frank – Williams inequality (MFW 
inequality) gives a lower bound for the braid index of a link in terms of two 
variable HOMFLY(PT)-polynomial (see [3, 6, 8, 10]). More precisely, let 

( , )LP v z  be HOMFLY(PT)-polynomial of two variables ,v z  of a link L  and 

let span ( , )v LP v z  denote the difference between the maximal and minimal 

degrees of variable v  in the polynomial. Moreover, let ( )b L  denote the braid 
index of the link L . Then we have the following: 

 span ( , ) 2 ( ) 1)v LP v z b L≤ −( ) . 

By using MFW inequality or its cabling versions one can calculate the 
braid index of a knot in many cases. Unfortunately MFW inequality and any 
its cabling versions are not sharp for links (see [9, 10, 13, 14]). It is also known 
(see [14]) that if MFW inequality is sharp for a knot L  or any of its cable, 
then L  cannot serve a counterexample to the first part of Conjecture 1 that 
is to the Jones conjecture. 

N. M. Dunfield, S. Gukov, and J. Rasmussen [2] have found Khovanov – 
Rozansky homology version of MFW inequality (KR–MFW inequality). K. Ka-
wamuro [4] showed that this inequality can be used to detect the braid index 
of some knots for which MFW inequality fails to detect it. There are however 
infinity many knots for which KR–MFW inequality also fails [4]. 
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There is another approach to the study of the generalized Jones conjectu-
re and the related conjectures. In [7], J. Malešič and P. Traczyk studied the 
reduction operations of link diagrams. Such operations allow, for given a link 
diagram, to make of it another one with a smaller number of Seifert circles. 
The motivation for introducing the link operations was the problem of calcu-
lating the braid index of a link, from one side, and the conjectures mentioned 
above, from the other side. The characteristic feature of the reduction proce-
dure is that the Seifert graph of a link diagram allows to keep control over 
the number of Seifert circles in the diagram. Such moves will be called MT 
reduction operations. 

In the present paper we study the procedure of reduction of link dia-
grams in more systematic way. We present a series of new examples of link 
diagrams and Seifert graphs which can be considered as possible candidates 
to disprove Conjecture 2 (see below). We show that the collection of MT-
operations is not complete (with respect to Conjecture 2) which leads to defi-
nition of new types of reduction operations. The connection between S -
graphs and singular links is also established. 

Let us recall the definition of the Seifert graph ( )G D  of a link diagram 
D  and S -graph (see also [7]). 

The Seifert circles of D  form the vertex set of ( )G D . Furthermore, to 

each crossing of D  that is common for two Seifert circles 1C  and 2C  there 

corresponds an edge in ( )G D  which joins the two vertices associated with 1C  

and 2C . Moreover, every edge in the Seifert graph ( )G D  has a sign, accor-

ding to the sign of the corresponding crossing in the link diagram D . Any 
Seifert graph ( )G D  is bipartite and planar (but not planar in a canonical way) 
and can possess multiple edges. Note that different link diagrams may have 
the same Seifert graph [10]. On the other hand, given a plane bipartite 
(completely) signed graph G , there is a canonical procedure (up to orientation 
of all link components) of drawing a special link diagram D  (see [12]) so that 
its Seifert graph ( )G D  is isomorphic to the signed planar graph G . When 
performing the recovering procedure we keep the local rule which is 
indicated in Fig. 1. A link diagram is called special if it does not involve any 
separate Seifert circle [10]. Then to each special link diagram D  there 
corresponds a plane Seifert graph ( )G D . 

 
Fig. 1 

In the following however, we often do not distinguish between any mul-
tiple edges of the graph. This leads to the definition of S -graph. 

A set of single edges in ( )G D  is called cyclically independent if in every 
(simple) cycle the number of edges from the given set is less than half. Denote 
by ( )ind G D−( )  and ( )ind G D+( )  the maximum numbers of cyclically indepen-

dent (single) negative and positive edges, respectively, in ( )G D . Murasugi and 
Przytycki [10] have strengthened the MFW inequalities in the following form. 

For any diagram D  of a link L  we have  

 span ( , ) 2 ( ) ( ( ) ( ) 1v LP v z s D ind G D ind G D− +≤ − − −( ) ( ) . (1) 

Therefore Murasugi – Przytycki inequality also gives a lower bound for 
the braid index of a link. 
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Conjecture 2. Let D  be a diagram of an oriented link L . Assume that 
the number of Seifert circles in D  is s  and the writhe of D  is c . Then it is 
possible to find another link diagram of L  with the number of Seifert circles 
equal to ( ) ( )s ind G D ind G D+ −− −( ) ( )and the writhe equal to ( )c ind G D+− +( )  

( )ind G D−+ ( ) . 

Conjecture 2 is true for homogeneous diagrams D  of links [10]). More-
over, there is a connection between Conjectures 1 and 2. As shown in [7], 
any counterexample to Conjecture 2 would imply a counterexample to Con-
jecture 1. 

Moreover, Malešič and Traczyk conjectured that a desired reduction on 
any given link diagram can be performed via five types of operations specifi-
ed by them (see [7] and [12]). These operations were aimed to reduce any link 
diagram to the one with a fewer number of Seifert circles and have analogies 
on the level of Seifert graphs. We refer to this conjecture as Conjecture 3. 
Note that Conjecture 3 has been disproved in [12]. 

Let H  be a planar bipartite graph and let E  denote its edges. It is assu-
med that H  allows multiple edges but contains no loops. Suppose we have in 
E  the two disjoint subsets E+  and E−  consisting of single positive and nega-
tive edges (that is marked by + and –) and the other edges in H  are neutral. 
Assume that both E−  and E+  are cyclically independent sets. Following [7], 
any graph H  enhanced with the structure described above is called an S -
graph. The idea was to choose in the Seifert graph ( )G D  some maximal col-

lections E+  and E−  of edges that determine the numbers ( )ind G D−( )  and 

( )ind G D+( )  and forget the signs the remaining edges. Now the strategy is to 
perform on the link diagram D  or its Seifert graph reducing operations follo-
wing only the chosen positive and negative crossings (edges). 

Given a plane S -graph G , we can recover a link diagram D  which it 
corresponds to (see [12]). The recovered diagram is not unique. First of all, 
we can change the orientation of all components of D . Then G  is also a S -
graph associated to D . The second ambiguity arises when recovering neutral 
edges. To each neutral edge e  of the graph G  we can associate n -fold, posi-
tive or negative, half-twist in D , where n  can be chosen arbitrarily. How-

ever if we recover a singular link diagram D′  from G  in an appropriate way 
(see below), the ambiguity is only in the orientation of all the components of a 
diagram D . In this case, the obtained oriented singular link L′  contains 
exactly   singularities, where   is the number of neutral edges of G  (see 
Section 3). 

Now we recall the definition of reduction operations on link diagrams, as 
in [12]. Operations 1°–3° remain without any changes while the operations 4° 
and 5° are slightly generalized. Suppose we have a diagram D  of a link and 
apply to it a reduction operation within the same link type. Let D′  be the 
resulting link diagram. We shall say that the operation on a link diagram D  is 
admissible if it satisfies the following condition: 

 ( ) ( ) ( ) ( ) ( ) ( )s D ind G D ind G D s D ind G D ind G D+ − + −
′ ′ ′− − ≥ − −( ) ( ) ( ) ( ) . 

 Operation 1°. Cancellation of a trivial loop as 
shown in Fig. 2. This operation decreases the 
number of Seifert circles by one and changes the 
writhe of the diagram also by one, so it is always 
admissible. 

 
 
 
 

 
 Fig. 2 
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 Operation 2°. This operation is a modification of the Murasugi – Przy-
tycki operation introduced and studied in 
[10]. Suppose we have in D  a reduction site 
like for an Murasugi – Przytycki operation 
which involves two circles with a unique 
common crossing (see [10]). One of the 
circles involved in the site is the reduction 
circle and the second one is the engulfing 
circle. Moreover, it is assumed that there 
are no Seifert circles nested in the basic 
reduction circle. The situation looks like Fig. 3. 

The operation consists in replacing the reduction circle involved in the 
site with a new circle in the following way. 
We start in the same manner as in the 
Murasugi – Przytycki operation but when 
the first circle adjacent to the basic circle is 
met we circle round it and come back to 
the basic one. Next, we create a crossing of 
our new arc with the basic circle and pro-
ceed to the other end of the short arc that 
is being replaced by the long arc, keeping 
close to the reduction circle. The situation looks like as in Fig. 4. 

This operation does not change the number of Seifert circles or the wri-
the, so it is of auxiliary character in the reduction process. 

The operation is admissible if it decrease neither positive, nor negative 
indices of the Seifert graph of a link diagram. One of the three Seifert circles 
in the resulting link diagram is engulfed now by the basic one, so the whole 
configuration of the new link diagram subject to the Seifert graph is now 
more simple than before. 

 Operation 3°. Cancellation of a pair of one positive and one negative 
crossing in D  in a situation shown in Fig. 5. 
This operation is always admissible and 
decreases the number of Seifert circles by 
two and preserves the writhe of the dia-
gram D . 

In the corresponding Seifert graph the 
two signed edges, one positive and the se-
cond negative, are contracted. 

 Operation 4°. Assume in a link diagram D  we have four Seifert circles 
in a circle like in Fig. 6a. It is al-
so assumed that there is nothing 
more inside of the circle but 
outside the diagram can be com-
plicated. Next, we change one 
short tunnel and one short 
bridge to obtain the long tunnel 
and the long bridge as indicated 
in Fig. 6b. The two single distin-
guished crossings are of opposite 
signs. As a result, one Seifert circle of the new link diagram is nested. The 
pair of the two single crossings in the diagram on the left is replaced with the 
one on the right, as indicated in Fig. 6b. The whole configuration of the Sei-
fert graph in the resulting link diagram D′  is simplified. The operation is ad-
missible only if ( ) ( )ind G D ind G D+ +

′=( ) ( )  and ( ) ( )ind G D ind G D− −
′=( ) ( ) . 

 

 
Fig. 3 

 
Fig. 4 

 
Fig. 5 

 
Fig. 6 
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 Operation 5°. This operation is similar to the previous one. A similar con-
figuration of four Seifert circles is ne-
eded. However, the placement of the 
two single crossings of opposite signs 
is different from the above one (see 
Fig. 7a). The resulting diagram is indi-
cated in Fig. 7b. In this case, the whole 
configuration of the Seifert graph is al-
so simplified. This operation is admis-
sible if it does not decrease the positive 
and the negative indices of the Seifert 
graph of the corresponding link dia-
grams. 

There are analogies of reduction operations on Seifert graphs and S -
graphs (see [7, 12]). In that case, a reduction operation on S -graph G  is cal-

led admissible if the resulting signed graph G′  is also S -graph. Note that the 
reduction on link diagrams, Seifert graphs and S -graphs are compatible (see 
[12]). Further properties of reduction operations on S -graphs and their rela-
tions to link diagrams can be found in [12]. Note also that many examples of 
link diagrams (S -graphs) from the paper [12] that disprove Conjecture 3 con-
firm however Conjecture 2. 

In Section 2 we consider several new examples of link diagrams for 
which Conjecture 3 is false and provide new possible candidates to disprove 
Conjecture 2. 

2. From S -graphs to link diagrams. Let D  be a link diagram and ( )G D  

its Seifert graphs with ind k+ =  and ind− =  . Fix the sets S+ , S−  of posi-

tive and negative single edges in G  which determine the numbers k  and  , 
respectively, and consider the corresponding S -graph S . Let T  be the union 
of 1S  and 2S . As a subgraph of S , T  is a forest. Moreover, let U  be the set 

of vertices in S  which are not covered by the edges from T . 
Proposition 1. The components of the forest T , considered as a subgraph 

of the plane graph S , determines in a canonical way the collection of link 
diagrams D  with maximal number of link components so that S  is an S -
graph associated with ( )G D . The number of components is equal to 

S k− −  . 

P r o o f. The proof is by observation that the number of components of 
T  summing with the number U  is just S k− −  . Then to each component 

W  of T  and each vertex v  from U  there corresponds a unique link 
component K  going around W  (around the vertex v , respectively). More-
over, since each W  is a tree, K  is always unknotted. ◊ 

Therefore, given a non-reducible S -graph G , a possible counterexample 
to Conjecture 2, can be found among link diagrams D  that are provided by 
Proposition 1. In particular, we have to seek the diagrams which contain at 
least two components 1L  and 2L  with 1 2 3b L L =( ) . 

Consider now two examples of non-reducible (via MP-operations) S -
graphs, G  and H , pictured in Fig. 8a and Fig. 9a, respectively. 

Let D  be any link diagram recovering from G  and W  be a diagram 
recovering from H  (see Fig. 8b). Here singular crossings correspond to neutral 
edges of S -graphs and should be replaced with multiple twists in diagrams. 
It is easy to verify that both D  and W  are not reducible via MT-operations 
defined for diagrams. We have ( ) 2,  ( ) 3ind G ind G− += =  and 8G =  and the 
following assertion holds. 

 
Fig. 7 
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Fig. 8 

 
Fig. 9 

Proposition 2. The link diagram D  is non-reducible via MT-operations. 
On the other hand, D  is reducible in general context. 

P r o o f. The first assertion follows from the fact that the S -graph G  is 
non-reducible via MT-operations defined for S -graphs and that the operati-
ons on S -graphs and link diagrams correspond. On the other hand, we can 
apply to D  a sequence of moves within the same link type which results first 
the diagram 1D  (see Fig. 10) and finally the diagram D′  (see Fig. 11).  

   

 Fig. 10 Fig. 11 

Consider now the Seifert graph G′  of D′  indicated in Fig. 12. Here the 
multiple edges are replaced with a neutral edge 
in each inclusion, so G′  is regarded as an S -
graph. This S -graph is reducible via MT-opera-
tions. It follows that the new link diagram D′  
can be reduced via MT-operations to the other 
one, 2D , with 2( ) 3s D = . Now the second asser-

tion follows, since 8 3 2 3G = − − = . ◊ 
 In the similar way, we have the following 
( ) 5,  ( ) 4ind H ind H− += =  and 13H = . Moreover, the following assertion 

holds. 
Proposition 3. The link diagram W  is non-reducible via MT-operations. 

On the other hand, W  is reducible in general context. 

 
Fig. 12 
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P r o o f. The first assertion follows directly from the fact that the S -
graph H  is non-reducible via MT-operations defined for S -graphs. On the 
other hand, we can apply to W  a sequence of moves within the same link ty-
pe, so that the resulting diagram W′  looks like in Fig. 13. The Seifert graph 
H′  corresponding of W′  (or rather the S -graph derived from it) is depicted 
in Fig. 14. 

  
 Fig. 13 Fig. 14 

It is easily seen that H′  is reducible via MT-operations, so the diagram 
W′  can be reduced via MT-operations to the other one, 2W , with 2( ) 4s W = . 

Now the second assertion follows directly from the equality 13 5 4 4− − = . 
Therefore, in order to reduce S -graphs G  and H  and the corresponding 

link diagrams we need new reduction operations (different from MT-opera-
tions). They look somewhat complicated and likely can not be decomposed into 
more simple and typical ones.  

Example 1. Consider an example of S -graph R  depicted in Fig. 15. We 
have the following: ( ) 6,  ( ) 5ind R ind R− += =  and 16R = . Let D  be any sin-

gular link diagram recovering from R . Let R  be the collection of all link di-

agrams D  that are associated with the S -graph R . This means that R  can 
be obtained for Seifert graph ( )G D  by forgetting the signs of some (non-es-

sential) edges, so that D  can be recovered from R . Let ( )Rb   be the maxi-

mum of the numbers ( )b D , where the maximum is taken over all diagrams 

from R . We do not know if ( ) 5Rb = . If ( ) 5Rb > , then some D  from the 

collection gives a counterexample to Conjecture 2. Note also that each link 
component of the link represented by D  is unlinked. 

   
 Fig. 15 Fig. 16 

In Fig. 16 we show another example of a non-reduced S -graph 1R  
which also can serve a counterexample to Conjecture 2 (when passing to the 
corresponding link diagram). 
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In this case, we have 1 1( ) 5,  ( ) 5ind R ind R− += =  and 1 14R = . Let 1E  be 

a link diagram, recovered from the S -graph 1R . We do not know if 

1
( ) 4Rb = . If 

1
( ) 4Rb > , there is a diagram 

11 RE ∈  which gives a counter-

example to Conjecture 2.  

3. Connection with singular links. We noted in Section 2 that the same 
S -graph may correspond to different link diagrams. To make this correspon-
dence one-to-one (for connected link diagrams and up to change the orienta-
tion of all components of link diagrams), we can associate with each S -graph 
G  a special singular link diagram D  in the following way. We proceed in the 
same way as in the case of recovering the ordinary link diagrams. The only 
difference is that to each neutral edge of G  we assign a flat singularity of D . 
In our case, on singular links or diagrams it is convenient to choose appro-
priate equivalence relations. Instead of vertex rigid isotopy which usually is 
considered on singular links, we regard more weak equivalence relation which 
allows a half-twist in a flat singularity, as depicted in Fig. 17. In the remai-
ning part, it is allowed to use the same five Reidemeister moves as for spatial 
graphs (see, for example, [11]). 

 
Fig. 17 

Proposition 4. Up to orientation of components, the above correspondence 
between special connected singular link diagrams and plane connected S -
graphs is one-to-one. 

P r o o f. For a fixed orientation of one component of a recovering link 
diagram, the ambiguity can occur in recovering any neutral edge of the S -
graph, which in the standard situation case is replaced with a multiple posi-
tive or negative half-k -twist in a diagram. As for the case of singular links, it 
corresponds to a standard flat singularity with orientation of strands induced 
from the fixed orientation of one component, since the S -graph and the cor-
responding link diagrams are connected. ◊  

It is not difficult to verify that an analogue of Alexander theorem holds 
for singular links in classical setting (see, for example, [1]) and so for singular 
links in our setting. Moreover, the well known Vogel algorithm [15] can be 
also adopted for singular links in our setting. Here we have only to use 
classical Reidemeister moves (Reidemeister moves for classical link diagrams 
without singularities). It follows the braid index of a singular link L , ( )b L , 
defined as the smallest number of strands to represent L  as a closure of some 
singular braid, is also well defined. Under this agreement, we can reformulate 
our problem as follows. 

Problem 1. Suppose we have an S -graph G  and let D  be the corres-
ponding singular link diagram, with the link type L . Is it true that for any 
such graph G  and diagram D  we have ( ) ( ) ( )G ind G ind G b L+ −− − ≥ ? 

The positive answer to this question proves also Conjecture 2. On the 
other hand, if for some non-reducible via MT-operations S -graph G  and a 
diagram GD ∈  we have ( ) ( ) ( )G ind G ind G b L+ −− − < , this probably gives 

a counterexample to Conjecture 2. The latter justifies introducing singular 
link diagrams and the weak isotopy as an equivalence relation on singular 
links in our setting. 
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Let S  be an S -graph, pictured in Fig. 18a and T  be a singular link dia-
gram recovered from S  (see Fig. 18b). We have ( ) 2,  ( ) 2ind S ind S− += =  and 

7S = . We can directly show that T  is non-reducible via MT-operations, but 

the singular link diagram T  is reducible in general context to some singular 
link diagram T′  with ( ) 3s T′ = . This means that ( ) 3b T = . 

  
 Fig. 18 Fig. 19 

Consider now the S -graph 1R , depicted in Fig. 19.  

Here we have 1 1( ) 3 ( ) 2ind R ind R− += , =  and 1 8R = . Let 1D  be any link 

diagram, recovered from the S -graph 1R . The graph 1R  is non-reducible via 

MT-operations, but 
1

( ) 3Rb = . Moreover, if 1D  is a singular link diagram 

recovering from the S -graph 1R , then 1( ) 3b D = . This means that any dia-

gram 
1RD ∈  cannot serve a counterexample to Conjecture 2.  

The similar situation is with the S -graph W  from the Fig. 7 of the pa-
per [12]. Let D  be any singular link diagram recovering from W  (see Fig. 11a 
in the paper [12]). It is not difficult to show that ( ) 3b D = , so it cannot be a 
counterexample to Conjecture 2. 

Note also that the proofs of Propositions 2 and 3 can be run also in terms 
of reduction operations (moves) on singular links diagrams and braid index of 
singular links which they represent. In the similar manner we can treat 
Example 1 and the other examples of non-reducible S -graphs considered in 
Section 2. The reduction operations we use to show that the above link 
diagrams, which are not reducible via MT-operations, are reducible in general 
sense, often are not admissible on intermediate steps of reduction. This shows 
that in general we have to include in the reduction process some operations 
which not necessarily keep over the numbers ( )ind G+  and ( )ind G− .  

We are also interested in answering the following questions. 
Question 1. What is the difference between the classical braid index of a 

singular link and the braid index of this link in our setting? 

Question 2. Let T  be any S -graph, T  the corresponding collection of 

(classical) link diagrams recovered from T  and W  be a singular link diagram 
recovering from T . Is it true that ( ) ( )Tb b W= ? 

Further analysis of Conjecture 2, S -graphs and connection with singular 
knots will be considered in a forthcoming paper. 
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S -ГРАФИ ТА БРЕЙД-ІНДЕКС СПЛЕТЕНЬ 
 
Âèâ÷àºòüñÿ ñï³ââ³äíîøåííÿ ì³æ ðåäóêö³éíèìè îïåðàö³ÿìè íà ä³àãðàìàõ ñïëåòåíü 
³ àñîö³éîâàíèìè ç íèìè S -ãðàôàìè â êîíòåêñò³ îá÷èñëåííÿ áðåéä-³íäåêñó ñïëå-
òåííÿ, à òàêîæ â êîíòåêñò³ â³äîìèõ ã³ïîòåç ïðî çâ’ÿçîê ì³æ áðåéä-³íäåêñîì 
ñïëåòåííÿ ³ ñêðóòîì éîãî ä³àãðàì. Íàâåäåíî äåÿê³ ïîòåíö³éí³ êîíòðïðèêëàäè äî 
öèõ ã³ïîòåç ÿê íà ð³âí³ ãðàô³â, òàê ³ íà ð³âí³ ä³àãðàì ñïëåòåíü. Âêàçàíî òàêîæ íà 
çâ’ÿçîê ì³æ S -ãðàôàìè òà ñèíãóëÿðíèìè ñïëåòåííÿìè, ÿê³ ðîçãëÿäàþòüñÿ ç òî÷-
í³ñòþ äî â³äïîâ³äíîãî â³äíîøåííÿ åêâ³âàëåíòíîñò³. 
 
S -ГРАФЫ И БРЕЙД-ИНДЕКС ЗАЦЕПЛЕНИЙ 
 
Èçó÷àåòñÿ ñîîòíîøåíèå ìåæäó ðåäóêöèîííûìè îïåðàöèÿìè íà äèàãðàììàõ çàöåï-
ëåíèé è àññîöèèðîâàííûìè ñ íèìè S -ãðàôàìè â êîíòåêñòå âû÷èñëåíèÿ áðåéä-èí-
äåêñà çàöåïëåíèÿ, à òàêæå â êîíòåêñòå èçâåñòíûõ ãèïîòåç î ñâÿçè ìåæäó áðåéä-
èíäåêñîì çàöåïëåíèÿ è êðó÷åíèåì åãî äèàãðàìì. Ïðèâåäåíû íåêîòîðûå ïîòåíöè-
àëüíûå êîíòðïðèìåðû äëÿ ýòèõ ãèïîòåç êàê íà óðîâíå ãðàôîâ, òàê è íà óðîâíå 
äèàãðàìì çàöåïëåíèé. Óêàçàíî òàêæå íà ñâÿçü ìåæäó S -ãðàôàìè è ñèíãóëÿðíûìè 
çàöåïëåíèÿìè, êîòîðûå ðàññìàòðèâàþòñÿ ñ òî÷íîñòüþ ê ñîîòâåòñòâóþùåìó 
îòíîøåíèþ ýêâèâàëåíòíîñòè. 
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