УДК 531.38

В. В. Кириченко

ГЕОМЕТРИЧЕСКИЙ АНАЛИЗ ДВИЖЕНИЯ ГИРОСКОПА ГЕССА

Получены условия, характеризующие распределение масс гироскопа Гесса. Для динамической системы, описывающей движения гироскопа Гесса, предложен и изучен специальный вид сечения Пуанкаре. С помощью указанного сечения построен и исследован фазовый портрет движений гироскопа Гесса.

Решение Гесса [8] обладает уникальными аналитическими и качественными свойствами и потому занимает исключительно важное место в современной динамике твердого тела. Двумерные инвариантные многообразия, несущие решение Гесса, определяют границу хаоса в динамической системе, что позволяет изучить возможные сценарии перехода от регулярных к хаотическим движениям. В этом решении удивительным образом сочетаются: инвариантные торы, несущие квазипериодические движения, предельные циклы и изолированные периодические траектории, простейшие движения физического маятника, устойчивые и неустойчивые относительные равновесия, гомо- и гетероклинические движения, частотные резонансы и расщепления сепаратрисных поверхностей. Все это позволяет утверждать, что наиболее значимые идеи и результаты динамики твердого тела могут быть достаточно наглядно объяснены на одном примере – случае Гесса задачи о движении тела вокруг неподвижной точки.

В связи с интенсивным развитием современных компьютерных систем и технологий в последнее время в научной литературе появилось много примеров численного решения неинтегрируемых решений гамильтоновых систем [9–11]. В настоящей работе проведены компьютерные эксперименты, основанные на численном изучении двумерных отображений Пуанкаре. Предложен специальный вид сечения Пуанкаре, с его помощью построен и изучен фазовый портрет движений.

1. В качестве подвижной системы координат, жестко связанной с телом, используется специальная система координат, введенная П. В. Харламовым [7]. Начало координат выбирается в неподвижной точке, первая осы проводится через центр масс тела, вторая и третья оси направляются так, чтобы выражение кинетической энергии имело вид

$$2T = a_1 x^2 + a_2 y^2 + a_3 z^2 + 2x \cdot (b_1 y + b_2 z),$$

 $\dot{m} = h \approx m$

где x, y, z – проекции вектора момента количества движения тела на выбранные оси; a_1, a_2, a_3, b_1, b_2 – компоненты гирационного тензора в специальных осях; $\gamma_1, \gamma_2, \gamma_3$ – проекции единичного вектора направления силы тяжести на подвижные оси; Γ – произведение веса тела на расстояние между центром масс и неподвижной точкой.

Гироскоп Гесса характеризуется следующим распределением масс:

$$a_2 = a_3 = a_*, \qquad b_2 = 0.$$
 (1)

Уравнения движения гироскопа Гесса и их интегралы будут такие:

$$\begin{aligned} \dot{x} &= -b_1 z x ,\\ \dot{y} &= (a_1 - a_*) z x + b_1 y z - \Gamma \gamma_3 ,\\ \dot{z} &= -(a_1 - a_*) y x + b_1 x^2 - b_1 y^2 + \Gamma \gamma_2 ,\\ \dot{\gamma}_1 &= a_* z \gamma_2 - (a_* y + b_1 x) \gamma_3 ,\\ \dot{\gamma}_2 &= (a_1 x + b_1 y) \gamma_3 - a_* z \gamma_1 ,\\ \dot{\gamma}_3 &= (a_* y + b_1 x) \gamma_1 - (a_1 x + b_1 y) \gamma_2 , \end{aligned}$$
(2)

148 ISSN 0130-9420. Мат. методи та фіз.-мех. поля. 2010. - 53, № 3. - С. 148-158.

$$a_{1}x^{2} + a_{*}(y^{2} + z^{2}) + 2b_{1}yx - 2\Gamma\gamma_{1} = 2E,$$

$$x\gamma_{1} + y\gamma_{2} + z\gamma_{3} = k, \qquad \gamma_{1}^{2} + \gamma_{2}^{2} + \gamma_{3}^{2} = 1.$$
(3)

При условиях (1) В. Гессом был найден четвертый алгебраический интеграл системы (2), который в специальной системе координат имеет довольно простой вид:

x = 0.

(4)

При $b_1=0$ приходим к случаю Лагранжа, поэтому в дальнейшем считаем, что $b_1\neq 0\,.$

2. Обозначим через A, B, C главные моменты инерции, через $\mathbf{r} = (e_1, e_2, e_3)$ – радиус-вектор центра масс тела в подвижной системе, через p, q, r – компоненты угловой скорости тела **0**. Тогда в главных осях соотношения (1), (4) имеют вид

$$e_3 = 0,$$
 $A(B-C)e_1^2 = B(C-A)e_2^2,$ $Ape_1 + Bqe_2 = 0.$ (5)

Компоненты вектора угловой скорости **о** с компонентами вектора кинетического момента связаны следующим образом:

$$p = a_{11}x_1,$$
 $q = a_{22}x_2,$ $r = a_{33}x_3,$

где $a_{11} = \frac{1}{A}$, $a_{22} = \frac{1}{B}$, $a_{33} = \frac{1}{C}$. С учетом этих формул условия (5) записываются следующим образом:

$$e_3=0,$$
 $(a_{33}-a_{22})e_1^2=(a_{11}-a_{33})e_2^2,$ $e_1x_1+e_2x_2=0$.
В главных осях уравнения движения и интегралы имеют вид

$$\begin{split} \dot{x}_1 &= (a_{33} - a_{22})x_2x_3 + e_2\Gamma \ \overline{\gamma}_3 \,, \\ \dot{x}_2 &= (a_{11} - a_{33})x_3x_1 - e_1\Gamma \ \overline{\gamma}_3 \,, \\ \dot{x}_3 &= (a_{22} - a_{11})x_1x_2 + \Gamma(e_1\overline{\gamma}_2 - e_2\overline{\gamma}_1) \,, \\ \dot{\overline{\gamma}}_1 &= a_{33}x_3\overline{\gamma}_2 - a_{22}x_2\overline{\gamma}_3 \,, \\ \dot{\overline{\gamma}}_2 &= a_{11}x_1\overline{\gamma}_3 - a_{33}x_3\overline{\gamma}_1 \,, \\ \dot{\overline{\gamma}}_3 &= a_{22}x_2\overline{\gamma}_1 - a_{11}x_1\overline{\gamma}_2 \,, \\ a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 - 2\Gamma(e_1\overline{\gamma}_1 + e_2\overline{\gamma}_2) = h \,, \\ x_1\overline{\gamma}_1 + x_2\overline{\gamma}_2 + x_3\overline{\gamma}_3 = k \,, \qquad \overline{\gamma}_1^2 + \overline{\gamma}_2^2 + \overline{\gamma}_3^2 = 1 \end{split}$$

Условие $b_2 = 0$ означает, что третья ось – главная. Повернем оси координат вокруг этой оси на угол φ так, чтобы две оставшиеся оси были главными, тогда равны нулю все смешанные компоненты гирационного тензора.

Формулы перехода от специальных осей к главным имеют следующий вид:

$$a_{1} = a_{11} + a_{22} - a_{33}, \qquad a_{*} = a_{33},$$

$$b_{1} = (a_{22} - a_{33})\frac{e_{1}}{e_{2}} = \sqrt{(a_{22} - a_{33})(a_{33} - a_{11})},$$

$$(6)$$

$$x = x_{1}\cos\varphi - x_{2}\sin\varphi, \qquad \gamma_{1} = \overline{\gamma}_{1}\cos\varphi - \overline{\gamma}_{2}\sin\varphi,$$

$$y = x_{1}\sin\varphi + x_{2}\cos\varphi, \qquad \gamma_{2} = \overline{\gamma}_{1}\sin\varphi + \overline{\gamma}_{2}\cos\varphi,$$

$$z = x_{3}, \qquad \gamma_{3} = \overline{\gamma}_{3},$$

$$\cos\varphi = \frac{e_{1}}{\sqrt{e_{1}^{2} + e_{2}^{2}}}, \qquad \sin\varphi = \frac{-e_{2}}{\sqrt{e_{1}^{2} + e_{2}^{2}}},$$

где $\gamma_1, \gamma_2, \gamma_3$ – проекции единичного вектора направления силы тяжести на специальные оси; $\overline{\gamma}_1, \overline{\gamma}_2, \overline{\gamma}_3$ – проекции данного вектора на главные оси.

3. Компоненты тензора инерции связаны с компонентами гирационного тензора следующим образом [7]:

$$A_{11} = \frac{1}{\Delta} a_*^2, \qquad A_{22} = \frac{1}{\Delta} a_* a_1, \qquad A_{33} = \frac{1}{\Delta} (a_1 a_* - b_1^2),$$

$$A_{12} = -\frac{1}{\Delta} a_* b_1, \qquad A_{31} = A_{23} = 0,$$
(7)

где

$$\Delta = \begin{vmatrix} a_1 & b_1 & 0 \\ b_1 & a_* & 0 \\ 0 & 0 & a_* \end{vmatrix} = a_* (a_1 a_* - b_1^2) \neq 0$$

Для диагональных моментов инерции (7) выполнены условия

$$A_{11}>0, \qquad \qquad A_{22}>0, \qquad \qquad A_{33}>0\,,$$

$$A_{11}+A_{22}\geq A_{33},$$
 $A_{11}+A_{33}\geq A_{22},$ $A_{22}+A_{33}\geq A_{11}.$ (8)
Подставив (7) в (8) и, учитывая что $\Delta>0$, находим

 $\begin{array}{ll} a_*>0, & a_*a_1>0, & \frac{1}{a_*}>0, & \Delta>0\,, \\ \\ a_*^2+a_1a_*\geq a_1a_*-b_1^2, & a_*^2+a_1a_*-b_1^2\geq a_1a_*, & a_*a_1+a_*a_1-b_1^2\geq a_*^2\,. \end{array}$

Обозначим $c_1 = \frac{a_*}{a_1}$, $c_2 = \frac{b_1}{a_1}$. Исключив очевидные неравенства, получаем

$$c_2^2 < c_1, \qquad c_2^2 \le c_1^2, \qquad c_2^2 \le c_1(2-c_1).$$
 (9)

Заметим, что $c_1 > 0$, поэтому из третьего условия (9) находим, что $c_1 \in (0,2]$. Условия (9) получены автором ранее в работе [5]. Позже были найдены более строгие условия, которые выводятся ниже.

Произведения инерции связаны с соответствующими моментами инерции следующими ограничениями [6]:

$$A_{33} \ge 2|A_{21}|, \qquad A_{22} \ge 2|A_{31}|, \qquad A_{11} \ge 2|A_{32}|.$$

Применяя формулы (7) и опуская при этом очевидные неравенства, получим следующее условие:

$$c_1 - c_2^2 - c_1 \left| c_2 \right| \ge 0. \tag{10}$$

И еще одно условие получим, используя неравенства треугольника из (7) для главных моментов инерции. Из формул (6) находим

$$\begin{split} A &= \frac{1}{a_{11}} = \frac{2}{a_1 + a_* + \sqrt{(a_1 - a_*)^2 + 4b_1^2}}, \\ B &= \frac{1}{a_{22}} = \frac{2}{a_1 + a_* - \sqrt{(a_1 - a_*)^2 + 4b_1^2}}, \\ C &= \frac{1}{a_{33}} = \frac{1}{a_*}. \end{split}$$

Неравенство $A + B \ge C$ при подстановке в него полученных выражений выполняется всегда, а два других неравенства дают следующее условие:

$$2c_1(c_2^2 - c_1^2) + c_1^2(c_1^2 + 4c_2^2) \le c_2^4.$$
(11)

Таким образом, область допустимых значений параметров c_1, c_2 задается условиями (9)-(11). На рис. 1 она затемнена серым цветом. Из рис. 1 видно, что для $c_1 \in (0,2]$ условие (11) более сильное, чем остальные. Поэтому условия (9), (10) можно не учитывать. Рассмотрим систему (2), когда $c_2 < 0$. Тогда заменой

$$(y, z, \gamma_2, \gamma_3, c_2) \mapsto (-y, -z, -\gamma_2, -\gamma_3, -c_2),$$

ее можно привести к аналогичной системе, для которой $c_2 > 0$. То есть при изменении знака у параметра c_2 траекторная структура решения системы (2) не изменяется. Таким образом, не нарушая общности, достаточно рассматривать лишь неотрицательные значения данного параметра.

Рис. 1. Область допустимых значений c_1, c_2 .

4. Введем безразмерные переменные

$$x' = \sqrt{\frac{a_1}{\Gamma}} x, \quad y' = \sqrt{\frac{a_1}{\Gamma}} y, \quad z' = \sqrt{\frac{a_1}{\Gamma}} z, \quad \omega_i = a_* \sqrt{\frac{\Gamma}{a_1}} \omega', \quad \tau = \sqrt{\Gamma a_1} t$$

и параметры

 $\dot{x} = -c_2 z x ,$

$$\mathbf{c}_1 = \frac{a_*}{a_1}, \qquad \mathbf{c}_2 = \frac{b_1}{a_1}, \qquad h = \frac{\mathbf{E}}{\Gamma}, \qquad k' = k\sqrt{\frac{a_1}{\Gamma}}.$$

Тогда

$$\begin{split} \frac{dx}{dt} &= \frac{dx}{d\tau} \cdot \frac{d\tau}{dt} = \frac{dx}{d\tau} \sqrt{\Gamma a_1}, & \frac{dy}{dt} = \frac{dy}{d\tau} \sqrt{\Gamma a_1}, \\ \frac{dz}{dt} &= \frac{dz}{d\tau} \sqrt{\Gamma a_1}, & \frac{d\gamma_i}{dt} = \frac{d\gamma_i}{d\tau} \sqrt{\Gamma a_1}, & i = 1, 2, 3 \end{split}$$

Соотношения (2), (3) в новых переменных запишутся в виде (здесь и в дальнейшем штрих для удобства записи опущен)

$$\begin{aligned} \dot{y} &= (1 - c_1)zx + c_2yz - \gamma_3 ,\\ \dot{z} &= (c_1 - 1)yx + c_2x^2 - c_2y^2 + \gamma_2 ,\\ \dot{\gamma}_1 &= c_1z\gamma_2 - (c_1y + c_2x)\gamma_3 ,\\ \dot{\gamma}_2 &= (x + c_2y)\gamma_3 - c_1z\gamma_1 ,\\ \dot{\gamma}_3 &= (c_1y + c_2x)\gamma_1 - (x + c_2y)\gamma_2 ,\\ x^2 + c_1(y^2 + z^2) + 2c_2yx - 2\gamma_1 = 2h ,\\ x\gamma_1 + y\gamma_2 + z\gamma_3 &= k ,\\ \gamma_1^2 + \gamma_2^2 + \gamma_3^2 &= 1 . \end{aligned}$$
(13)

Область изменения параметров c_1, c_2 системы задается условиями (11) и показана на рис. 1.

Понизим порядок системы (12) с помощью известных первых интегралов. Из соотношений (13) определим $\gamma_1, \gamma_2, \gamma_3$:

$$\begin{aligned} \gamma_{1} &= \mu ,\\ \gamma_{2} &= \frac{1}{y^{2} + z^{2}} \big[y(k - \mu x) \pm z \sqrt{H} \big],\\ \gamma_{3} &= \frac{1}{y^{2} + z^{2}} \big[z(k - \mu x) \mp y \sqrt{H} \big], \end{aligned} \tag{14}$$

где

$$H = (1 - \mu^2)(y^2 + z^2) - (k - \mu x)^2,$$

$$2\mu = x^2 + c_1(y^2 + z^2) + 2c_2yx - 2h.$$
(15)

Подставив найденные выражения в (12), получаем редуцированную до третьего порядка систему, к интегрированию которой сводится задача о движении гироскопа Гесса:

$$\begin{aligned} \dot{x} &= -c_2 xz ,\\ \dot{y} &= (1 - c_1) zx + c_2 yz - \frac{1}{y^2 + z^2} \Big[z(k - \mu x) \mp y \sqrt{H} \Big],\\ \dot{z} &= (c_1 - 1) yx + c_2 x^2 - c_2 y^2 + \frac{1}{y^2 + z^2} \Big[y(k - \mu x) \pm z \sqrt{H} \Big]. \end{aligned}$$
(16)

Эта система применялась для исследования гироскопа Гесса в работе [7]. Она имеет третий порядок и зависит от четырех параметров c_1, c_2, h, k .

Редукция до третьего порядка уравнений Эйлера – Пуассона, записанных в главных осях, в общем случае была сделана Гессом [8].

Уравнения (16) иногда удобнее рассматривать в цилиндрической системе координат *x*, *ρ*, *φ*. Для перехода к ней сделаем замену

$$x = x$$
, $y = \rho \cos \varphi$, $z = \rho \sin \varphi$.

Тогда выражения (14) примут такой вид:

$$\begin{split} \gamma_1 &= \mu \,, \\ \gamma_2 &= \frac{1}{\rho^2} \big[(k - \mu x) \rho \cos \varphi \pm \rho \sin \varphi \sqrt{H} \, \big] , \\ \gamma_3 &= \frac{1}{\rho^2} \big[(k - \mu x) \rho \sin \varphi \mp \rho \cos \varphi \sqrt{H} \, \big] , \end{split}$$

а система (16):

$$\begin{split} \dot{x} &= - c_2 x \rho \sin \varphi \,, \\ \rho \dot{\rho} &= c_2 x^2 \rho \sin \varphi \mp \sqrt{H} \,, \end{split}$$

$$\rho^{2}\dot{\phi} = (c_{1} - 1)\rho^{2}x + c_{2}x^{2}\rho\cos\phi - \mu x + k - c_{2}\rho^{3}\cos\phi.$$

Здесь

$$H = (1 - \mu^2)\rho^2 - (k - \mu x)^2, \qquad 2\mu = x^2 + c_1 \rho^2 + 2c_2 x \rho \cos \varphi - 2h.$$

Выпишем некоторые свойства гироскопа Гесса.

Лемма 1 [5]. Величина H, входящая в уравнения редуцированной системы (16), неотрицательна при любых x, y, z, h, k, связанных тремя интегралами.

В цилиндрической системе координат $x,\,\rho,\,\phi$, при $x=0\,$ величина Hимеет вид

$$H(\rho) = -\frac{c_1^2}{4}\rho^6 + c_1h\rho^4 + (1-h^2)\rho^2 - k^2.$$
(17)

152

Лемма 2 [3]. Инвариантное соотношение Гесса принадлежит трехмерному слою (13) в фазовом пространстве x, y, z, γ_1 , γ_2 , γ_3 тогда и только тогда, когда интегральные константы k, h принадлежат области

$$\Omega = \left\{ h, k : -4h^3 + 36h + 4(3+h^2)\sqrt{3+h^2} - 27c_1k^2 \ge 0 \right\}.$$
(18)

Лемма 3. Траектория годографа вектора кинетического момента в решении Гесса лежит на окружности с центром в начале координат тогда и только тогда, когда $\gamma_1 = G_C = \text{const}$.

Д о казательство. Действительно, из интеграла кинетического момента находим $y^2 + z^2 = 2 \frac{h + G_C}{c_1}$. Отсюда следует, что траектория годографа вектора кинетического момента находится на окружности с центром в начале координат и радиусом $\sqrt{2(h + G_C)/c_1}$, если $\gamma_1 = \text{const}$, и, наоборот, если $y^2 + z^2 = \text{const}$, то $\gamma_1 = \text{const}$. Лемма доказана.

Лемма 4. Для любого решения системы (12), в котором x = 0 и $\gamma_1 = = \text{const}$, геометрический интеграл и интеграл энергии функционально зависимы.

Доказательство. В этом случае H и μ в (15) будут постоянными. Обозначим их соответственно через H_C , μ_C . Подставляя (14) в геометрический интеграл, получаем

$$\frac{k}{y^{2}+z^{2}}(y\gamma_{2}+z\gamma_{3})\pm\frac{\sqrt{H_{C}}}{y^{2}+z^{2}}(z\gamma_{2}-y\gamma_{3})=1-G_{C}^{2}.$$

Далее, преобразовав, имеем

$$\frac{k}{y^2 + z^2}(y\gamma_2 + z\gamma_3) = 1 - G_C^2 \mp \frac{H_C}{y^2 + z^2}.$$

Так как $y^2 + z^2$ постоянно в силу леммы 3, то интеграл энергии получается из геометрического интеграла умножением последнего на некоторую константу. То есть эти интегралы при сделанных предположениях функционально зависимы. Лемма доказана.

Из леммы 4 следует, что для исследования стационарных движений редуцированная система (16) недостаточна.

Лемма 5 [5]. Гироскоп Гесса при x = 0 может вращаться равномерно только тогда, когда интегральные константы k, h связаны соотношением

$$-4h^{3} + 36h + 4(3+h^{2})\sqrt{3+h^{2}} - 27c_{1}k^{2} = 0.$$
⁽¹⁹⁾

5. Для исследования фазового портрета системы (12) вблизи инвариантного слоя (4) в качестве сечения Пуанкаре удобно взять цилиндр

$$y^2 + z^2 = R^2, \qquad \qquad R = rac{
ho_1 +
ho_2}{2},$$

где ρ_1, ρ_2 — положительные корни уравнения $H(\rho) = 0$ (17). И затем для большей наглядности отобразить его на плоскость, «развернув» его по оси x. В качестве параметров, определяющих плоскость, возьмем x, s, где s длина дуги. Тогда $s = R\alpha$, где α — угол, соответствующий дуге s. Координаты цилиндра связаны с координатами плоскости следующим образом:

$$x = x,$$
 $y = R \cdot \sin \frac{s}{R},$ $z = R \cdot \cos \frac{s}{R}.$ (20)

А координаты плоскости связаны с координатами цилиндра так:

153

$$\begin{split} &x=x\,,\\ &s=\begin{cases} R\cdot \mathrm{arctg}\left|\frac{y}{z}\right|, &z>0,\;y>0,\\ &R\cdot \left(\mathrm{arctg}\left|\frac{z}{y}\right|+\frac{\pi}{2}\right), &z<0,\;y>0,\\ &R\cdot \left(\mathrm{arctg}\left|\frac{y}{z}\right|+\pi\right), &z<0,\;y<0,\\ &R\cdot \left(\mathrm{arctg}\left|\frac{z}{y}\right|+\frac{3\pi}{2}\right), &z>0,\;y<0. \end{split}$$

Область значений *s* находится в интервале $[0, 2\pi R]$. Для нахождения области значений *x* воспользуемся леммой 1. Зафиксировав *h*, *k* из области Ω (18), с учетом формул (20) получим

$$\begin{aligned} H &= -\frac{1}{4} x^{6} - Rc_{2} \sin \frac{s}{R} x^{5} + \left[h - \frac{R^{2}}{4} (1 + 2c_{1}) - R^{2}c_{2}^{2} \left(\sin \frac{s}{R} \right)^{2} \right] x^{4} + \\ &+ \left[k - Rc_{2} (R^{2} (1 + c_{1}) - 2h) \sin \frac{s}{R} \right] x^{3} + \left[R^{2} h (1 + c_{1}) - \right. \\ &- \frac{1}{4} c_{1} R^{4} (2 + c_{1}) - h^{2} + 2k Rc_{2} \sin \frac{s}{R} - R^{4} c_{2}^{2} \sin^{2} \frac{s}{R} \right] x^{2} + \\ &+ (2h - R^{2} c_{1}) \left(R^{3} c_{2} \sin \frac{s}{R} - k \right) x + \\ &+ \left[-k^{2} + R^{2} (1 - h^{2}) + hc_{1} R^{4} - \frac{1}{4} R^{6} c_{1}^{2} \right] \ge 0 \,. \end{aligned}$$

$$(21)$$

В результате численного исследования получаем, что вид этой области зависит от принимаемых параметром h значений. На рис. 2 показано, как изменяется область (21) с увеличением h, $h \in \Omega$. Параметр $h_* \approx -1$ на-ходится из (18).

Рис. 2. Изменение области $H \ge 0$ на цилиндре при возрастании параметра h.

Эффективным инструментом компьютерного изучения гамильтоновых систем с двумя степенями свободы является разработанный А. Пуанкаре метод фазовых сечений. Для динамической системы (12) выберем секущую поверхность, трансверсальную к фазовому потоку на инвариантном подпространстве, заданном соотношением (4). В качестве такой поверхности в пространстве $\mathbb{R}^3(x, y, z)$, как было показано выше, можно взять прямой круговой цилиндр $y^2 + z^2 = R^2$, ось которого коллинеарная вектору **r**, а направляющая окружность радиуса R расположена в плоскости (4). Величина Rзависит от параметров тела, ее можно подобрать таким образом, чтобы все траектории решения Гесса трансверсально пересекали цилиндр.

На рис. 3-6 приведены результаты компьютерного моделирования, на развертке поверхности точками отмечены последовательные пересечения цилиндра фазовыми траекториями. При этом использованы обозначения: $x = \mathbf{G} \cdot \mathbf{r}$ – расстояние от точки до плоскости (4); s – значение дуговой координаты на окружности радиуса R. Решению Гесса соответствует уровень x = 0, траектории системы (12) в этом случае изучены в работе [5].

Фазовые портреты на рис. 3-6 разделены на два слоя сдвоенной сепаратрисой Гесса – точки из одного слоя не проникают в другой. При $h < \Gamma$ (на всех сечениях, кроме сечения изображенного на рис. 6в, $\Gamma = 1$) соотношение Гесса (4) задает инвариантную кривую, принадлежащую слоению, которое на рис. 3a и рис. 6a почти не отличается от регулярного. При $h > \Gamma$ инвариантная кривая расположена внутри стохастического слоя (рис. 4, рис. 6б, рис. 6в). Если $h \to \infty$ (либо $\Gamma \to 0$), то все сводится к случаю Эйлера, решение Гесса стремится к сепаратрисе неустойчивого перманентного вращения тела вокруг средней оси инерции (рис. 6в). Случаи, когда инвариантное многообразие Гесса вырождается в окружность, на которой существуют одна либо две неподвижные гиперболические точки, показаны на рис. 56, рис. 5в.

На рис. 3, рис. 4 показан фазовый портрет системы (12) при условиях Гесса (1). При больших h решение Гесса является неустойчивым и разделяет два стохастических слоя (рис. 4), а при малых h лежит в почти не отличающемся от регулярного слоении (рис. 3).

Фазовый портрет при условиях Гесса (1) и нулевой постоянной площадей k = 0 показан на рис. 6. В этом случае вид сечения симметричен относительно точки $s = \pi \cdot R$, x = 0. На рисунках хорошо видно, что тор, соответствующий интегралу Гесса при малых энергиях, как и в предыдущем случае, расположен в почти не отличающемся от регулярного слоении (рис. 6*a*). С ростом энергии *h* внутри области (21) появляются физически невозможные области значений переменных.

На рис. 5 показан фазовый портрет системы (12) при условии (19). В этом случае, согласно лемме 5, траектория годографа вектора кинетического момента в решении Гесса лежит на окружности радиуса R с центром в начале координат и система (12) при фиксированных h, k может иметь неподвижные точки (рис. 56, рис. 5*в*). Случай, когда неподвижных точек не существует, изображен на рис. 5*а*.

Рис. 3. Фазовый портрет системы (12) в случае, когда инвариантная кривая x = 0 принадлежит слоению, почти не отличающемуся от регулярного.

Рис. 4. Фазовый портрет системы (12) в случае, когда инвариантная кривая x = 0 принадлежит стохастическому слоению.

Рис. 5. Фазовый портрет системы (12) при условии (19).

Рис. 6. Фазовый портрет системы, описывающей движение локсодромического маятника.

6. Пусть главные моменты инерции и координаты центра масс твердого тела подчинены условиям Гесса (5) и константы первых интегралов имеют следующий вид:

$$\begin{split} & C_1 = 0 \;, \\ & H = \frac{3AB(A+B-d) \left| \mathbf{r} \right|}{(A+B+2d)(2AC+2BC-3AB-2Cd)} + \left| \mathbf{r} \right|, \end{split}$$

где $d = \sqrt{A^2 + B^2} - AB$. При этих ограничениях А. И. Докшевич в 1966 г. нашел двухпараметрическое семейство периодических решений уравнений Эйлера – Пуассона [2]. В явном виде решение записывается с помощью эллиптических функций времени.

Положим $\alpha = C/A$, $\beta = B/A$, тогда допустимые значения параметров α , β принадлежат треугольнику с вершинами $P_1(1,0)$, $P_2(1,1)$, $P_3(1/2,1/2)$. В результате численного исследования решения Докшевича, проведенного в работе [1], выявлены две области параметрического резонанса. На рис. 7 эти области заштрихованы.

На основании теоремы Ляпунова об устойчивости по первому приближению внутренним точкам областей соответствуют орбитально неустойчивые решения. В незаштрихованных областях решения, как правило, орбитально устойчивы в первом приближении. Исключение составляют кривые резонансов, где необходим учет нелинейных возмущений.

Результаты численного интегрирования уравнений (12) в окрестности решения Докшевича представлены на рис. 8. Структура фазового пространства вблизи устойчивого периодического решения показана на рис. 8*а*. Почти все траектории возмущенного движения принадлежит инвариантным торам. На рис. 86 периодическое решение неустойчиво, оно принадлежит сепаратрисной поверхности. Стрелками указаны точки пересечения решение ем Докшевича сечения $y^2 + z^2 = R^2$.

Область заполненная точками на рисунках соответствует хаотическим движениям гироскопа. Механизм возникновения хаотических движений в окрестности решения Гесса изучен и описан в работе [4].

Рис. 7. Области неустойчивости для случая Докшевича на плоскости $\mathbb{R}^2(\alpha,\beta)$.

Рис. 8. Фазовый портрет системы (12) при условиях существования решения Докшевича.

Построенное Гессом точное решение задачи о движении твердого тела с неподвижной точкой позволяет изучить поведение сложной динамической системы, типичной для многих задач классической механики. На этом частном примере, досконально изученном аналитическими и качественными методами, можно исследовать нелинейную динамику решений возмущенной системы и попытаться выяснить общие внутренние свойства динамических систем, порождающие регулярные и хаотические движения. В данной работе построено сечение Пуанкаре и с его помощью численно изучено движение гироскопа Гесса вблизи решения Гесса.

- 1. Гашененко И. Н., Кучер Е. Ю. Характеристические показатели периодических решений уравнений Эйлера Пуассона // Механика твердого тела. 2002. Вып. 32. С. 50–59.
- 2. Докшевич А.И. О новом частном решении задачи о вращении тяжелого твердого тела вокруг неподвижной точки // Докл. АН СССР. 1966. 167, № 6. С. 1251–1252.
- 3. Ковалев А. М. Подвижный годограф угловой скорости в решении Гесса задачи о движении тела, имеющего неподвижную точку // Прикл. математика и механика. – 1968. – **32**, № 6. – С. 1111–1118.

- Ковалев А. М., Гашененко И. Н., Кириченко В. В. О хаотических движениях и расщеплении сепаратрис возмущенного движения Гесса // Механика твердого тела. – 2005. – Вып. 35. – С. 19–30.
- 5. Ковалев А. М., Кириченко В. В. Годограф вектора кинетического момента в решении Гесса // Механика твердого тела. – 2004. – Вып. 34. – С. 9–20.
- 6. Розе Н. Динамика твердого тела. Москва-Ленинград: Гостехиздат, 1932. 306 с.
- 7. Харламов П. В. Лекции по динамике твердого тела. Новосибирск: Новосиб. гос. ун-т, 1965. Ч. 1. 221 с.
- Hess W. Über die Eulerschen Bewegungsgleichungen und über eine partikulare Lösung der Bewegung eines Körpers um einen festen Punkt // Math. Ann. - 1890.
 - 37, H. 2. - S. 153-181.
- Lundstedt H., Persson T. Modeling solar cycle length based on Poincare maps for Lorenz-type equations // Annals of Geophys. - 2010. - 28. - P. 993-1002.
- Morimoto J., Atkeson C. Nonparametric representation of an approximated Poincaré map for learning biped locomotion // Autonomous Robots. - 2009. - 27, No. 2. - P. 131-144.
- Palaniyandi P. On computing Poincaré map by Hénon method chaos // Solitons & Fractals. - 2009. - 39, No. 4. - P. 1877-1882.

ГЕОМЕТРИЧНИЙ АНАЛІЗ РУХУ ГІРОСКОПА ГЕССА

Отримано умови, які характеризують розподіл мас гіроскопа Гесса. Для динамічної системи, що описує рух гіроскопа Гесса, запропоновано і вивчено спеціальний вигляд перерізу Пуанкаре. За допомогою вказаного перерізу побудовано та досліджено фазовий портрет рухів гіроскопа Гесса.

GEOMETRIC ANALYSIS OF HESSE GYROSCOPE MOTIONS

The conditions characterizing distribution of the Hesse gyroscope masses are obtained. For a dynamic system describing the Hesse gyroscope motions a special type of Poincaré cut is proposed and studied. By means of this cut, the phase portrait of Hesse gyroscope motions is constructed and investigated.

Ин-т прикл. математики и механики НАН Украины, Донецк Получено 25.05.09