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NUMERICAL SOLUTION OF THE PROBLEM ON THE STRESS-STRAIN STATE
IN HOLLOW CYLINDERS BY MEANS OF SPLINE-APPROXIMATIONS

Three-dimensional theory of elasticity is used for a study of the stress-strain state
in an hollow cylinder with varying stiffness. The corresponding problem is solved
by a method which is partly analytical and partly numerical in nature: Spline ap-
proximations and collocation are used to reduce the partial differential equations
of elasticity to a boundary-value problem for a system of ordinary differential
equations of higher order for the radial coordinate, which is then solved by using
the method of stable discrete orthogonalization. Results for an inhomogeneous cy-
linder for various types of stiffness are presented.

The increasingly stringent requirements for estimation of strength cha-
racteristics, the tendency toward a detailed consideration of real properties of
structural materials, and the discovery and study of three-dimensional effects
occurring in thick-walled elements require the treatment of hollow cylindrical
structures in terms of a three-dimensional model. Finding a solution for the
stress-strain state in thick-walled structures in the framework of spatial line-
ar elasticity theory goes hand-in-hand with significant difficulties related to
the complexity of the initial systems and of the partial differential equations,
as well as the necessity to satisfy the boundary conditions prescribed on the
surfaces of the elastic body. These difficulties rise substantially during the
calculation of structural elements such as cylinders made of anisotropic and
inhomogeneous materials. The facts mentioned above are consistent with the
relative sparseness of the number of publications addressing such questions
(L. P. Kollar, J. M. Patterson, G. S. Springer [11], P. K. Banerjee, D. P. Henry
[3], L. P. Kollar [10], Z. Shi, T. Zhang, H. Xiang [12], D. Gal, J. Dvorkin [5],
F. Collin, D. Caillerie, R. Chamlon [4], I. Tsurkov, B. Drach [13]).

Along with universal approaches used for solving boundary value prob-
lems in mechanics and mathematical physics, such as the finite-difference
technique, finite-elements, and other discrete methods, a new technique now
finds wide application for this particular class of problems [2, 3, 14]. It allows
reducing the initial problem to a system of ordinary differential equations, ba-
sed on an approximation of the solution with respect to other variables by
analytical methods. The exact reduction of multi-dimensional problems to one-
dimensional ones and the solution of the latter by the stable numerical me-
thod of discrete orthogonalization gives reasons to believe that the obtained
results are highly accurate. Due to the cylindrical geometry the method of fi-
nite-elements, if used for calculating the mechanical behavior, is time-consu-
ming, ineffective, and requires large memory and processing speed of the
computer.

Recently an approach based on spline-approximations was developed in
several articles [6—9] in order to study the mechanical behavior of plate and
shells. Its main advantages are [1]:

e stability against local perturbations, i.e., the local behavior of splines
in the neighborhood of a point does not influence their overall beha-
vior, in contrast to, for example, polynomial approximation;

e Dbetter convergence than that of polynomial approximation,;

e simple and convenient computer implementation.

The main goal of this article is the development of an efficient numeri-
cal-analytical approach to the solution of the problems for finding the stress-
strain state states of hollow composite cylinders in a three-dimensional loading
case. The proposed approach is a discrete-continuous one, and based on the
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combination of the spline-collocation method with the method of discrete-or-
thogonalization. It allows reducing three-dimensional problems to one-dimen-
sional ones and solving the latter by the stable numerical method of discrete
orthogonalization with a high degree of accuracy.

Basic Equations. We consider a hol-
low orthotropic cylinder of constant
thickness (Fig. 1), inner radius R -H,
outer radius R+ H (R is the radius of
the mid-surface; 2H is the thickness of
the cylinder), and length L, described in
a cylindrical coordinate system r, 6, z.
The stress-strain state of such a cylinder
is described by the following equations
of elasticity:

e linear kinematic relations
ou ou
T z
€. = —=- e, =— 2e = —=
T or’ z oz’ T2 0z or’

e Hooke’s law for the more general orthotropic case

(1)

G, =Apje, +Apeq +Age,,

Op = Mgl + hgseg + Agse,,

G, = Ajge, + Agseq + Agse,, (2)
where the elements 7‘1‘]‘ = kij(r,z) of the stiffness matrix are continuous and
differentiable functions of the coordinates r and z;

e equations of equilibrium
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u,(r,2), u,(r,z) are the projections of the total displacement of the cylinder

onto the tangents to the coordinate lines r and z, respectively; e, ey, e, are
the relative linear strains along the coordinate lines; e, is the shear strain;
G,., Gy, 0, are the normal stresses; o, is the tangential stress.

The elements 7%']' of the stiffness matrix follow from the elements c,; of

j
the compliance matrix as

_aa a1 e
Mip = (CyeCy5 — C23)Z’ Aip = (C15C5 — C12c33)z )
o ~ ~ 1 U ~2 1
Mig = (CppCy3 — C13022)Z’ Aoy = (€11C33 — 013)Z’
I ~ o~ 1 ~ 9~ ~2 1 1
Aga = (Cy9Cia — Cq1Con )= Moo = (Cy1Coy — Co ) =—
23 12€13 ~ €11C23) 1 33 11C22 — C12) s 55 )
A A Css
_ 2
A = cpy(CgpCy = C53) = €15(C1pC55 = C13Ca3) + C13(C1aCa3 — C13Ch,) - (4)

In turn, the elements of the compliance matrix can be expressed in terms
of the engineering constants:

c _ 1 c _ _Vre c _ Vrz
11 — ’ 12 — ’ 13 — )
E, E, E,
1 v 1 1
Cog = ) Coz3 =~ = C33 = ) Cs5 = — ) ()
E E G
0 z z rZ

where E_, E,, E, are the elastic moduli in the r-, 0-, and z-directions,

respectively, G,, is the shear modulus; and v, v,., vo, are Poisson’s ratios.

rZ rz? z
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The boundary conditions on the internal R — H and external R + H sur-
faces of the cylinder are given by

c,(R-H,z)=0, c,.(R+H,z)=q, 6, (RtH,z)=0. (6)

We prescribe the following boundary conditions at the ends z =0 and
z=1L:

. ou
(7) c, =0, u, =0 or 2 =0, u, =0; )
0z
.. ou, )
(77) u, =0, G, =0 or u, =0, e =0; (8)
(i) u, =0, u, =0. 9)

The following system of equations for the displacements results
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Xss 0z T Ay, Or ) Or
We now reduce these equations to the form
o*u, 3 ou, o*u, ou,
87 =a,Uu, +alzg+01387+a147+
ou, ou, *u,
Pl Y T G
o*u, 3 ou, ou, o*u,
67 = amur +azzg+a237+az4%+
ou, *u, ou,
+ ay5 _62 + Ay _622 + ay; _ar s (11)

where the coefficients a,, = a,,(r,z) are defined by

_ 1 01 Ay 1 1 Ohgg
Gy =75 PN Gig = =5 g
hyy Or 1 Ay Ay Oz
Ass ( 1 Ohyy 1)
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In this case the boundary conditions (6) on the inner and outer surfaces
become

E 0 ou, o
“ ¢ “ x55( r u2j=0. (13)

Mg e s =0 ot or

Solving technique. The problem defined by Eqn. (10) in combination with
appropriate boundary conditions can be solved by spline-collocation and disc-
rete-orthogonalization methods. In preparation for the spline-collocation me-

thod we write the unknown functions u,(r,z), u,(r,z) as follows:

N N
u, = > u, (Mol (2), u, = > u,(Ne?(2), (14)
i=0 i=0

where u,;(r), u,(r) are sought functions of the variable 7, (pi(j)(z), j =
=1,2, 1 =0,1,...,N, are linear combinations of B -splines on the uniform mesh
A: 0=2z,<z <...<zy =L which must satisfy the boundary conditions at
z=0 and y = L. The system (10) includes derivatives of the unknown func-

tions along the coordinate z no higher than second order. In this case, we
may restrict ourselves with approximations of third power, i.e.

0, -0 <2<z _,,
y3, 2,9 L2<2;_,
, —3y® +3y% + 3y +1, z. , <z<z,
Bi(z)= 11 Y oY oY it 1 (15)
6 3y’ —6y” +4, z; Sz2<z,,,
(1-y)’, 21 S2<2;,,,
0, 29 S 2 <0,

-z
h

z

z
where y = on the interval [z,,z,,,], k=7-2,...,i+1, i =~-1,...,N +1;

h, = z;,,; — 2z, = const. In this case, the functions (pgj)(z) are as follows:
1°) If the relevant resolving function (u, or u,) at z=0 and z=1L is

equal to zero, then

. _ . _ 1
0y”(2) = 4B (2)+ Bj(2),  ¢,”(2) = By'(2) - 5 B3 (2) + By(2),
0,7(2) = Bi(2), i=23,...,N-2,

j - 1
on"(2) = By (2) — 5 By (2) + By ' (2)

oy (2) = -4By " (2) + BY (2); (16)
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2°) If the derivative with respect to the resolving function at z =0 and
z = L is equal to zero, then

| | L
¢ (2) = B3 (2), 0,7 (2) = By’ (2) - 5 B3 (2) + By (2),
¢,:(2) = By(2), i=23,.,N-2,
| L |
ona(2) =By (@) - 5By () + By (2, ey =Bj(); (A7)

3°) If the relevant resolving function at z =0 is equal to zero and at z =
= L the derivative with respect to z of the resolving function is also equal to
zero, then

90,7(2) = ~4B;'(2)+ BY(2),  07(2) = B;'(2) - 3 BY(2) + Bi(2),

07(2) =Bj(2),  i=23..N-2,
. _ 1 j
oy (2) = BN (2) —EBéV(z) +BY(2), oy"(2) =By (2). (18)

By substituting Eqns. (14) into (10), we now require them to be satisfied
at the specified collocation points &, [0,L], k= 0,N. We consider the case

when the number of mesh nodes is even, i.e., N =2n+1, n > 3. The selection
of the collocation points &,; €[2,;,25,,11s &9i41 € [29i529;41b £ =0,1,2,...,n, in

the form &, =z, +sh,, &, =2y +Sh,, where s, = 1/2 -3/6, s, =1/2+

z
+\/§/6 , are the roots of the second-order Legandre polynomial, is optimal
and essentially increases the degree of accuracy of the approximation. In this

case, the number of collocation points is N =N +1. As a result, we obtain a
system of 4(N +1) linear differential equations with respect to the functions

~ ~ . ’ ~ ! ~ .
Uy Uy, Uy, Uy, ©=0,...,N, where u, =u,, u, =u,. By employing the

following notation

@, =[],  ki=0..N,  j=12,

a‘r = {uTO’url""’u‘rN}T’ {l’r = {{LTO’{LH""’&’TN}T’
u, ={upuy, Uy}, @, =i,y @y oy}
a;[ = {ak/(r,éo)y ak/(r’él)y"-,ak[(’r?é]\])}’ (19)

and by designating the matrix [c;a;;] in the form c*A for the matrix A =

=la;], 4,7 =0,...,N and the vector ¢ = {cg,¢;,...,cp ", the system of ordinary

differential equations with respect to u.,, %,,, u,;, i,; takes on the form
du, _z
dr T
du, _z
dr 2’
di o _ . b o -
drr =0 (a; *®, +a,, *D; +a,; *D)u, + D] (a, *DP))u, +

-1/= N -1,— - N~
+ O (a5 * Pyu, + P (a5 * Dy +ay; *Dy)u,,
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dl:l’z -1,= — 'N— -1,= I\~
dy = 0,7 (ay; Py + a5, DU, + Py (ay; *D)u, +

£ D gy Dy + Ty * DY + Ty * DY), + B3 Ty, * D), ,(20)

which can be represented as

%:A(r)?, R-H<r<R+H, 1)
where
Y = {tgyeees Upys Upgseees Uppys Ugsreees Uons Ungreees Uy |

is a vector-function, depending on 7, and A(r) is a square matrix of
4(N + 1) x 4(N + 1) th-order.

Boundary conditions for this system of ordinary differential equations are
defined by

Tn®yl, + Ay ® 2T R 0L, =T, RO, + Ay ®yE, =0, (22)
where

Mo = D (18D A (1,6, e g (1,60, (=123,

Ty = {5 (1,60 s (1,6 )y s (1, By )
or by

B,Y(R-H)=1b,, B,Y(R+H)=0, (23)
where B, and B, are rectangular matrices of the 2(N +1)x 4(N + 1) th-order,

b, is corresponding vector.

The boundary-value problem (21), (23) can be solved using a discrete or-
thogonalization method.

Numerical results. The modulus of elasticity E is supposed to vary along
the radial coordinate r according to a power law

E, .Y
E(r)=1+a(1+a(R_Hj ) (24)

The following parameters were used in context with the cylinder: L =
=10, R =10, H =1. Poisson’s ratio v =0.34. The ends of cylinder are clam-
ped.

The dependencies of the radial displacement u, =u E;/q and the cir-

cumferential stress o, = 6,/q on the parameters used for the variation of Yo-
ung’s modulus (see Eq. (24)) are shown in Figs 2—5 (a =1 for varying values
of B, and B =1 for varying values of a). The displacements and stresses in
the middle section of the cylinder, i.e.,, at z=L/2 are shown for the inner
surface at r =R - H (solid lines), for r = R — H/2 (dashed line), for r =R
(dotted line), for r = R + H/2 (dashed-dotted line), and on the outer surface at
R = R + H (dashed-double dotted line).

The radial displacement %,  decreases when the parameter B increases
from -5 to 5 (Fig. 2). The difference between the displacements on the inner
and on the outer surfaces decreases with increasing B.

Fig. 3 shows that circumferential stress G, on the inner surface decreases
with increasing B. On the outer surface it behaves in the opposite way. In

contrast to that the stress in the mid-surface (when r = R) changes only slig-
htly. Also, when B is negative, the circumferential stress on the inner surface

is greater than on the outer surface, and vice versa for positive values of .
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Fig. 2. The displacement #, and its

dependence on the parameter 3

5 25 0 25 B
Fig. 3. The stress 6, and its depen-

dence on the parameter 3

From Fig. 4 it becomes evident that the displacement u,_ decreases when

the parameter o increases from 0 to 10. The figure also shows that the grea-
test changes in displacement occur within the interval 0 < o <5, whereas for
5 <o <10 the displacement varies only slightly. The same effect is observed
in case of the stress (Fig. 5). Moreover the circumferential stress 69 increases

on the outer surface and decreases on the inner surface for increasing o, just
as in the case of B. Also the maximum circumferential stress &, shifts from

the inner surface to the outer with increasing o.
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Fig. 4. The displacement #%_ and its

dependence on the parameter o.
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Fig. 5. The stress 6, and its dependence

7.5 (o)

on the parameter a.

Fig. 6 shows how the radial stress 6, =c_/q varies from the inner to the

outer cylinder surface in the middle section of the cylinder (z = L/2) depen-

ding on the value of [ parameter.

The following designations were used:
solid line for B = -10, dashed line for

f = -5, dotted line for B =0, dashed-
dotted line for B =5, dashed-double
dotted line for B =10 (oo =1). Pre-

dictably (as evident from the bounda-
ry conditions), the radial stresses on
the inner and on the outer surfaces
are —1 and 0, respectively. The cur-

ves change from concave to convex
for increasing . The dependence of
the stresses on the radius comes close
to a straight line for f =5.

(&}

T

0 0.5 1 156 r—(R—H)
Fig. 6. Radial stress &, distribution

as a function of radius r for
various values of 3

Thus by varying the physical parameters of the construction material it
is possible to influence the stress-strain distribution within the cylinder and to
choose optimum parameters for its strength.
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YUNCEJNbHE PO3B’A3AHHA 3A0AMNI 1NPO HAI'IPY)KEHVIV.I. CTAH NMOPOXHUCTUX
LUMniHAPIB 3A OMOMOIOKO CMITAUH-AMPOKCUMALLII

Jas OocaiddcenHns HANPYHeHO20 CMAHY NMOPOHCHUCTIUX YUATHOPI8 3T 3MIHHOM0 dHcopCcmMm-
KICTNI0 6UKOPUCTMAHO MPUBUMIPHY Meopito npyxcHocmi. 3adawy, w0 poszaidaemuca,
P036’A3AHO UUCEABHO AHAAIMUYHUM MemOOOM: HA NePULOMY emani 8UKOPUCMOBYEMbCA
CNAQUH-ANPOKCUMAYLA T MemMOO KOA0KAYLT Oasl 36e0eHHA 3a0aul 8 YACMUHHUX NOXIOHUL
00 00HOBUMIPHOT KPAL08OT 3a0aul 8UCOK020 NOPAOKY 8 padiarvHomy Hanpamky. Ompu-
MaHa 3a0aUa PO36’A3YEMBCA CMIUKUM YUCEALHUM Mmemodom OUCKPemHOl 0PMmo2oHaLL3a-
yii. Hagedeno pesyavmamu po3e’a3anns 3a0au 048 HeoOHOPIOHO020 YUNTHOPA OAsi PIZHUX
8aPIAHMIB 3MIHU HCOPCTKOCTML.

YUCNEHHOE PEWIEHUE 3A0AYN O HAMPAXXEHHOM COCTOAHUW NOJbIX LUNUHOPOB C
NMOMOLLBIO CMJTANH-AMTMPOKCUMALIMK

Jas uccae0osaHus HANPAHEHHOZ0 COCMOSHUS NOABLL YUAUHOPOS ¢ nepemeHHOU dHcecm-
KOCMDBIO UCNOADBI0BAHA MPexmepHas meopus ynpyzocmu. Paccmompennas 3adaua pe-
UWeHad YUCACHHO AHAAUMUYECKUM MemOoOOM: HA NeP8oM IMane UCNOAbIYEMCS CNAAUH-
annNPoOKCUMAYUSL U MemOo0 KOALOKAYUU 0as ceedeHus 3a0auu 8 4ACMHBLL NPOUIBOOHBLL
K 00HOMepHOU Kpaesoll 3adaue 8blLCOKO20 NOPAOKA 8 paduasvHom wanpasaeruu. Iloay-
YeHHAS 3a0aua pewaemcs Ycmouuusvlm 4UCLeHHbLM Memodom OuckpemHuoti 0pmozoHa-
ausayuu. Ilpedcmasaensvt pe3yavmamsl peweHus 3a0ay 0as HeoOHOPOOH020 YUAUHOPA
ONsl PABAUUHBLL 8APUAHMOE UBMEHEHUS HCECTNKOCTNU.
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