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REMARKS ON TILED TORI

J. S. Birman and W. W. Menasco [3] introduced and studied a class of embedded
tori in closed braid complements which admit a standard tiling. K. Y. Ng showed
[6] that each essential torus in a closed braid complement which admits standard
tiling posseses a staircase pattern. The combinatorial and geometric description of
the tori from this class was partially given in [7]. In this paper, we continue the
study of the decomposition of tiled tori into building blocks and show that they are
similar in certain sense. In particular, for the class of geometric tiled tori described
by Ng in [6], we show that each such torus consists only of elementary blocks.

Introduction. In this paper, we continue the study of tiled tori introduced
by J. S. Birman and W. W. Menasco in [3]. As combinatorial objects, these tori
serve the patterns of geometric tori of standard position in a closed braid
complement. In [3], Birman and Menasco study essential tori in closed braid
complement via the natural (singular) foliations on them that are induced by
the braid fibration and introduced the geometric standard tori of type k > 2.
In [6], K. Y. Ng described a new class R of geometric tiled tori, the tori that
are obtained by making tracks in standard tori of type k > 2.

In the previous paper [7], we described in combinatorial terms the block
decomposition of tiled tori and gave their geometric interpretation. In
particular, we showed that each tiled torus can be decomposed into building
blocks of width 1, all they are elementary, for exception, may be one which is
defective. In this paper, we show that all elementary building blocks of any
block decomposition are similar in certain sense. This gives a geometric
interpretation of a block decomposition of the corresponding solid tori in a
closed braid complement. Moreover, we showed that each torus from the class
R can be decomposed into elementary building blocks.

1. Preliminaries. In this section, we give some preliminaries and review
some known facts which will be used later.

Let L cR?® be an oriented closed braid with the axis A and let
H ={H, :6<[0,2n]} be the open book decomposition of R? by half-planes

with boundary on the axis A. Moreover, let S’ be a closed orientable incom-

pressible surface in R® \ L. Assume S’ is in general position with respect to
7 . The intersection of the H,’s with S’ induces a (singular) foliation F' on

the surface S'.
It is known that by using isotopy in R®\ L, the foliation F' can be stan-

dardize in such a way that the resulting foliated surface S is essential and
allows a decomposition into some typical foliated regions ([2], Theorem 1.1).
Each such region contains a unique saddle point and admits a canonical em-

bedding in R?® with respect to the z-axis A [2]. The combinatorial decom-
position & of a foliated surface S is supplied with some additional data (de-
coration) and serves a combinatorial pattern for the foliated surface S. In a
special case, when all regions of such decomposition are the rectangular
foliated tiles, the combinatorial pattern & for the foliated surface S is called
a tiled surface.

Birman and Menasco showed [3] that any essential (incompressible and
nonperipheral) torus T may be standardized by a sequence of braid isotopies
and exchange moves to the one in a special position. The controlled moves
used in this process take closed braids to closed braids and preserve link
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types. Braid isotopy means an isotopy in the complement of the braid axis
which preserves braid structure at each stage and the exchange move is a
special type of Reidemeister II move. The description of essential tori in a
special position falls into three cases [3].

The most interesting case is when the embedded torus T admits a
standard tiling (see Fig. 1 for a standard embedding of a tile in 3-dimensional
space with respect to the axis z).

Birman and Menasco introduced for each k > 2 the tori of type k, which
form a class of essential tori admitting standard tiling. But the geometric and
combinatorial description of such tori was nor completed. More precisely, it
was known that the tori of types k > 2 do not exhaust the class of essential
tori which admit standard tiling. In [6], Ng described standard tilings of essen-
tial tori in link complements via the so-called staircase tiling patterns P . Such
the tori are parameterized by the two parameters d and k, the width and
the height of P, and are enhanced with some additional data called the de-
coration. Ng [6] also showed that every embedded torus T which admits a
standard tiling possesses a staircase tiling pattern of even width 2n and

height k>2 .
In [7], we gave a combinatorial description of essential tori in closed braid

complements which admit standard tiling and bound a solid torus in R? in
terms of «building blocks». For this, we introduced the notion of a minimal
combinatorial meridian on an (embedded) tiled torus and showed that mini-
mal meridians from a suitable collection decompose the torus into building
blocks of width 1. Each such building block for a tiled torus is bounded by the
two parallel minimal meridians.

To describe combinatorial and geometric properties of building blocks, we
shall introduce in the next section the notion of configuration of a meridian of
a torus and study its properties. Note that the geometric position of each
building block in R?® is determined uniquely up to the braid foliation pre-
serving isotopy [1, 2]

2. The combinatorics of tiled tori with standard tiling. Let T be an
oriented essential torus in a closed braid complement which admits tiling. We
shall say that a tiling of T is standard if every its vertex is of valence 4 and
for any vertex v the four tiles adjacent to v occur cyclically with signs
+, —, +, —, when traveling on T around wv. It is known [3] that each incom-
pressible torus T in the complement of a closed braid L which admits tiling
can be performed, via a sequence of braid isotopies, exchange moves (on
closed braids) and the isotopies in closed braid complements, to an essential
torus T in the complement of a closed braid L' so that T' admits a standard
tiling. Note that L' and L have the same link type £ and the embedded
torus T' can be chosen to be smooth.

Every torus T which admits a standard tiling can be cut open to a plane
tiled fundamental domain. We say that T has the (d,k)-staircase tiling
pattern or d by k staircase tiling pattern P if a standard tiling of T has a
staircase-tiling fundamental domain P with k rows and d tiles across each
row, and its two opposite zig-zag sides are identified on T with a possible
shift in the order of vertices, while the top and bottom sides are identified so
that the second vertex on the bottom side coincides with the first vertex on
the top side. It follows from the definition of standard tiling that k > 2 and d
is even. As discussed in [6], any embedded torus T which admits a standard
tiling has essentially two staircase patterns, dual of each other in some sense.

Now, supplying the staircase P with some additional data (which is the
cyclic order of vertices, the cyclic order of tiles, the signs of vertices and tiles)
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we obtain a tiled torus 7 represented in a modified form (here the surface
T is cut along two cycles). Note that the question of whether a given (deco-
rated) staircase pattern is embeddable can be answered by passing the tests
in Proposition 1.1. of [7]. By Proposition 1.2 of [7], if a tiled torus 7 is embed-
dable, the corresponding embedding (in R3) is unique in a certain sense.

The fundamental domain of any embedded torus T admitting a standard
tiling and having a type k > 2 can be represented by a rectangle of dimension
2 tiles by k tiles, where the opposite edges on the sides with k arcs are
identified without any shift in the order [3]. For k=3, see an example
indicated in Fig. 1la and Fig. 1b.
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Now let us recall the definition of the operation of making tracks on tori
of type k > 2.

Let T be a torus of type k =2 which is made of k cylinders C; by con-
sequent gluing them along the corresponding boundary components (see
Fig. 1la for k=3 and Fig. 2a for k =2). Each closed curve m, =C,C,,, is
a meridian of the torus T and intersects the axis A exactly at two points,
say x; and y,,1=1,...,k. The points x, and y, decompose m, into two arcs,
a, and B,. The torus T admits a 2 by k rectangular pattern P (see Fig. 1b
in the case k =3). Consider on T a zig-zag longitude n (see Fig. 2a and
Fig. 1b). Note that the longitude m intersects on T each meridian m,,
i=1,...,k, at a unique point.

Push the surface T along n in the direction of inward pointed normal to
the surface at the points of n until each arc o, (B;), which intersects 7, has

been isotoped relatively its endpoints to a new arc oc; (B;, respectively) which
intersects A in two points more. In this case, we say that the resulting torus
T' is obtained from the torus T by making a track along m on it (see Fig. lc).
Let A be a zig-zag longitude on T, isotopic to m, which is obtained from mn

by a parallel shift (see Fig. 2a).
In the same way is defined the operation of making s parallel tracks
along m and t parallel tracks along A on the torus T (see also [6]). In this

case, each meridian m,; is performed by means of this procedure to a meri-

dian m; on T' which intersects A exactly at 2(t + s + 1) points. As a result of
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making (n —1) parallel tracks on the torus T, we shall get a new torus T’

which is embedded in S® and possesses a 2n by k staircase pattern P. Note
that T' may be chosen to be smooth. As an example, the pattern for the
embedded torus T, which is obtained from the one indicated in Fig. 2a by
making one track along the longitude m and the other track along A, is
shown in Fig. 2b. Denote by R the class of tori obtained from the ones of

type k =2 by making tracks on them. Ng showed that all tori from R are
essential and addressed the problem of finding a complete set of well-defined
moves on the embedded tori of type k >2 such that any embedding of a
torus which admits standard tiling can be obtained from the one of type
n > 2 by a sequence of these moves.

Fig. 2

As shown in [7], the operation of making tracks alone on the tori of type
k > 2 is not sufficient to obtain all essential tori which admit standard tiling.
However, it is easy to see that after having made some exchange moves on
the corresponding link and an isotopy, we shall obtain the torus from the class
R in a new closed braid complement.

It is known [4], that each torus T in 3-dimensional sphere S? bounds a
solid torus T at least from one side. Let T be a tiled torus and m its minimal
meridian. Fix an edge e on the oriented meridian m. Then m is a perfect
curveon T.

It follows from Proposition 2.3 of [7] that, given a minimal combinatorial
meridian m on 7T , we may shift it on 7 to obtain a sequence of «parallel»
minimal meridians m = m,,m,,..., m;, which decompose 7T into k cylinders

F,,i=1,...,k. We shall call the cylinders F,,¢=1,...,k, enhanced with the

data inherited from 7 , the combinatorial building blocks for the embeddable
tiled torus 7T . A characteristic feature of a decomposition of 7 by minimal
combinatorial meridians is that the latter has some geometric sense. Indeed,

by definition, each m; bounds a meridional disc D, in the solid torus T.
Moreover, by application of the standard cut-and-paste technique and general
position, we may achieve that discs D, from the collection D ={D,,...,D,}
are to be disjoint. The latter gives a decomposition of the solid torus T into k
solid cylinders C,, where each C; is bounded by the embedded cylinder F,
and the meridional discs D, and D,,,,i =1,...,k. We shall call the solid cylin-
ders C, the building blocks for T . The main task is now to study of geometric
properties of building blocks F, for T, embedded with respect to the axis A.
Below we describe some properties of them and pose some questions.
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It would be nice to standardize the geometric position of embedded
building blocks and find among the minimal meridians on T those which are
close in some sense to the slice meridional curves. In [7], we showed however
that not every embedded torus T which admits a standard tiling and bounds

a solid torus in R? possess a slice minimal meridian.

We suggest that the minimal meridians bounding a geometric building
block are similar in some reasonable sense. To formulate this more accurately,
we introduce some needed notions.

Let b, = b(7,7) and b, = b(k,{) be any two oriented edges of the under-
lying graph H of T with the orientations defined by the (ordered) pairs
(7, j) and (k,?), respectively. We shall write b, < b,, if the cyclic order of the
vertices of b, and b, on the axis A is either ¢, j, k, £, or ¢, {, j, k. The cyclic

sequences by, b,,...,b, and b, by,...,b; of oriented edges in T are called
alternately A-coherent if for each ¢ there holds b, < b; or b; < b, and the
relations b, < b; and b,; < by, alternate in the cyclic sequence 1,2,...,t.

Recall that each tile t of 7T contains a unique singularity, s. The sign of
s determines the cyclic order of the vertices of t and so, the orientations of
the edges incident to t. Therefore the edges of the graph H have the natural

orientations defined by the decoration of 7. Let m and m' be two cohe-
rently oriented minimal meridians on the torus T, so that m' is obtained
from m by s elementary shifts along a zig-zag longitude ¢. Then m and m'
bound on T a building block [7]. Let V and V' be the sets of vertices on m
and m', respectively. Moreover, let b,b,,...,b, and by, b,,...,b; be the cor-

responding cyclic sequences of oriented edges in m and m', respectively,
with the orientations defined above. There is a natural bijection h:V — V'
defined by a perfect longitude ¢ on 7 . For instance, let h(v,) = v;, so that

h(b,)=b;, i =1,2,...,¢.

We shall say that m and m' are A-equivalent (with respect to h ) if the
map h:V — V' acts by a shift in some number on the axis A.

Moreover, m and m' are called A -similar with respect to h if the cor-
responding sequences b;,b,,...,b, and b{,b;,...,b; of oriented edges are alter-
nately A -coherent.

Proposition 1. Let B be a building block for the torus T bounded by
oriented minimal meridional curves C and C', with the orientations being
coherent. Let V, V' be the sets of vertices of C and C', respectively. Suppose

there is a natural bijection h:V — V' defined by a pure zig-zag longitude in
T . Then the meridians C and C' are A -similar.

Proof Let T be an essential torus which admits a standard tiling
and bounds a solid torus T . Consider a longitude-meridional pattern P for T.
Let m; and m, be the combinatorial meridians on P which represent the
parallel perfect meridional curves C and C', respectively. The set E of
oriented edges of the underlying graph H of the tiled torus 7 can be
covered by the two collections D and B of the directed paths ¢, and
‘o,

longitude ¢ (see Fig. 3).

i1=1,...,q, respectively, each of which is parallel to a perfect pure zig-zag
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Let b, b, =b(s,t) be an edge of the meridian m, and b, =b(s',t') the
corresponding (via the bijection h ) edge of m,. We see that b, and b;'c lie on

the same line Ej of some collection. Then the next edges, b,,; = b(t,u) and
b;c+1 =b(t',u'), on the meridians m; and m,, respectively, also lie on the
same line E'j, but from another collection. We have either b, < bl'c, or b}'c <
< b,. Suppose the first relation holds. It follows that b}'€+1 < by, In the

second case, b, < b, , we have b,,, < b, ,,, completing the proof. 0
Recall that to each b-arc b(7,j) on T there corresponds the 0 -interval

0. . in which this arc exists [1]. Let C be a closed oriented curve on T (on

i,]
T ) and let b;,b,,...,b. be the cyclic sequence of its edges induced by the
oriented circuit of the cycle C. Then to the sequence of edges b;,b,,...,b,
there corresponds a sequence of its 0 -intervals 0, =(0,,¢,),(0,,9,),...,(0,,9,).
Let C and C’ be any two oriented perfect meridional curves in the combi-
natorial torus 7 of the length r with the sets of vertices V and V', respec-
tively, and let B = b,,b,,...,b, and B’ =b;,b,,...,b. be the corresponding cyclic
sequences of the edges of C and C'. Let S = (0,,9,),(05,05),...,(0,,09,) and
S’ = (6;,(p'1),(6'2,([)'2),...,(6;,([);) be the cyclic sequences of 6 -intervals corres-
ponding to the sequences B and P, respectively. Suppose there is a natural
map h:V — V', defined by a perfect (pure zig-zag or straight) longitude ¢
on T. For instance, let h(v;)=v}, so h(b;)=b;,i=1,...,r. We shall say that
C and C' are 0-equivalent if there are the value p, p €[0,2n), and the se-
quences ¥ =%,..-,X, and x =xi,...,%,, where x, €(0,,0,) and x, € (0},0)),
i=1,...,7,so0 that y, =y, + p modulo 2n for each i <r.

Let (a,b) and (c,d) be two 0 -intervals, where the parameter 0 is consi-
dered modulo 2n. We shall write (a,b) < (c,d) if the values a, b, ¢, d of the
parameter 6 appear in the cyclic order (a,b,c,d) or (a,d,b,c). Two sequen-
ces of O-intervals S =(0,,y,),...,(0,,y,) and S =(0;,y,),...,(0.,y") are
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called alternately coherent if for each k we have (0,,y,) = (0),y;) or
(ch,w;c) =(0;,y;) and the relations (9;,y,) < (6;,\|1;) and (G;C,\V;C) =(9;,vy,)
alternate in the sequence. Let C and C' be any two perfect meridional
curves of length k bounding a building cylinder on the torus T and let
b;,by,...,b, and b{,bé,...,b; be the corresponding cyclic sequences of the
edges of C and C’, respectively. Let S = (05,9,),(05,05),...,(0,.,0,.) and S’ =
= (01,¢,),(05,05),...,(0.,0.) be the cyclic sequences of 0 -intervals correspon-
ding to B and B’, respectively. Suppose there is a natural map g:C — C'
defined by a perfect zig-zag longitude on 7 and g(b;) = b;. We shall say that

C and C' are O-coherent if the sequences S and S of 0-intervals are
alternately coherent.

Proposition 2. Let B be a building block for the torus T bounded by
oriented perfect meridional curves m and m' with the coherent orientations
and let V and V' be the sets of vertices of m and m', respectively. Suppose
there is a natural map h:V — V' defined by a perfect pure zig-zag longitude
on T .Then m and m' are O -coherent.

Proof Let T be an essential torus which admits standard tiling and
bounds a solid torus T. Let m be a perfect meridian on the tiled torus 7

and m’' one of two its neighbours in 7 . We denote also by m and m' the
corresponding meridions on the pattern P (see Fig. 2), where {(m) = m') =
=2q. Let H be the underlying graph of 7 , embedded in T, and let G be
the dual of the embedded graph H on T (see above). Note that as graphs, G

and H are isomorphic. The edges of each tile t of the embedded graph G
have the natural orientation in accordance to the sign of a unique vertex v

contained in t©" and form an oriented cycle. Denote by G’ the orgraph ob-
tained from the graph G by the natural orientation of its edges. The set E'
of oriented edges of the orgraph G’ can be covered by a collection B of
oriented zig-zag paths f., j=1,...,2q, parallel to a pure perfect zig-zag longi-

tude ¢ on P, as indicated in Fig. 3. The direction of an arc e, in any path fj
indicates the direction of increasing the parameter 0. This means that if e,
starts at a singularity s, and finishes at s, and b; is the edge of the graph
H which is dual of e;, then b, exists in the 0-interval (0,,0,) (but not in
the (0,,0,)). Note that for each vertex v of H the vertices v and h(v) have
the same sign in 7 . To each edge b, in m there corresponds the edge b;c in
m', k=1,...,2q, via the map h. Now the direct inspection of the relations
between b, and b, shows that either b, <b,, or b, <b,. Suppose b, <b,,
ie. the pair of edges (bwb;{) occurs along a zig-zag line f, from the collection

B in the direction of increasing the parameter 0 (see Fig. 3). It follows the
pair (b,,,,b,,,) occurs along another zig-zag line f, , in the direction of de-

creasing the parameter 0 (see Fig. 3), ie. b}'c+1 = by,;- This completes the

proof of the proposition. 0
Therefore the perfect meridional curves m; and m, bounding a building

block on the tiled torus 7 or on the embedded torus T have the similar con-
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figurations. We do not know however whether m;, and m, are always A-
and 0 -equivalent in the sense defined above.

It should be noted that the minimal meridians which bound the building
blocks for the embeddable tiled tori having the generalized type k > 2 have
the similar configurations in much more strong sense than it has been given
by Proposition 1 and Proposition 2. All the examples of embeddable tiled tori
considered before have the «regular» structure, ie. their decorated graphs
possess some kind of periodicity. We do not know the examples of embeddable
tiled tori with «non-regular» structure.

Proposition 3. Any embedded tiled torus T from the class R admits a
decomposition into elementary building blocks.

Proof Let T be a tiled torus embedded in R*® from the class R.
Notice that T has a rectangular pattern of size 2xk. Moreover, let T' be
the tiled torus of type k > 2 in the sense of Birman and Menasco (see above)
so that T is obtained from T’ by making y tracks along a zig-zag longitude

¢ and B tracks along another zig-zag longitude, say s, of the torus T' where

¢ and s are parallel in combinatorial sense (see the definition of this ope-
ration below). Then T has a staircase pattern of width 2+ 2p + 2y and height

k [6, 7]
By the construction, w(f), the winding number of ¢ on T is equal to k.
We have also an obvious equality w(s) = k. Note that each minimal meridian

m' on T' of length 2 is replaced via the procedure of making tracks on T’
with minimal meridian m on T which intersects the axis A exactly in

2 + 2B + 2y points. Assume we have chosen k minimal meridians m; on T' of
length 2, each on the tube (cylinder) C;, where the embedded torus T is
obtained by consequent gluing cylinders C; together ¢ =1,...,k. Since { and

s are both the zig-zag longitudes on T’ and the procedure of making tracks
is homogenies on T’ (actually is the same on each tube), we may choose all
minimal meridians m; on T with the same configuration, that is to be

parallel. This gives immediately the combinatorial decomposition of T into
elementary building blocks with parallel boundary components, so the given
decomposition consists only of elementary blocks. This completes the proof. ¢

An example of standard tiled torus which does not belong to the class R
(that is cannot be obtained from the tori of type k > 2) by the operation of
making was also given in [5].
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3AYBAXEHHA OO0 MNJIIMTKOBUX TOPIB

J. S. Birman, W. W. Menasco [3] 8seau i docaiduau xaac exaadeHux mopie 8 0onogHen-
Hi 00 3aMKHEHUX cnaemendv, Aki donyckaroms cmandapmue naumikose NOKPUMMSL.
K. Y. Ng noxasana [6], wo xoxcHul cymmesuii mop, axuill donyckae cmardapmue
naumxoge nokpumms, mae cxriowamy modeav. Kombinamopruil i zeomempudHutl. onuc
mopie 3 makozo Kaacy wacmxoso nHaeedeno 8 [7]. IIpononosany pobomy MoxiCHA PO32A-
damu ax npodosicenns npayi [7], 8 aKi susuaomsves Po3oUMMSI NAUMKOBUL MOPI8 HA
KOHCMPYKMUBHT OAOKU T NOKA3AHO, W0 MAKL 6A0KU € NOOIOHUMU 8 NPUPOOHOMY CeHCI.
3oxpema, NOKA3AHO, U0 KONCHULL MOP 3 KAACY 2EOMEMPUUHUL NAUMKOBUL MOPI8, ONU-
canux K. Y. Ng @ [6], cknadaemsbcs 8UKAIOUHO 3 eaemeHmaprux 6.40Kis.

3AMETKU O MIIUMTOYHbIX TOPAX

J. S. Birman, W. W. Menasco [3] 8seau u uccaedosaiu KAACC BAOHCEHHBLL MOPO8 8 00-
NOAHEHUU K IAMKHYMDBLM 30YenteHusim, O0onyckanwuxr cmarndapmhuoe nNAuUMOUHOe
nokpvimue. K. Y. Ng nokasaaa [6], umo kaxiOwbill cywecmsenublit mop, Komopwviti 00-
nyckaem cmardapmuoe NAUMOYHOe NOKPbLmue, umeem cmenenvuamyio modeav. Kom-
OUHAMODPHOE U 2eoMmempPUuiecKoe ONUCAHUe MOPO8 U3 0AHHO20 KAACCA UACMUUHO NPUBO-
dumca 8 [7]. Jannyto pabomy Mmox*cHA paccmampusams Kax npodoaxcenue padbomst [7], 6
KOMOPOU U3YUAOMCS PO30UCHUSL NAUMOUHBLL MOPO8 HA KOHCMPYKMuUBHbIE OAOKU U
noxasvleaemcs, ¥mo maxue 640Kku nNo0OOHBL 8 ecmecmseHHom cmvicie. B uacmuocmu,
NOKA3AHO, YMO KOHCOBILL MOP U3 KAACCA 2e0MEMPUUECUL NAUMOUHDBLL MOPO8, ONUCAH-
nowx K. Y. Ng 6 [6], cocmoum uckarouumesvbHo U3 atemeHmapHbvle 6,40K08.
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