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REMARKS ON TILED TORI 
 

J. S. Birman and W. W. Menasco [3] introduced and studied a class of embedded 
tori in closed braid complements which admit a standard tiling. K. Y. Ng showed 
[6] that each essential torus in a closed braid complement which admits standard 
tiling posseses a staircase pattern. The combinatorial and geometric description of 
the tori from this class was partially given in [7]. In this paper, we continue the 
study of the decomposition of tiled tori into building blocks and show that they are 
similar in certain sense. In particular, for the class of geometric tiled tori described 
by Ng in [6], we show that each such torus consists only of elementary blocks. 

 
Introduction. In this paper, we continue the study of tiled tori introduced 

by J. S. Birman and W. W. Menasco in [3]. As combinatorial objects, these tori 
serve the patterns of geometric tori of standard position in a closed braid 
complement. In [3], Birman and Menasco study essential tori in closed braid 
complement via the natural (singular) foliations on them that are induced by 
the braid fibration and introduced the geometric standard tori of type 2k ≥ . 
In [6], K. Y. Ng described a new class R  of geometric tiled tori, the tori that 
are obtained by making tracks in standard tori of type 2k ≥ . 

In the previous paper [7], we described in combinatorial terms the block 
decomposition of tiled tori and gave their geometric interpretation. In 
particular, we showed that each tiled torus can be decomposed into building 
blocks of width 1, all they are elementary, for exception, may be one which is 
defective. In this paper, we show that all elementary building blocks of any 
block decomposition are similar in certain sense. This gives a geometric 
interpretation of a block decomposition of the corresponding solid tori in a 
closed braid complement. Moreover, we showed that each torus from the class 
R  can be decomposed into elementary building blocks. 

1. Preliminaries. In this section, we give some preliminaries and review 
some known facts which will be used later. 

Let 3L ⊂ R  be an oriented closed braid with the axis A  and let 

: 0,2Hθ= θ ∈ πH [ ]{ }  be the open book decomposition of 3R  by half-planes 

with boundary on the axis A . Moreover, let S′  be a closed orientable incom-

pressible surface in 3 LR \ . Assume S′  is in general position with respect to 

H . The intersection of the Hθ ’s with S′  induces a (singular) foliation ′F  on 

the surface S′ . 
It is known that by using isotopy in 3 LR \ , the foliation ′F  can be stan-

dardize in such a way that the resulting foliated surface S  is essential and 
allows a decomposition into some typical foliated regions ([2], Theorem 1.1). 
Each such region contains a unique saddle point and admits a canonical em-

bedding in 3R  with respect to the z -axis A  [2]. The combinatorial decom-
position S  of a foliated surface S  is supplied with some additional data (de-
coration) and serves a combinatorial pattern for the foliated surface S . In a 
special case, when all regions of such decomposition are the rectangular 
foliated tiles, the combinatorial pattern S  for the foliated surface S  is called 
a tiled surface. 

Birman and Menasco showed [3] that any essential (incompressible and 
nonperipheral) torus T  may be standardized by a sequence of braid isotopies 
and exchange moves to the one in a special position. The controlled moves 
used in this process take closed braids to closed braids and preserve link 
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types. Braid isotopy means an isotopy in the complement of the braid axis 
which preserves braid structure at each stage and the exchange move is a 
special type of Reidemeister II move. The description of essential tori in a 
special position falls into three cases [3]. 

The most interesting case is when the embedded torus T  admits a 
standard tiling (see Fig. 1 for a standard embedding of a tile in 3-dimensional 
space with respect to the axis z ). 

Birman and Menasco introduced for each 2k ≥  the tori of type k , which 
form a class of essential tori admitting standard tiling. But the geometric and 
combinatorial description of such tori was nor completed. More precisely, it 
was known that the tori of types 2k ≥  do not exhaust the class of essential 
tori which admit standard tiling. In [6], Ng described standard tilings of essen-
tial tori in link complements via the so-called staircase tiling patterns P . Such 
the tori are parameterized by the two parameters d  and k , the width and 
the height of P , and are enhanced with some additional data called the de-
coration. Ng [6] also showed that every embedded torus T  which admits a 
standard tiling possesses a staircase tiling pattern of even width 2n  and 
height 2k ≥  . 

In [7], we gave a combinatorial description of essential tori in closed braid 

complements which admit standard tiling and bound a solid torus in 3R  in 
terms of «building blocks». For this, we introduced the notion of a minimal 
combinatorial meridian on an (embedded) tiled torus and showed that mini-
mal meridians from a suitable collection decompose the torus into building 
blocks of width 1. Each such building block for a tiled torus is bounded by the 
two parallel minimal meridians. 

To describe combinatorial and geometric properties of building blocks, we 
shall introduce in the next section the notion of configuration of a meridian of 
a torus and study its properties. Note that the geometric position of each 

building block in 3R  is determined uniquely up to the braid foliation pre-
serving isotopy [1, 2]. 

2. The combinatorics of tiled tori with standard tiling. Let T  be an 
oriented essential torus in a closed braid complement which admits tiling. We 
shall say that a tiling of T  is standard if every its vertex is of valence 4  and 
for any vertex v  the four tiles adjacent to v  occur cyclically with signs 

 ,  ,  ,+ − + − , when traveling on T  around v . It is known [3] that each incom-
pressible torus T  in the complement of a closed braid L  which admits tiling 
can be performed, via a sequence of braid isotopies, exchange moves (on 
closed braids) and the isotopies in closed braid complements, to an essential 
torus T′  in the complement of a closed braid L′  so that T′  admits a standard 
tiling. Note that L′  and L  have the same link type L  and the embedded 
torus T′  can be chosen to be smooth. 

Every torus T  which admits a standard tiling can be cut open to a plane 
tiled fundamental domain. We say that T  has the ( , )d k -staircase tiling 

pattern or d  by k  staircase tiling pattern P  if a standard tiling of T  has a 
staircase-tiling fundamental domain P  with k  rows and d  tiles across each 
row, and its two opposite zig-zag sides are identified on T  with a possible 
shift in the order of vertices, while the top and bottom sides are identified so 
that the second vertex on the bottom side coincides with the first vertex on 
the top side. It follows from the definition of standard tiling that 2k ≥  and d  
is even. As discussed in [6], any embedded torus T  which admits a standard 
tiling has essentially two staircase patterns, dual of each other in some sense. 

Now, supplying the staircase P  with some additional data (which is the 
cyclic order of vertices, the cyclic order of tiles, the signs of vertices and tiles) 
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we obtain a tiled torus T  represented in a modified form (here the surface 
T  is cut along two cycles). Note that the question of whether a given (deco-
rated) staircase pattern is embeddable can be answered by passing the tests 
in Proposition 1.1. of [7]. By Proposition 1.2 of [7], if a tiled torus T  is embed-

dable, the corresponding embedding (in 3R ) is unique in a certain sense. 
The fundamental domain of any embedded torus T  admitting a standard 

tiling and having a type 2k ≥  can be represented by a rectangle of dimension 
2  tiles by k  tiles, where the opposite edges on the sides with k  arcs are 
identified without any shift in the order [3]. For 3k = , see an example 
indicated in Fig. 1a and Fig. 1b.  

 
 a) b) c) 

Fig. 1  
Now let us recall the definition of the operation of making tracks on tori 

of type 2k ≥ . 
Let T  be a torus of type 2k ≥  which is made of k  cylinders iC  by con-

sequent gluing them along the corresponding boundary components (see 
Fig. 1a for 3k =  and Fig. 2a for 2k = ). Each closed curve i i i im C C += ∩  is 

a meridian of the torus T  and intersects the axis A  exactly at two points, 
say ix  and , 1, ,iy i k= … . The points ix  and iy  decompose im  into two arcs, 

iα  and iβ . The torus T  admits a 2  by k  rectangular pattern P  (see Fig. 1b 

in the case 3k = ). Consider on T  a zig-zag longitude η  (see Fig. 2a and 

Fig. 1b). Note that the longitude η  intersects on T  each meridian im , 

1, ,i k= … , at a unique point. 
Push the surface T  along η  in the direction of inward pointed normal to 

the surface at the points of η  until each arc  ( )i iα β , which intersects η , has 

been isotoped relatively its endpoints to a new arc i
′α  ( i

′β , respectively) which 

intersects A  in two points more. In this case, we say that the resulting torus 
T′  is obtained from the torus T  by making a track along η  on it (see Fig. 1c). 

Let λ  be a zig-zag longitude on T , isotopic to η , which is obtained from η  
by a parallel shift (see Fig. 2a).  

In the same way is defined the operation of making s  parallel tracks 
along η  and t  parallel tracks along λ  on the torus T  (see also [6]). In this 

case, each meridian im  is performed by means of this procedure to a meri-

dian im′  on T′  which intersects A  exactly at 2( 1)t s+ +  points. As a result of 
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making ( 1)n −  parallel tracks on the torus T , we shall get a new torus T′  

which is embedded in 3S  and possesses a 2n  by k  staircase pattern P . Note 

that T′  may be chosen to be smooth. As an example, the pattern for the 
embedded torus 1T  which is obtained from the one indicated in Fig. 2a by 

making one track along the longitude η  and the other track along λ , is 

shown in Fig. 2b. Denote by R  the class of tori obtained from the ones of 
type 2k ≥  by making tracks on them. Ng showed that all tori from R  are 
essential and addressed the problem of finding a complete set of well-defined 
moves on the embedded tori of type 2k ≥  such that any embedding of a 
torus which admits standard tiling can be obtained from the one of type 

2n ≥  by a sequence of these moves. 

 
 a) b) 
 Fig. 2  

As shown in [7], the operation of making tracks alone on the tori of type 
2k ≥  is not sufficient to obtain all essential tori which admit standard tiling. 

However, it is easy to see that after having made some exchange moves on 
the corresponding link and an isotopy, we shall obtain the torus from the class 
R  in a new closed braid complement. 

It is known [4], that each torus T  in 3-dimensional sphere 3S  bounds a 
solid torus T  at least from one side. Let T  be a tiled torus and m  its minimal 
meridian. Fix an edge e  on the oriented meridian m . Then m  is a perfect 
curve on T . 

It follows from Proposition 2.3 of [7] that, given a minimal combinatorial 
meridian m  on T , we may shift it on T  to obtain a sequence of «parallel» 
minimal meridians 1 2, , , km m m m= … , which decompose T  into k  cylinders 

, 1, ,iF i k= … . We shall call the cylinders , 1, ,iF i k= … , enhanced with the 

data inherited from T , the combinatorial building blocks for the embeddable 
tiled torus T . A characteristic feature of a decomposition of T  by minimal 
combinatorial meridians is that the latter has some geometric sense. Indeed, 
by definition, each im  bounds a meridional disc iD  in the solid torus T . 
Moreover, by application of the standard cut-and-paste technique and general 
position, we may achieve that discs iD  from the collection 1, , kD D=D …{ }  

are to be disjoint. The latter gives a decomposition of the solid torus T  into k  
solid cylinders iC , where each iC  is bounded by the embedded cylinder iF  

and the meridional discs iD  and 1, 1, ,iD i k+ = … . We shall call the solid cylin-

ders iC  the building blocks for T . The main task is now to study of geometric 

properties of building blocks iF  for T , embedded with respect to the axis A . 
Below we describe some properties of them and pose some questions. 
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It would be nice to standardize the geometric position of embedded 
building blocks and find among the minimal meridians on T  those which are 
close in some sense to the slice meridional curves. In [7], we showed however 
that not every embedded torus T  which admits a standard tiling and bounds 

a solid torus in 3R  possess a slice minimal meridian. 
We suggest that the minimal meridians bounding a geometric building 

block are similar in some reasonable sense. To formulate this more accurately, 
we introduce some needed notions. 

Let 1 ( , )b b i j=  and 2 ( , )b b k= l  be any two oriented edges of the under-

lying graph H  of T  with the orientations defined by the (ordered) pairs 
( , )i j  and ( , )k l , respectively. We shall write 1 2b b≺ , if the cyclic order of the 

vertices of 1b  and 2b  on the axis A  is either , , ,i j k l , or , , ,i j kl . The cyclic 

sequences 1 2, , , tb b b…  and 1 2, , , tb b b′ ′ ′…  of oriented edges in T  are called 

alternately A -coherent if for each i  there holds i ib b′≺  or i ib b′ ≺  and the 

relations i ib b′≺  and k kb b′ ≺  alternate in the cyclic sequence 1,2, , t… . 

Recall that each tile τ  of T  contains a unique singularity, s . The sign of 
s  determines the cyclic order of the vertices of τ  and so, the orientations of 
the edges incident to τ . Therefore the edges of the graph H  have the natural 

orientations defined by the decoration of T . Let m  and m′  be two cohe-

rently oriented minimal meridians on the torus T , so that m′  is obtained 

from m  by s  elementary shifts along a zig-zag longitude l . Then m  and m′  
bound on T  a building block [7]. Let V  and V′  be the sets of vertices on m  

and m′ , respectively. Moreover, let 1 2, , , tb b b…  and 1 2, , , tb b b′ ′ ′…  be the cor-

responding cyclic sequences of oriented edges in m  and m′ , respectively, 

with the orientations defined above. There is a natural bijection :h V V′→  

defined by a perfect longitude l  on T . For instance, let ( )i ih v v′= , so that 

( ) ,  1,2, ,i ih b b i t′= = … . 

We shall say that m  and m′  are A -equivalent (with respect to h ) if the 

map :h V V′→  acts by a shift in some number on the axis A . 

Moreover, m  and m′  are called A -similar with respect to h  if the cor-

responding sequences 1 2, , , tb b b…  and 1 2, , , tb b b′ ′ ′…  of oriented edges are alter-

nately A -coherent. 

Proposition 1. Let B  be a building block for the torus T  bounded by 
oriented minimal meridional curves C  and C′ , with the orientations being 
coherent. Let ,V V′  be the sets of vertices of C  and C′ , respectively. Suppose 

there is a natural bijection :h V V′→  defined by a pure zig-zag longitude in 

T . Then the meridians C  and C′  are A -similar.  

P r o o f.  Let T  be an essential torus which admits a standard tiling 
and bounds a solid torus T . Consider a longitude-meridional pattern P  for T . 
Let 1m  and 2m  be the combinatorial meridians on P  which represent the 

parallel perfect meridional curves C  and C′ , respectively. The set E  of 
oriented edges of the underlying graph H  of the tiled torus T  can be 
covered by the two collections D  and B  of the directed paths il  and 

,  1, ,i i q′ = …l , respectively, each of which is parallel to a perfect pure zig-zag 

longitude l  (see Fig. 3). 
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Fig. 3 

Let , ( , )k kb b b s t=  be an edge of the meridian 1m  and ( , )kb b s t′ ′ ′=  the 

corresponding (via the bijection h ) edge of 2m . We see that kb  and kb′  lie on 

the same line jl  of some collection. Then the next edges, 1 ( , )kb b t u+ =  and 

1 ( , )kb b t u+
′ ′ ′= , on the meridians 1m  and 2m , respectively, also lie on the 

same line j
′l , but from another collection. We have either k kb b′≺ , or kb′ ≺  

kb≺ . Suppose the first relation holds. It follows that 1 1k kb b+ +
′ ≺ . In the 

second case, k kb b′ ≺ , we have 1 1k kb b+ +
′≺ , completing the proof. ◊ 

Recall that to each b -arc ( , )b i j  on T  there corresponds the θ -interval 

,i jθ  in which this arc exists [1]. Let C  be a closed oriented curve on T  (on 

T ) and let 1 2, , , rb b b…  be the cyclic sequence of its edges induced by the 

oriented circuit of the cycle C . Then to the sequence of edges 1 2, , , rb b b…  

there corresponds a sequence of its θ -intervals 1 1 2 2( , ), ( , ), , ( , )C r rθ = θ ϕ θ ϕ θ ϕ… . 

Let C  and C′  be any two oriented perfect meridional curves in the combi-
natorial torus T  of the length r  with the sets of vertices V  and V′ , respec-

tively, and let 1 2, , , rb b bβ = …  and 1 2, , , rb b b′ ′ ′ ′β = …  be the corresponding cyclic 

sequences of the edges of C  and C′ . Let 1 1 2 2( , ), ( , ), , ( , )r rS = θ ϕ θ ϕ θ ϕ…  and 

1 1 2 2( , ), ( , ), , ( , )r rS′ ′ ′ ′ ′ ′ ′= θ ϕ θ ϕ θ ϕ…  be the cyclic sequences of θ -intervals corres-

ponding to the sequences β  and ′β , respectively. Suppose there is a natural 

map :h V V′→ , defined by a perfect (pure zig-zag or straight) longitude l  

on T . For instance, let ( )i ih v v′= , so ( ) , 1, ,i ih b b i r′= = … . We shall say that 

C  and C′  are θ -equivalent if there are the value ,  0,2 )ρ ρ ∈ π[ , and the se-

quences 1, , rχ = χ χ…  and 1, , r
′ ′ ′χ = χ χ… , where ( , )i i iχ ∈ θ ϕ  and ( , )i i i

′ ′ ′χ ∈ θ ϕ , 

1, ,i r= … , so that i i
′χ = χ + ρ  modulo 2π  for each i r≤ . 

Let ( , )a b  and ( , )c d  be two θ -intervals, where the parameter θ  is consi-

dered modulo 2π . We shall write ( , ) ( , )a b c d°  if the values , , ,a b c d  of the 

parameter θ  appear in the cyclic order ( , , , )a b c d  or ( , , , )a d b c . Two sequen-

ces of θ -intervals 1 1( , ), , ( , )r rS = θ ψ θ ψ…  and 1 1( , ), , ( , )r rS′ ′ ′ ′ ′= θ ψ θ ψ…  are 
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called alternately coherent if for each k  we have ( , ) ( , )k k k k
′ ′θ ψ θ ψ°  or 

( , ) ( , )k k k k
′ ′θ ψ θ ψ°  and the relations ( , ) ( , )i i i i

′ ′θ ψ θ ψ°  and ( , ) ( , )k k k k
′ ′θ ψ θ ψ°  

alternate in the sequence. Let C  and C′  be any two perfect meridional 
curves of length k  bounding a building cylinder on the torus T  and let 

1 2, , , rb b b…  and 1 2, , , rb b b′ ′ ′…  be the corresponding cyclic sequences of the 

edges of C  and C′ , respectively. Let 1 1 2 2( , ), ( , ), , ( , )r rS = θ ϕ θ ϕ θ ϕ…  and S′ =  

1 1 2 2( , ), ( , ), , ( , )r r
′ ′ ′ ′ ′ ′= θ ϕ θ ϕ θ ϕ…  be the cyclic sequences of θ -intervals correspon-

ding to β  and ′β , respectively. Suppose there is a natural map :g C C′→  

defined by a perfect zig-zag longitude on T  and ( )i ig b b′= . We shall say that 

C  and C′  are θ -coherent if the sequences S  and S′  of θ -intervals are 
alternately coherent. 

Proposition 2. Let B  be a building block for the torus T  bounded by 
oriented perfect meridional curves m  and m′  with the coherent orientations 

and let V  and V′  be the sets of vertices of m  and m′ , respectively. Suppose 

there is a natural map :h V V′→  defined by a perfect pure zig-zag longitude 

on T . Then m  and m′  are θ -coherent.  

P r o o f.  Let T  be an essential torus which admits standard tiling and 
bounds a solid torus T . Let m  be a perfect meridian on the tiled torus T  

and m′  one of two its neighbours in T . We denote also by m  and m′  the 

corresponding meridions on the pattern P  (see Fig. 2), where ( ) ( )m m′= =l l  
2q= . Let H  be the underlying graph of T , embedded in T , and let G  be 

the dual of the embedded graph H  on T  (see above). Note that as graphs, G  

and H  are isomorphic. The edges of each tile ′τ  of the embedded graph G  
have the natural orientation in accordance to the sign of a unique vertex v  
contained in ′τ  and form an oriented cycle. Denote by G′  the orgraph ob-

tained from the graph G  by the natural orientation of its edges. The set E′  
of oriented edges of the orgraph G′  can be covered by a collection B  of 
oriented zig-zag paths , 1, , 2jf j q= … , parallel to a pure perfect zig-zag longi-

tude l  on P , as indicated in Fig. 3. The direction of an arc ie  in any path jf  

indicates the direction of increasing the parameter θ . This means that if ie  

starts at a singularity rs  and finishes at ts  and ib  is the edge of the graph 

H  which is dual of ie , then ib  exists in the θ -interval ( , )r tθ θ  (but not in 

the ( , )t rθ θ ). Note that for each vertex v  of H  the vertices v  and ( )h v  have 

the same sign in T . To each edge kb  in m  there corresponds the edge kb′  in 

,  1, , 2m k q′ = … , via the map h . Now the direct inspection of the relations 

between kb  and kb′  shows that either k kb b′° , or k kb b′ ° . Suppose k kb b′° , 

i.e. the pair of edges ( , )k kb b′  occurs along a zig-zag line nf  from the collection 

B  in the direction of increasing the parameter θ  (see Fig. 3). It follows the 

pair 1 1( , )k kb b+ +
′  occurs along another zig-zag line mf , in the direction of de-

creasing the parameter θ  (see Fig. 3), i.e. 1 1k kb b+ +
′ ° . This completes the 

proof of the proposition. ◊ 
Therefore the perfect meridional curves 1m  and 2m  bounding a building 

block on the tiled torus T  or on the embedded torus T  have the similar con-
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figurations. We do not know however whether 1m  and 2m  are always A - 

and θ -equivalent in the sense defined above. 
It should be noted that the minimal meridians which bound the building 

blocks for the embeddable tiled tori having the generalized type 2k ≥  have 
the similar configurations in much more strong sense than it has been given 
by Proposition 1 and Proposition 2. All the examples of embeddable tiled tori 
considered before have the «regular» structure, i.e. their decorated graphs 
possess some kind of periodicity. We do not know the examples of embeddable 
tiled tori with «non-regular» structure. 

Proposition 3. Any embedded tiled torus T  from the class R  admits a 
decomposition into elementary building blocks.  

P r o o f.  Let T  be a tiled torus embedded in 3R  from the class R . 
Notice that T  has a rectangular pattern of size 2 k× . Moreover, let T′  be 
the tiled torus of type 2k ≥  in the sense of Birman and Menasco (see above) 

so that T  is obtained from T′  by making γ  tracks along a zig-zag longitude 

l  and β  tracks along another zig-zag longitude, say s , of the torus T′  where 

l  and s  are parallel in combinatorial sense (see the definition of this ope-
ration below). Then T  has a staircase pattern of width 2 2 2+ β + γ  and height 

k  [6, 7]. 
By the construction, ( )w l , the winding number of l  on T  is equal to k . 

We have also an obvious equality ( )w s k= . Note that each minimal meridian 

m′  on T′  of length 2  is replaced via the procedure of making tracks on T′  
with minimal meridian m  on T  which intersects the axis A  exactly in 

2 2 2+ β + γ  points. Assume we have chosen k  minimal meridians im′  on T′  of 

length 2, each on the tube (cylinder) iC , where the embedded torus T′  is 
obtained by consequent gluing cylinders iC  together 1, ,i k= … . Since l  and 

s  are both the zig-zag longitudes on T′  and the procedure of making tracks 
is homogenies on T′  (actually is the same on each tube), we may choose all 
minimal meridians im  on T  with the same configuration, that is to be 

parallel. This gives immediately the combinatorial decomposition of T  into 
elementary building blocks with parallel boundary components, so the given 
decomposition consists only of elementary blocks. This completes the proof.  ◊ 

An example of standard tiled torus which does not belong to the class R  
(that is cannot be obtained from the tori of type 2k ≥ ) by the operation of 
making was also given in [5]. 
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ЗАУВАЖЕННЯ ДО ПЛИТКОВИХ ТОРІВ 
 
J. S. Birman, W. W. Menasco [3] ввели і дослідили клас вкладених торів в доповнен-
ні до замкнених сплетень, які допускають стандартне плиткове покриття. 
K. Y. Ng показала [6], що кожний суттєвий тор, який допускає стандартне 
плиткове покриття, має східчату модель. Комбінаторний і геометричний опис 
торів з такого класу частково наведено в [7]. Пропоновану роботу можна розгля-
дати як продовження праці [7], в якій вивчаються розбиття плиткових торів на 
конструктивні блоки і показано, що такі блоки є подібними в природному сенсі. 
Зокрема, показано, що кожний тор з класу геометричних плиткових торів, опи-
саних K. Y. Ng в [6], складається виключно з елементарних блоків. 
 
ЗАМЕТКИ О ПЛИТОЧНЫХ ТОРАХ 
 
J. S. Birman, W. W. Menasco [3] ввели и исследовали класс вложенных торов в до-
полнении к замкнутым зацеплениям, допускающих стандартное плиточное 
покрытие. K. Y. Ng показала [6], что каждый существенный тор, который до-
пускает стандартное плиточное покрытие, имеет степеньчатую модель. Ком-
бинаторное и геометрическое описание торов из данного класса частично приво-
дится в [7]. Данную работу можна рассматривать как продолжение работы [7], в 
которой изучаются розбиения плиточных торов на конструктивные блоки и 
показывается, что такие блоки подобны в естественном смысле. В частности, 
показано, что кождый тор из класса геометричесих плиточных торов, описан-
ных K. Y. Ng в [6], состоит исключительно из элементарных блоков. 
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