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IMPACT INDENTATION OF A RIGID BODY INTO AN ELASTIC LAYER.
AXISYMMETRIC PROBLEM

An axisymmetric contact-impact problem is considered for an elastic layer subjec-
ted to normal indentation of a rigid body. An exact analytical solution is obtained
in the case of a blunt shape of the indenter having a given velocity, and the stress
pattern under multiple reflections is analyzed depending on the layer thickness. A
numerical solution of the problem with arbitrary indenter shape is obtained on the
basis of the simplified model of theory of elasticity having a single displacement
coincident with the impact direction. The explicit finite difference algorithm is de-
signed on the basis of the mesh dispersion minimization technique. Parametric
analysis is presented of the stress pattern developed with time concerning to varia-
tions of irregular shapes of the indenter and its masses.

1. Introduction. This paper is the continuation to the axisymmetric case
of the plane problem analyzed in [7]. The introduction presented in [7] could
be practically completely replicated herein, as well as sited works within [7].
With analytical approaches in mind, we refer review [6] reflecting the multi-
tude of studies of a body’s impact interaction with elastic and liquid media,
while numerical approaches (primarily the method of finite elements) can be
found in review [17]. A generalizing monograph in the field of contact interac-
tion [11] is devoted to the development of analytical approaches to the soluti-
on of problems about the action of impact on an elastic medium. In the com-
mon case, the indentation problem is formulated as a unsteady-state mixed
initially-boundary elasticity problem with an unknown (temporally varying)
boundary, which must be determined in the course of the solution. The prob-
lem statement includes:

e equations of dynamic deformation of the impacted solid;

e the equation of the indenter motion;

e the ratio presenting the resistive force (drag) as a function of contact

stresses on a priori unknown contact surface;

e the equation connecting the contact zone size with the indenter

displacement,

e the corresponding boundary and initial conditions.

The overwhelming majority of publications (at least of those in which
analytical methods are used) are devoted to the problem of impact by rigid or
deformable indenter against a halfspace that precludes the possibility of ana-
lyzing the waves reflected from the boundaries of the impacted solid. Studies
of indenter interaction with solids of finite size are much less represented. Po-
siting such a problem appears topical in the practical aspect as well — in parti-
cular, in view of the wide use of laminate materials in modern aircraft and
shipbuilding. It is noteworthy that scale effect is among the determinant qua-
litative factors for problems of stresses and fracture in impact interaction (see
e.g. [9, 10]): the structure element under impact loading is destroyed by stres-
ses whose level is formed due to superposition of waves reflected from boun-
dary surfaces. The classical Hertz theory of collision is known to be applicable
in dynamics at large time values, i.e. after the wave processes have faded in
the solid. The Saint-Venant wave theory of rod collision is well developed only
for one-dimensional or quasi one-dimensional problems and does not take into
account energy transfer in directions different from the impact one. The
foresaid evaluates the motivation of the presented work devoted to the const-
ruction and investigation of more adequate models and methods for dynamic
processes of indentation.

This paper, in similar to [7], consists of two parts: in the first one a preci-
se analytical solution of the problem is built of the indentation with a constant
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impact velocity of an smooth shape axisymmetric rigid body into an elastic la-
yer. The dynamic process is determined by the superposition of the initial and
reflected waves with different physical and mechanical characteristics of the
layer material.

The computer solution obtained in the second part is built on the basis of
the simplified model of theory of elasticity with a single displacement intro-
duced in [12] and used in a set of dynamical problems (see references to [7]),
in which the displacement coincident with the impact direction predominates.
In the model, the two-dimensional character remains of the process under
consideration, while instead of the traditional equations of theory of elasticity
axial stresses are eliminated. The explicit finite difference algorithms are used
together with the mesh dispersion minimization (MDM) approach, resulting in
precise calculations of discontinuities. The MDM, originally created in [15] for
one-dimensional hyperbolic equations and upgraded in [1-3, 5, 13] for compu-
tation of wave and fracture processes in elastic and hydro-elastic systems,
was for the first time applied to the two-dimensional contact-impact problem
in [7]. The MDM technique is based on a generalized concept of the Courant
condition that relates mesh parameters to wave velocity, which reflects pro-
perties of the material at hand. Difference presentation of original differential
equations exhibits some typical domains of influence, and the idea behind
MDM is to properly adjust these domains so as to improve convergence. To
this end, phase velocities of high-frequency components of the continuous
model have to be considered, and the mesh to be set so that the propagation
velocities in the discrete model approximate the former as closely as possible.
An important technical advantage of MDM is that it utilizes the same mesh
for both high-gradient and smoothed components of solution. A satisfactory
correspondence of analytical and computer solutions opens the way for using
the latter to solve contact-impact problems, in which the indenter has an ir-
regular shape (see [7]).

In this paper, the parametric analysis is presented of the stress pattern
and the drag developed with time concerning to variations of indenter shapes
and masses.

2. Problem statement. A rigid indenter reaches the surface of elastic la-
yer z=0 at time t=0 and begins to
press into it. The pressing-in process is
specified by the indenter’s velocity V,(t)

perpendicular to the layer’s surface. The
impact velocity is assumed to be much
less than that of the elastic waves in the
layer, while the penetration depths are in-
significant. This enables to use the formu-
lation of a linear problem of theory elasti-
city with the boundary conditions remai-
ning valid for the undisturbed layer surface. We refer the layer to polar coor-

dinates r,z (—o<r<w, 0<z <h), so that radial coordinate r is directed

along the free surface and axis z into the layer (Fig. 1). The indenter surface
is defined by rotation (with respect to axis z) of given curve z = f(r). We in-
troduce dimensionless notations
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The line above the notations will be omitted below. Here R is the cha-
racteristic linear dimension of the indenter, V, is its impact velocity, w, is its

displacement counted from the undisturbed surface of the upper layer; c,

and c, are, respectively, velocities of longitudinal and shear waves in the la-
yer material, y is its density; K is its uniform compression modulus, A, i are

Lame’s constants; u; are components of the displacement vector and G, are

components of the stress tensor.
The behavior of the elastic medium is described by potentials ® and Y,
which in the case of an axisymmetric problem satisfy wave equations
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The bluntness of the indenter face and a relatively small indentation
deep allow us boundary conditions to be formulated on undisturbed halfspace
surface z = 0. The indenter surface in current time moment t is described by
the following way:

t
Zina = Wy (1) = f(7), wy(t) = JVO(r)dr, f(0)=0. (4)
0

Following to the accurate formulation of the linear problem, radius of the

contact zone, r"(t), is obtained from the kinematical condition below with de-
formation of the layer free surface taken into account:

wy (t) — f(r) —u,(t,r,0) = {0’ 0<r<r(t), )

<0, r > r(t).

The initial conditions for wave potentials are zero. The boundary conditi-
ons of the problem are formulated on front, z =0, and back, z = h, surfaces.
Boundary conditions at z =0 are: equality of indenter and normal layer dis-
placements inside the interface, absence of normal stress o,, outside of it,

and absence of tangential stresses o,

uz|Z=0 = w,(t), r<r”,
¥
czz|2=0 =0, r>r,
cS”I'Z|z=0 =0. (6)

Besides, it is necessary to see that o_, in the interface should remain
compressing at all the period of interaction:
welep <0, r<r. (7

Normal displacements and shear stresses are zero at the layer back sur-
face

(o)

u, =0, o =0, z=nh. (8)
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The boundaries of the contact zone will be the intersection points of the

body indenting contour r*(t) and plane z =0; if the surface of the moving
body in the space of variables r, z,t is set by equation z = F(t,r), the con-

tour indicated points 7*(t) is to be obtained from equation
F(t,r)=0. 9)

System (1)—(9) formulates the problem of indenter and layer interaction
at the given impact velocity.

3. Analytical solution. This section is based on the problem solving tech-
nique presented in [8]. The formulated problem admits an analytical solution
on the condition that the indenter contour is a sufficiently smooth, gently
changing curve. Let the flatness of the indenter be such that at small times of
interaction the mentioned above contour 7*(t) under conditions (4) moves
along the surface z =0 with velocity exceeding that of the elastic waves. As a
result the latter do not emerge on the free layer surface, and conditions on
boundary z =0 are

o
;‘tz = H(r" - 1)V, (t) = V,(t,7), S,l,, =0. (10)
z=0

Here H(-) is the Heaviside step function. The condition on the layer bac-

king remains unchanged
u,| _, =0. (11)

The solution to be obtained here, apart from its independent significance,
also serves below to test the numerical algorithm.

Following to [8] we use the Laplace integral transform in time (parameter
s, upper index L) and the Bessel integral transform along the radial coordi-
nate (parameter &, upper index B):
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Here J, is the cylindrical function of the first kind. In the image space

the wave equations will take the form (with zero initial and necessary boun-
dary conditions taking into account):
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P o 25 z=0, z=h, (12)

where fLB(s,F;) is the double Laplace — Bessel image of {function

V, (r,)H(t — (1))
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The general solution of wave equations is the following:
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Then functions A, (s,&), B.(s,§) are obtained after satisfying the remai-

% —Aeo‘
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Now one can obtain the following expression for the image of normal

stress GLF :
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Our problem is to reverse expression (14) with respect to integral trans-
forms. To this end, we restrict analytical results by obtaining normal stresses
in the axis z(r =0) in the case of a parabolic surface of the indenter moving

with a constant velocity V. Then it can be seen that function f(r,t) and its
transform are the following:

_g2k
ftr) = V(kt=1), £(58) =V, e T4, k=2v. (15)
S

Omitting details of the reversion technique (see [8]) we present the final
expression of the above-mentioned stresses

S (t’2)|r=0 =

(o Tmteo]
. 1+85T,,(t,2) 2
12 20°Z,,,(2)
:_U“VO Z_:H(t_zml) 9 (1_ le(tTZ) j+
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e ZH Z )T, z)\/1+—B (t,z)(l—mj , (16)

where
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T,;(t,2) = kt + 2Z a® - Z_ R, .(t,2),

R, (t,2) = | k? + 40kt + 40°Z,,  j=1,...4,
2mh + z 2m+1)h -z
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Obtained formula (16) is a precise analytical expression for normal stress
c,,(t,z) at arbitrary point of the layer on axis z. It consists of four infinite
sums: each m -th item of the first (second) sum represents them -th expansi-
on wave reflected from the front (back) surface of the layer; each m -th item
of the third (fourth) sum represents the m -th shear wave reflected from the
front (back) surface of the layer. Keeping a finite number of items N in these
sums, we obtain the value of stress with account taken of N reflections,
which is the exact solution of the considered problem on the time interval

Z 4 2Nh+z
a

In Fig. 2a normal stresses ©,,(0,z) at the axis r =0 obtained with formu-
la (16) are depicted. The indenter shape is given by expression (15), V;, = 0.1.
Parameters of the layer material are o =1, B =0.5, the layer thickness is
h =1.0.
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Fig. 2. Parabolic indenter vs. an elastic layer: a) analytical solution for normal stresses
6,,(0,2) in cross-sections z=0,0.5,1.0 vs. time; b) numerical solution for nor-

o

mal stresses o_,(0,z) at the interface z =0, vs. time for r* =0,0.4, 0.6 and 0.8.

As it can be seen, o,,(0,0) =V, at the initial moment of interaction, once
after that o_,(0,0) monotonically increases with time up to the moment of in-

coming the first reflected wave. Then a step-wise pattern of o,, is realized

due to multiple reflections. The each successive discontinuity at the front of
reflection waves is decreased in comparison with general rise of stresses. Ave-

rage values of o,,(0,z) linearly increase with time and inversely proportional

to the general rigidity of the layer (or, it the same, to the layer thickness).
The analogue pattern was also obtained in plane case [7]. Note that additional
results calculated with (16) depending on parameters of layer material and its
thickness are presented in [8].

4. Numerical solution. In this section, results of computer simulations are
presented of the considered problem for some irregular shapes of the indenter
having sharp edges (i.e. with discontinuities in the shape curvature), which
result in singular stresses arising in the indentation process. To the best of the
present authors’ knowledge, closed analytical solutions are absent for the con-
sidered impact-contact problems.
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Recall that in the case of the plane problem the MDM finite difference
solution is obtained in [7] on the basis of the Rachmatullin simplified model of
theory of elasticity with a singe displacement [12]. The simplification are ba-
sed on corresponding physical-geometrical assumptions. The solution obtained
by this way requires of a purposeful comparison with the precise model of
theory of elasticity and evaluation of a discrepancy.

The model declares the following inequalities and consequences for stress
components:

Ou, > ou, N 5 Ou,
0z or Oz T Y50
Oou, _Ou 5 (Ou, wu,
— ~ i 1
or > 0z = O cpy( or * r) 0

As a result, displacement u,_ is eliminated in equations of theory of elas-

ticity, and in the obtained by this way modified axisymmetric problem follo-
wing (single) governing equation remains with respect to normal displacement
u(r,z,t) = u,(r,z,t):
2 2 2
6u=6u+cz(6u+l6_u)_

ot*  oz2 “\o? ror
Here and below ¢, and y are used as measurement units. Besides, we

(18)

postulate zero initial conditions and the following (modified) boundary condi-
tions:

z=0: u="Vy(rt), r<r, 5—”:0, r>r,
0z
z=h: u=0. (19)
The indenter motion is calculated by the following way:
. F(b) 1]
Wy (1) = 3 F(t)—EJ(;G(r,O)rdr,
w, (0) =0, w, (0) = V, V(t) = w,y (). (20)

In this simplified formulation neither axial displacement u, nor axial

stress o, are determined, and component ou,/0z of shear stresses is also ab-
sent. Because a single displacement is postulated, shear boundary conditions
at z=0 and z =h are not required here. As was shown in [7] the considered
model is turned be in good correspondence with the conventional theory of
elasticity. Below we compare the results obtained by this model in the axi-
symmetrical case with the analytical solution presented above, in Section 3.
The indirect justification for application of this simplified model to the consi-
dered problem can be found in the fact that it correctly described the qualita-
tive stress pattern obtained for the analytical solution (see Fig. 2) and has
controlled quantitative divergence.

As in [7], a reason to using the simplified model is the methodological
one: the explicit difference algorithm presented below and applied to the mo-
del allows front discontinuities and singular components of the solution to be
calculated without parasite effects of the mesh discretization. Note, in connec-
tion with this, that in a lot of computer algorithms designed to contact-impact
problem solving the question how to accurate describe wave fronts and high
gradients of solutions remains open. To eliminate parasite oscillations arising
in front vicinities appeared in explicit and implicit difference algorithms inclu-
ding those used in commercial hydro-codes (see, for example [4, 16, 17]), the
so-called artificial viscosity is introduced. This technique permits the parasite
oscillations to be significantly decreased, however, at the same time it results
in spreading front discontinuities. In problems similar to the discussed here,
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the wave pattern is formed by multiple reflections, and, with their accurate
description in mind, the artificial viscosity is turned be unacceptable. Thus,
mesh dispersion, rather than the approximation problem, is the main obstacle
for accurate calculations of contact-impact problems by explicit algorithms.
Beginning from [15], the MDM algorithms were designed and successfully re-
alized in [1-3, 5, 13] for diverse 1D wave propagation problems an related ap-
plications, while to the best of the present authors’ knowledge MDM algo-
rithms for calculating 2D wave processes have been designed for the first ti-
me in [7] to analyze a plane contact-impact problem. In this work, MDM algo-
rithms elaborated in [7] are adapted for the axisymmetric problem formulated
above.

In the computer model we introduce difference mesh steps At, Az and
Ar for discrete.

Approximation of spatial and temporal coordinates: t = kAt, z = jAz and
r = 1Ar, where k=0,....,K, 1=0,...,I, and j=0,...,J, J=h/Az. Integer K
and I will be chosen from the condition of absence of influence of artificial
boundary x =IAx on the {r, z, t}-domain of interest. For derivations from
(18) we use the following discretizations:

. k+1 k k-1 1
u ~ (um — ZuN + ujyi )W

" k k k 1
u_~ (u’]+lz 2u;; + ujflz) (A2)?

' k k 1
U, ~ (uj+1,z - uj—l,i)@v

" ke k k 1
U (Uj,i+1 2U;; +U; i) A2’ (21)

where
k 1/ & k k
Uj: = Z(ujﬂ,i +2uf; tug ).

In scheme (21), the first three approximations are conventional, which
are used in the explicit algorithm, while the forth one is the MDM represen-

tation of U;“l As it can be seen, in the discrete analog of (18) built with (21),

the accuracy level of difference approximations, (At)2 + (Az)2 + (A.x')z, remains

the same as in a conventional case with postulated equality U;.ci = uf i

In figures below, we present results calculated by model (18), (19) with
approximation (21). Examples of calculation illustrate unsteady-state stress
patterns developed in a halfspace or in a finite thickness layer under impact
indentation of solid punches of various shapes and masses. The layer thickness
is taken h =1, while the case of a halfspace (h ~ inf) thickness h =H is
taken so that waves reflected from the layer backing z = H are not detected
in the region, in which calculation results are analyzed. We consider cylind-
rical, parabolic, conical and mixed (the cylinder with parabolic or conical
heads) indenter shapes. In the case of a cylindrical indenter with various head
shapes the length unit is the cylinder radius (R =1). Units of the wvelocity,

stress and density are c,, a, and y, respectively. The problem linearity al-

lows the initial impact velocity, V,

», to be taken equal to c, (170 =1). In

examples without the natural size unit (unbounded in the radial direction pa-
raboloid and cone indenters interacted with a halfspace), the length and time
are normalized by steps of the difference mesh. All examples are calculated
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with B = 0.5. Results shown in Figs. 3—7 corresponds to an infinite indenter
mass (M ~inf); in this case the initial impact velocity (V, =1) remains

constant as in the analytical solution above. Calculations with the finite
indenter mass (Figs. 8, 9) were conducted for the case of a cylindrical punch
with the plane head indented into a halfspase.

Preparatory to the description of computer results we must premise with
the following general notation. The action of indenters having singular head
shapes (by another words, punches with edges) results in a sharp bend in the
front surface and in singular stresses developed in the edge vicinity. The used
here linear deformation model is not suitable for description such singulari-
ties, and the mentioned results can be considered as a first approximation for
a nonlinear case. Note also that discrete computer models determine the ave-
rage shear angles and average stresses over the area of the spatial step. This
circumstance is taken into account below in the analysis of numerical solu-
tions.

First, with the aim to compare analytical and numerical solutions, an in-
denter with the parabolic shape is considered. In Fig. 2b normal stresses

c,,(r,0) at the interface z =0 are depicted vs. time. All the parameters are
the same that taken in the analytical solution shown in Fig. 2a: h =1, the in-
dentation velocity V; = 0.1, the parameter of the paraboloid curvature is 0.2.

Steps of the difference mesh are Ar = Az = At =0.001.

Comparison of analytical and computer solutions (upper curves in Fig. 2a
and Fig. 2b respectively) shows a good qualitative correspondence of this two
approaches. Quantitative difference is that stress amplitudes in computer so-
lution turns out be higher than analytical those, the convergence increases
with time and its maximal value behaves about of ~ 6% at the vicinity of
t ~ 5. As calculation show, in cases of relatively low B this convergence is

more significant and increases with decrease in 3.
In the above-considered case (r* = 2tV,, V, =0.1), velocity of the inter-

face +" is supersonic at t < 0.2, transonic at t = 0.2 (+* = 0.2), and subsonic at
t > 0.2. In the subsonic zone, r* rapidly decreased with time, and a part of
the surface z =0, r > r" is disturbed before the indenter pressing in (due to
action of waves, radiated by a part of the surface (z =0, r > r"). In according

with this, the contact at the interface is realized with a some delay. Time
moments of the indenter incoming to several sections of surface z =0 can be

fixed at the beginning of curves: t=1.13 (" =0.4), t =2.66 (r" =0.6), and
t =445 (r" =0.8). One can see that front discontinuities of reflected waves
are decreased with increase in 7.

In Fig. 3a the geometry of the cylindrical indenter with a paraboloid head
is shown, while in Fig. 3b normal stresses o, (r,0) are depicted vs. time at the

interface z = 0. Parameters of the indenter are: mass M ~ inf, paraboloid
constant k = 2.5. Curves correspond to r =0, 0.5, 0.75, 0.90, 0.95, respectively,
and curve for stresses 0.5-05,,(1,0) at r =1 is depicted in Fig. 3b. It can be

seen that in this case of a relatively shallow head of the indenter, stresses
c,,(r,0) are slightly changed in region 0 <7 <0.75, therefore amplitudes of

reflected waves are revealed more significant than those shown in Fig. 2 for
the case a curved shape, and vice versa: in the vicinity of the punch edge

r =1, stresses o, (r,0) are rapidly changed, while the relative values of

reflection fronts are decreased.
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Fig. 3. Cylindrical indenter with a paraboloid head (curvature factor — k =2.5) vs. an
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elastic layer: a) geometry of the problem; b) normal stresses o, (r,0) at the
interface vs. time for r =0, 0.5, 0.75,0.9 and 0.95.

In Figs. 4 and 5 calculation results are shown related to indentation of a
cylindrical punch (M ~ inf) with a plane face. In Fig. 4, radial distributions
are depicted of normal stresses o,, at the surface z =0 of a halfspace and in

vertical cross-sections z =0.05,0.1 and 1.0 at moments of time t = 0.05, 1.0

and 2.0. Presented results show a singular character of stresses at the surface

z =0 and their near-surface pattern.
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Fig. 4. Cylindrical indenter with a flat head vs. an elastic halfspace: distributions of
normal stresses o,,(r,z) along the radial coordinate at time moments ¢t =0.05,

1.0 and 2.0; curves corresponds to the interface z =0, and cross-sections

z=0.05,0.1 and 1.0.

Stresses o,,(r,0) and drag F (normalized to the cylinder square) in the

case h =1 are shown in Fig. 5a. Curves correspond to r =0, 0.5, 0.9, 0.95, 0.99

and 1.00. Due to the chosen scale, curves for r =0 and r =0.5 are weakly

differed.
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Fig. 5. Cylindrical indenter with a flat head vs. an elastic layer: a) drag F and nor-
mal stresses o, (r,0) vs. time, curves correspond to r =0, 0.5,0.9,0.95,0.99 and

1.00; b) factor A(r) for linear dependence on time of normal stresses at the

interface.
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Analysis of the above-presented data results in the following conclusions:

— a singularity-caused strong non-uniformity of stresses distributed along
the interface is preserved for all the process time;

— shear waves induced from the singularity r =1, 2z = 0 are not practically

influenced in stresses o, (r,z) in the singularity region, while they can be

watched at the vicinity of the axis (~ r < 0.5 in presented figures), where the
effect of convergent shear waves is maximal,

— the value of the relative contribution of discontinuities in stress (and
drag) amplitudes caused by incoming fronts of reflected waves decrease with
time in the almost all interface excluding the small vicinity of axis r =0;

— the dependence of stresses (and drag) is approached to be linearly pro-
portional to time.

With the last conclusion in mind, we obtain time asymptotes o, (r,0) ~
~ A(r)t. In Fig. 5b this dependence is depicted. The similar factor for the
drag, A,, is 1.5. Note, that this value obtained in the plane problem [7] (with

the same parameters) was A; ~ 1 that allowed the following rough practical

estimation to be proved: the drag value can be obtained on the basis of the
simplest 1D «spring model»: the layer can be described by an inertionless
spring having an effective rigidity of the vertical cylinder with the radius
equals to the punch radius. Thus, a detectable difference exists for resistance
to indentation of plane and axisymmetric punches, the latter is ~ 1.5 times
greater. A similar result was obtained in [14], where resistances to impact of
thin strings and membranes (respectively, plane and axisymmetric cases) were
compared.

Normal stresses o_,(r,0) vs. time at the interface r < r* shown in Figs. 6
and 7 were calculated for conical punches. The problem formulation corres-
ponds to the case when the external loading (normal velocity) appears at the
moment t =0 at point (0,0) and then moves along the surface z =0 with a
constant speed determined by the cone opening. Let the half of the cone ope-
ning be ¢ (geometrical schemes are located in the left of the shown o,, pic-

tures), then the front speed of the moving loading is V* =tg¢, and Vy(r,t) =

=H(r - V"t).

Calculation examples shown in Fig. 6 correspond to supersonic velocities
V*: V" =tge =2 (the left column) and V" =tg¢ =4 (the right column). Re-
sults in Figs. 6a and 6b are related to conical indenters unbounded in the ra-
dial direction (recall, the unbounded paraboloid indenter is referred in Fig. 2).
Because in the considered case the continual problem has no length and time
sizes, the mesh parameters Ax and At (Ax = At = 0.01) were taken as measu-
rement units. In according with this, curves correspond to r/Ax =0, 10, 25, 50,
100, 200 and 400. Presented results show the detectable influence of the sin-
gular point r = 0: stresses at the interface possess constant amplitudes equal
to 1 up to the moment of incoming of waves propagated from this singular
point. Once after that, stresses increase with time, while their growth rate

decreases with the distance from the axis. The smaller the cone opening, the
more distinctly the described process is revealed.

Stresses o,,(r,0) depicted in Figs. 6c and 6d are calculated in the case of

combined cylindrical indenters (R = 1) with conical heads indented into a half-
space; curves correspond to r =0,0.25,0.5,0.9,0.95,0.99 and 1.00. The main
characteristic of the process is that the wave picture is formed by stresses
induced from two singular points r =0, z=0 and r =1, z =0. The influence
of the more sharp singularity at r =1 prevails with time, and the stress
pattern is approached to that obtained in the case of a plane head punch.
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Fig. 6. Conical and combined indenters vs. an elastic halfspace: a), b) unbounded
cones, curves correspond to r/Ax =0, 10, 25,50,100,200, and 400; c), d) cy-

lindrical indenter with conical heads, curves correspond to r =0, 0.25, 0.5, 0.9 ,
0.95,0.99 and 1.00.

Results shown in Fig. 7 are calculated in the case tg¢ = 2. Curves depic-
ted in Fig. 7a correspond to interaction of an unbounded conical indenter with
a layer of thickness h =1. As above, in Figs. 6a and 6b, curves correspond to
r=0,0.1,0.25,0.5,1.0,2.0 and 4.0. It can be seen that the stress pattern re-
mains the same that in the previous case up to incoming the first reflection
from the backing to singular point r =1 z=0. One can see «spreading
fronts» of first reflections at the region adjacent to the axis, where the rela-
tive contribution to the general pattern is more significant of waves induced
from singular point r =0, z = 0. This contribution increases with t and 7, as
the described values are approached to the step-change character inherent
the simplest one-dimensional case when ¢ — /2.

Stresses shown in Fig. 7b are calculated in the case of indentation into a
layer (h =1) of the cylindrical punch (R =1) with the conical head; curves
correspond to r =0, 0.25, 0.5, 0.9, 0.95, 0.99 and 1.00. In the region adjacent to
the axis (curves for r =0, 0.25, 0.5 and 0.9) the influence is observed of con-
verged shear waves induced by the singular point r =1, z = 0, while the most
influence of this singularity is detected in the nearest vicinity of the edge
(curves for r =0.95,0.99 and 1.00). The action of reflected waves is qualita-
tively the same as in the case of a plane indenter head.
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Fig. 7. Conical and combined indenters vs. a layer: a) unbounded cone, curves corres-

pond to r=0,0.1,0.25,0.50,1.00,2.00 and 4.00 (these value are the same as in

Fig. 6a, b); b) cylindrical indenter with a conical head, curves correspond to
r=0,0.25,0.5,09, 0.95 099 and 1.00 (these value are the same as in Fig. 6¢c).

The last group of results (Figs. 8, 9) show stresses at the interface and
peculiarities of the motion pattern of plane face cylindrical punches of various
masses indented into a halfspace. The upper row of pictures in Fig. 8 (M =25,

5.0,10.0 ; the punch mass is normalized by value myR*®) shows normal stresses

c,,(r,0) at the interface vs. time; curves correspond to r =0, 0.5, 0.75, 0.9 and

0.95, while stresses ¢,,(1,0) are depicted in Fig. 9; curves correspond to M =
=1.0,2.5,5.0,10,100, .
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Fig. 8. Finite mass cylindrical indenters with a flat head vs. an elastic halfspace: nor-
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mal stresses c,,(r,0) vs. time, curves correspond to r=0,0.5,0.75 0.9 and 0.95
(upper row); drag F and punch indentation velocity V vs. time (lower row).



Drag F and punch indentation velocity V vs. time are depicted in the low
row of Fig. 8. The calculation process is restricted by time moment ¢ = t__, (M)
when an extension in interface z =0 is detected. In presented examples the
following values t_, are obtained: t_, =3.03 (M =25), t, =496 (M =5)
and t_, =9.36 (M =10).

At the process beginning (t = At in the discrete model) we, as expected,
obtain: o(r,0)=V =1, F=1. Once after that the o,(1,0)

e

ext

punch speed monotonically decreases up to the time ©
moment t_ =2(1-7) when shear waves radiated by '? 100
edge R =1 are detected in current section 7. In this o m

moment, a kink is appeared in curve o(r,0) resulting A B
in deceleration of stresses decreasing at the axis vici- 5]
nity and, vice versa, in stresses increasing at the edge 3 N
vicinity. In the latter, stresses reach the maximal va- 1= %
lue, which increases with M ; the drag is changed by ¢ 1 2 3 4 ¢
the similar way. Fig. 9

Finally we tentatively evaluate dimensional impact velocities correctly de-
termined by using linear theory of elasticity. Following to Fig. 9 we obtain ma-
ximal values of strains at interface z =0 : (¢_,),., ~ (2.5, 4,5.3,7.5,19) VO/cp.

1

Let ¢, =5000 m/s. Let also the linearity condition be violated if ¢, = 0.005.

Then to ensure that linear theory of elasticity is consistent, inequalities V|, <
<(3.3,6.9,9.9,613.4 and 21.1) m/s can be proved for M =100, 10, 5,2.5 and 1.0
correspondingly.

Obtained results can be summarized by the following conclusions:

e An analytical solution of the considered problem was built in the case
of blunt solid body indented with a constant velocity into an elastic layer.

e Numerical algorithms to problem solving have been designed on the
basis of the MDM technique. The computer solution allows step-wise cha-
racter of the wave process to be precisely revealed.

e Parametric analysis of the problem was conducted for a set of indenter
shapes and mass values. The emphasis is made to development of the stress
pattern in cases of singular shapes of the indenter head.
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YOAPHE BOABIIOBAHHA TBEPOOIO TINA B NMPYXXHUW LUAP.
OCECUMETPUYHA 3A0AYA

Poszasdaemuves ocecumempuura 3adaua npo HOpMmaibHe 80a8A108AHHSL MEepdo2o Mmind 8
wap 3 npyrHozo mamepiany. Tounuil anarimuuHul po3s’ 230k 3a0aui 00epHcaHo Y 6u-
nadky edasnrosanHns 13 3a0aH00 WEUOKICMIO 3amYynaenHozo tH0eHmopa, wo cynposoodrc-
yemuves 6azamokpamiumu 8i06ummanu reutsb 610 2panuyd wapy. Juceavnuil po3s’s-
30k 3a0aut Oas itH0enmopa 0oCmamHbo 3a2aAbHO20 8UAA0Y OMPUMAHO HA OCHO8L CNPO-
wenol modeal meopii mpyxcHocmi, 8 aAxill 30epiecaemuves 00He mepemiuenns Yy30o0edic
Hanpamky yoapy. 3acmocosarull A8HULU CKIHYeHHOPIZHUYe8UL ai20pumm 6a3yeEmbves Ha
MeXHIYL MIHIMIZAYLT Yuceabroi ducnepcii. Hage0eno ananaia Hanpysxicenozo cmany wapy
8 3anedxcHocmi 8i0 uacy, PopMmu NPOHUKAIOY020 Miaa T 1020 MACU.

YOAPHOE BOABNUBAHWUE TBEPAOIO TEJIA B YNIPYIUIA CITOWN.
OCECUMMETPUYHAA 3A0AYA

Paccmampuseaemces ocecummempuunas 3a0aua 0 HOPMAALHOM 8008AUBAHUU MEepd0zo
meaa 8 cA0U u3 ynpyzoeo mamepuara. Touroe anarumuueckKoe peulerue NOAYUeHo O0as
cayuas 60asAUBAHUA C 3a40AHHOU CKOPOCMBIO 3AMYNAEHH020 UHOEHMOopad, UMO COnpo-
802c0aemcs MHOZOKPAMHBLMU OMPAHCEHUAMU 80AH OM 2PAHUY CA0f. JucaenHoe pewte-
Hue 3adauu Oas undenmopa docmamourHo oduwezo uda noayueHo Ha 6asze YynpouweHHoU
Mmodeau meopuu Ynpyzocmu, coxrpansrowel 00HO mepemewjeHue 8004b HANPABAEHUS
yoapa. IIpumernennvlli 18HBIU KOHEUHO-PA3ZHOCMHDBLY aA20pUMM 6A3UPYEMCS HA MeLHU-
Ke MUHUMUIAYUU YUCAeHHOU Oucnepcuu. [Ipedcmasien aHAAU3 HAMPAHCEHHOZO COCMOS-
HUS CA05 8 3A8UCUMOCTU OM 8PeMeHU, POPMbL NPOHUKAIOULE20 Mead U e20 MACCHL.
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