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L. P. Plachta
ON NONPLANARITY OF CUBIC GRAPHS

A cubic graph is nonplanar if and only if it contains a subgraph homeomorphic to
K;;. For a given 2-connected cubic graph G, denoted by ed(G) the minimal

number of edges so that after removal them from G the resulting graph becomes
planar and g(G) the genus of G . Moreover, for a given simple graph G let cr(G)
denote the minimal number of crossings of edges needed to draw G on the plain
(so the minimum is taken over all submersions of G in the plane). In this paper,
we study relations between the characteristics ed(G) and g(G) and cr(G) for

some special classes of graphs and discuss the problems related with their
evaluation.

Introduction. There are known several important measures for the
nonplanarity of a graph G. We mention here the most important of them.
They are the minimum number of crossings in an embedding of G in the
plane, the minimum number of edges needed for removal from G in order to
obtain a planar subgraph, the minimum number of decomposition of edge set
of the graph into subsets of edges that produce planar subgraphs and the
genus. All they take an important role in the topological graph theory. The
corresponding decision and optimization problems for these invariants turn
out to be NP-complete [2, 3, 9, 11]. We review some relevant results on the
complexity of the problems mentioned above in more details.

In this paper we use standard definitions and notations for a graph and
its edge and vertex sets. The nonplanar edge deletion problem (ED) consists in
answering the following question. For a given graph G = (V,E) and a nonne-

gative integer k, does there exist a subset E' ¢ E such that the graph G =
=(V,E\ E') is planar and |E'| <k?If k is the smallest nonnegative integer,

such that there exists E' c E so that H=(V,E\ E) is planar and |E'|=k,
we shall say that H is a maximum planar subgraph of G. Following [5], the
corresponding problem of finding the minimum number of edges so that their
removal from G = (V,E) defines a planar graph will be denoted by MINED.
The maximization problem of finding the number of edges of a maximum
planar subgraph of a given graph G = (V,E) is denoted by MAXPS. In [9] it
was proved that ED is NP-complete. Faria et al. [2] proved that ED is NP-
complete for cubic graphs. Calinescu et al. [1] proved that MINED and

MAXPS are Max SNP-hard and exhibited a polynomial-time %—approxima—

tion algorithm for MAXPS for general graphs. Finally, Faria et al. [2] proved
that MINED is Max SNP-hard for cubic graphs. These results have been ex-
tended in [4, 5] by the same authors to the nonplanar vertex deletion problem
(VD) for the maximum degree 3 graphs. On the other hand, Thomassen [10]
proved that the following problem is NP-complete: given a cubic graph G
and a natural number g, is it possible to embed G into an orientable closed

surface of genus <g?
For a given graph G, denote by ed(G) the minimal number of edges

such that after their removal from G the resulting graph becomes planar,
and g(G) the genus of G. Moreover for a given simple graph G denote by

cr(G) the minimal numbers of crossings of edges needed to draw G on the
plain. Let ed(k) and g(k) denote the maximum of the numbers ed(G) and
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g(G), respectively, where both the maxima are taken over all 2-connected
cubic graphs of (even) order k. In this paper, we study relations between the
characteristics ed (G), ¢g(G) and cr(G) of a cubic graph G and speculate
about estimation of the functions ed (k) and g(k). Here we only formulate
some relevant results and outline their proofs.

1. Comparision. Note that 3-connected cubic planar graphs are dual of
triangulations of the sphere.

For any graph G we have obviously the following inequalities: g(G) <
<ed(G)<cr(G). When restricting to cubic graphs, we can naturally ask
whether the difference between ed(G) and g(G) can growth arbitrarily. The
answer to this question is affirmative.

Proposition 1. For an arbitrary natural number n > 0 there is a 3 -edge
connected cubic graph G of genus 1 with ed(G) >n.

P r o o f Fix a number n. Consider on the sphere S* a triangulation
H so that its dual graph G is simple, 3 -connected and with diam (G) being

enough big (for example with diam (G) > 6n). Consider in G two (n+1)-

faces, say s=e},...,e,,; and t=f,...,f ., so that d(s,t) > 6n—2. Pick on

each edge e, (f;) a new vertex x, (y;, respectively), where ¢=1,...,n+1,
and join each pair (x;,y;) by an edge. Denote the resulting graph by G'. It
is clear that g(G) =1. It is also not difficult to show that when an appropriate
choice of edges e and f has been made (they are sufficiently far from each

to other) and m +1 «parallel» edges are added as before, we shall obtain a
cubic graph G with ed (G) =n +1. We also use here the fact that the embed-

ding of a 3 -connected graph in a sphere S? or the plane is unique [6]. ¢
Given a cubic graph of the (even) order m, we have the following

obvious upper bound for the number ed (G): ed (G) < %n

By the girth of a simple graph we shall mean the length of its minimal
circle. The following proposition is an immediate consequence of definitions
the girth and the genus of a graph and the Euler formula for the cell
embedding of a graph in closed surface.

Proposition 2. Let G be a 2-connected simple cubic graph of order n
with the girth k. Then g(G) > - :;—Z + in +1.

To obtain simplest examples of 2-connected cubic graphs of genus
m >0 with minimal possible numbers m of wvertices, one can use the

construction illustrated in Fig. 1.

Fig. 1

For a given number r denote by [7] the biggest integer that is less or
equal to 7.

Let G,, be a graph obtained from m copies of the graph G =K;; by
joining them together as depicted in Fig. 1.
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Proposition 3. For each m the graph G, is 2-connected and g(G,,) = m.
Proof Since G, contains m disjoint copies of the graph G ho-
meomorphic to K;,, we have g(G,,) 2 m. On the other hand, deleting one
edge in each copy G of the graph G, , we can check that the resulting graph
G’ does not contain any copy of K;; and so is planar. It follows that
ed(G,,) =9(G,,)=m. ¢+
The latter example gives a lower bound for the number ed(k):
k

ed(k) =2 g(k) > [ 14[]41. This estimate is however very rough.

Consider now the graph H,, consisting of m «blocks» H depicted in

Fig. 2. These blocks are glued consequently each to other in such a way that
the latest block is joined with the first one and all they form a cycle. Each
block H contains exactly 27 edges. The total number of edges in the cubic
graph H_ is thus 27m.

Fig. 2
Proposition 4. For each m >3 the cubic graph H, is 3 -connected.
Moreover ed(H, )= m.

P r oo f Given any two different vertices v and w, we can directly
check that there exist exactly three paths in H,, that join these vertices and

have only their ends in common. On the other hand, it is not difficult to check
that one has to delete at least two edges in each block H of H,, to obtain the

graph that contains no subgraph homeomorphic to Kj ;. ¢

The latter gives the following lower bound for the number ed(k):
ed (k) > F%T However we do not know whether ed(H,, )=g(H,,).

By a snark we shall mean a cyclically 4 -edge-connected cubic graph G
with girth ¢g(G)>5 and with no 3-edge-colouring. An example of such a
graph is the well known Petersen graph P. It is known that the g(P) =1 and
the Petersen graph does not allow a polyhedral imbedding in any orientable
surface but has a polyhedral embedding in the projective plane [7]. In [8], the
authors study the Petersen powers P* of the graph P and their genus. The

Petersen power P* is defined inductively as P¥ = P.P*! via the dot product
of two graphs. This operation is denoted by «:» and indicated in Fig. 3
(passing from the cubic graph on left picture to the one on the right picture).

Fig. 3
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The dot product G, -G, of the graphs G, and G, is not defined

uniquely, so there are actually many copies of different graphs G, -G,. It

follows that there are many Petersen powers P" for each natural n > 2.
However it is known that if G, and G, are both snarks, then G, -G, is also a

snark. In [12], Vodopiviec constructed for each n >1 a Petersen power P" of
orientable genus 1. We denote it by V,_ . In Fig. 4 we indicate a version of

power P? introduced by Vodopiviec. This graph is embedded in a torus
represented by a rectangular with opposite sides glued together.

—_—
u
w
——_—
Fig. 4

It is natural to ask what is the number ed (P") in the case of Vodopiviec
version of Petersen powers P".

Proposition 5. For each n =1 the following equalities hold: ed(V,) =2
and cr(V,)=4n-2.

Proof A deletion of any edge in V, contains a subgraph
homeomorphic to K; ;. On the other hand, one can easy find two edges (for

example, the edges u and w in the graph indicated in Fig. 4) so that the
removal of them produces a graph H which is actually embedded in a
cylinder. It follows that H is planar and the first assertion follows. The second
equality follows by direct checking with using the fact that a 3-connected
planar graph contains a unique embedding in a plane and some information

about the crossing number of torus knots. The details are left to the reader. ¢

It follows that the graphs V, cannot serve good examples to estimate the
number ed(n). On the other hand, in [8], the authors constructed for each
pair of natural numbers k and n, where k<n and k,n >1, the Petersen

power P" with g(P") = k. Since the order of P" is 8n +2, we have the fol-

lowing lower bound for g(m): g(m) > rmT_2—| which is better than the one

given before. In this connection, it would be interesting to evaluate the num-
ber ed(P") for this version of Petersen powers P".

The further improvement of the results formulated above will be given
by using some topological arguments in the forthcoming paper.
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NPO HEMNAHAPHICTb KYBIYHUX TPA®IB

Kyb6iunui epag € nenaanaprum moodi i miavku moodi, Koau 8iH He micmumb nidepagia,
comeomopprux Kj. Jas 3adanozo 2-36asnozo kydiunozo epaga G mosnauumo uepes
ed(G) natimenwe wucao pedep 8 G, nicas 8UKUOAHHA AKUL OMPUMAEMO NAACHAPHUYU
nidzpag, a uepes g(G) — pid epaga G . Kpim mozo, uepes cr(G) nmosHauumo MiHIiMAAL-
He yucao (eaacmusux) nepemunie pebep zpagpa G ceped ycix 3aHypends (imepcii) epagpa
8 nmaowuri. Busuaromses cniegidnowenns mise xapaxmepucmukamu ed(G), cr(G) 1

9(G) Oaa Oeaxux cneyiaavrHux kaacig epagie i poseasdaemscs mpodaema ix obwuc-
NeHHSL.

O HENNAHAPHOCTU KYBUYECKUX TPA®OB

Kybuueckuill epag ssasemcs HenaaHaAPHbIM Mmoz20a U Moavko moz20a, Kozd0a OH He
codepocum nodepagos, zomeomopPrvir K, ,. Jas sadannozo 2-cessnozo xyduueckozo
epaga G ob6o3nayum uepes ed(G) naumenvwee yucao pedep 8 G, nocae 8bLOPACHIBAHUS
KOMOPbLL noayuaem naaHaprsil nodzpagd, a wepes g(G) — pod epaga G . Kpome mozo,
yepe3 cr(G) 0003HAUEHO MUHUMAABHOE UUCAO (COOCMBEHHbLY) NepeceueHuli pebep zpaga
G cpedu scex nozpydcenull (umepcuil) epaga 8 naockocmu. Vsyuaromes coomnowerHus

mexnc0y xapaxmepucmuxamu ed(G), cr(G) u g(G) 0Oaa HeKOMOPHIX CNEYUAALHBLYL
KAQCCO8 2PAPO8 U PACCMAMPUBALMCS NPOOACMA UX BLIUUCACHU.
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