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ON NONPLANARITY OF CUBIC GRAPHS 
 

A cubic graph is nonplanar if and only if it contains a subgraph homeomorphic to 

3,3K . For a given 2-connected cubic graph G , denoted by ( )ed G  the minimal 

number of edges so that after removal them from G  the resulting graph becomes 
planar and ( )g G  the genus of G . Moreover, for a given simple graph G  let ( )cr G  

denote the minimal number of crossings of edges needed to draw G  on the plain 
(so the minimum is taken over all submersions of G  in the plane). In this paper, 
we study relations between the characteristics ( )ed G  and ( )g G  and ( )cr G  for 
some special classes of graphs and discuss the problems related with their 
evaluation. 

 
Introduction. There are known several important measures for the 

nonplanarity of a graph G . We mention here the most important of them. 
They are the minimum number of crossings in an embedding of G  in the 
plane, the minimum number of edges needed for removal from G  in order to 
obtain a planar subgraph, the minimum number of decomposition of edge set 
of the graph into subsets of edges that produce planar subgraphs and the 
genus. All they take an important role in the topological graph theory. The 
corresponding decision and optimization problems for these invariants turn 
out to be NP-complete [2, 3, 9, 11]. We review some relevant results on the 
complexity of the problems mentioned above in more details. 

In this paper we use standard definitions and notations for a graph and 
its edge and vertex sets. The nonplanar edge deletion problem (ED) consists in 
answering the following question. For a given graph ( , )G V E=  and a nonne-

gative integer k , does there exist a subset E E′ ⊂  such that the graph G =  

( , \ )V E E′=  is planar and E k′ ≤ ? If k  is the smallest nonnegative integer, 

such that there exists E E′ ⊂  so that ( , \ )H V E E′=  is planar and E k′ = , 

we shall say that H  is a maximum planar subgraph of G . Following [5], the 
corresponding problem of finding the minimum number of edges so that their 
removal from ( , )G V E=  defines a planar graph will be denoted by MINED. 
The maximization problem of finding the number of edges of a maximum 
planar subgraph of a given graph ( , )G V E=  is denoted by MAXPS. In [9] it 
was proved that ED is NP-complete. Faria et al. [2] proved that ED is NP-
complete for cubic graphs. Calinescu et al. [1] proved that MINED and 

MAXPS are Max SNP-hard and exhibited a polynomial-time 4
9

-approxima-

tion algorithm for MAXPS for general graphs. Finally, Faria et al. [2] proved 
that MINED is Max SNP-hard for cubic graphs. These results have been ex-
tended in [4, 5] by the same authors to the nonplanar vertex deletion problem 
(VD) for the maximum degree 3  graphs. On the other hand, Thomassen [10] 
proved that the following problem is NP-complete: given a cubic graph G  
and a natural number g , is it possible to embed G  into an orientable closed 

surface of genus g≤ ? 

For a given graph G , denote by ( )ed G  the minimal number of edges 
such that after their removal from G  the resulting graph becomes planar, 
and ( )g G  the genus of G . Moreover for a given simple graph G  denote by 

( )cr G  the minimal numbers of crossings of edges needed to draw G  on the 

plain. Let ( )ed k  and ( )g k  denote the maximum of the numbers ( )ed G  and 
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( )g G , respectively, where both the maxima are taken over all 2-connected 

cubic graphs of (even) order k . In this paper, we study relations between the 
characteristics ( )ed G , ( )g G  and ( )cr G  of a cubic graph G  and speculate 

about estimation of the functions ( )ed k  and ( )g k . Here we only formulate 
some relevant results and outline their proofs. 

 1. Comparision. Note that 3-connected cubic planar graphs are dual of 
triangulations of the sphere. 

For any graph G  we have obviously the following inequalities: ( )g G ≤  

( ) ( )ed G cr G≤ ≤ . When restricting to cubic graphs, we can naturally ask 

whether the difference between ( )ed G  and ( )g G  can growth arbitrarily. The 
answer to this question is affirmative. 

Proposition 1. For an arbitrary natural number 0n >  there is a 3 -edge 
connected cubic graph G  of genus 1  with ( )ed G n> .  

P r o o f.  Fix a number n . Consider on the sphere 2S  a triangulation 
H  so that its dual graph G  is simple, 3 -connected and with diam ( )G  being 

enough big (for example with diam ( ) 6G n≥ ). Consider in G  two ( 1)n + -

faces, say 1 1, , ns e e += …  and 1 1, , nt f f += … , so that ( , ) 6 2d s t n≥ − . Pick on 

each edge ie  ( if ) a new vertex ix  ( iy , respectively), where 1, , 1i n= +… , 

and join each pair ( , )i ix y  by an edge. Denote the resulting graph by G′ . It 
is clear that ( ) 1g G = . It is also not difficult to show that when an appropriate 

choice of edges e  and f  has been made (they are sufficiently far from each 

to other) and 1n +  «parallel» edges are added as before, we shall obtain a 
cubic graph G  with ( ) 1ed G n= + . We also use here the fact that the embed-

ding of a 3 -connected graph in a sphere 2S  or the plane is unique [6].   

Given a cubic graph of the (even) order n , we have the following 

obvious upper bound for the number ( )ed G : 1( )
2

ed G n≤ . 

By the girth of a simple graph we shall mean the length of its minimal 
circle. The following proposition is an immediate consequence of definitions 
the girth and the genus of a graph and the Euler formula for the cell 
embedding of a graph in closed surface.  

Proposition 2. Let G  be a 2 -connected simple cubic graph of order n  

with the girth k . Then 3 1( ) 1
2 4
ng G n
k

≥ − + + .  

To obtain simplest examples of 2 -connected cubic graphs of genus 
> 0m  with minimal possible numbers n  of vertices, one can use the 

construction illustrated in Fig. 1. 

 

Fig. 1 

For a given number r  denote by r   the biggest integer that is less or 
equal to r .  

Let mG  be a graph obtained from m  copies of the graph 3,3G K=  by 

joining them together as depicted in Fig. 1. 



17 

Proposition 3. For each m  the graph mG  is 2 -connected and ( )mg G m= .  

P r o o f.  Since mG  contains m  disjoint copies of the graph G  ho-

meomorphic to 3,3K , we have ( )mg G m≥ . On the other hand, deleting one 

edge in each copy G  of the graph mG , we can check that the resulting graph 

G′  does not contain any copy of 3,3K  and so is planar. It follows that 

( ) ( )m med G g G m= = .   

The latter example gives a lower bound for the number ( ) :ed k  

4( ) ( )
10

ked k g k +≥ ≥   . This estimate is however very rough. 

Consider now the graph mH  consisting of m  «blocks» H  depicted in 

Fig. 2. These blocks are glued consequently each to other in such a way that 
the latest block is joined with the first one and all they form a cycle. Each 
block H  contains exactly 27 edges. The total number of edges in the cubic 
graph mH  is thus 27m . 

 
Fig. 2 

Proposition 4. For each 3m ≥  the cubic graph mH  is 3 -connected. 

Moreover ( )med H m≥ .  

P r o o f.  Given any two different vertices v  and w , we can directly 
check that there exist exactly three paths in mH  that join these vertices and 

have only their ends in common. On the other hand, it is not difficult to check 
that one has to delete at least two edges in each block H  of mH  to obtain the 

graph that contains no subgraph homeomorphic to 3,3K .   

The latter gives the following lower bound for the number ( )ed k : 

( )
9
ked k ≥   . However we do not know whether ( ) ( )m med H g H= . 

By a snark we shall mean a cyclically 4 -edge-connected cubic graph G  
with girth ( ) 5g G ≥  and with no 3-edge-colouring. An example of such a 

graph is the well known Petersen graph P . It is known that the ( ) 1g P =  and 
the Petersen graph does not allow a polyhedral imbedding in any orientable 
surface but has a polyhedral embedding in the projective plane [7]. In [8], the 

authors study the Petersen powers kP  of the graph P  and their genus. The 

Petersen power kP  is defined inductively as 1k kP P P −= ⋅  via the dot product 
of two graphs. This operation is denoted by « ⋅ » and indicated in Fig. 3 
(passing from the cubic graph on left picture to the one on the right picture). 

 
Fig. 3 
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The dot product 1 2G G⋅  of the graphs 1G  and 2G  is not defined 

uniquely, so there are actually many copies of different graphs 1 2G G⋅ . It 

follows that there are many Petersen powers nP  for each natural 2n ≥ . 
However it is known that if 1G  and 2G  are both snarks, then 1 2G G⋅  is also a 

snark. In [12], Vodopiviec constructed for each 1n ≥  a Petersen power nP  of 
orientable genus 1 . We denote it by nV . In Fig. 4 we indicate a version of 

power 3P  introduced by Vodopiviec. This graph is embedded in a torus 
represented by a rectangular with opposite sides glued together. 

 

Fig. 4 

It is natural to ask what is the number ( )ned P  in the case of Vodopiviec 

version of Petersen powers nP . 

Proposition 5. For each 1n ≥  the following equalities hold: ( ) 2ned V =  

and ( ) 4 2ncr V n= − .  

P r o o f.  A deletion of any edge in nV  contains a subgraph 

homeomorphic to 3,3K . On the other hand, one can easy find two edges (for 

example, the edges u  and w  in the graph indicated in Fig. 4) so that the 
removal of them produces a graph H  which is actually embedded in a 
cylinder. It follows that H  is planar and the first assertion follows. The second 
equality follows by direct checking with using the fact that a 3-connected 
planar graph contains a unique embedding in a plane and some information 

about the crossing number of torus knots. The details are left to the reader.   

It follows that the graphs nV  cannot serve good examples to estimate the 

number ( )ed n . On the other hand, in [8], the authors constructed for each 

pair of natural numbers k  and n , where k n≤  and , 1k n ≥ , the Petersen 

power nP  with ( )ng P k= . Since the order of nP  is 8 2n + , we have the fol-

lowing lower bound for ( )g m : 2( )
8

mg m −≥    which is better than the one 

given before. In this connection, it would be interesting to evaluate the num-

ber ( )ned P  for this version of Petersen powers nP . 

The further improvement of the results formulated above will be given 
by using some topological arguments in the forthcoming paper. 
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ПРО НЕПЛАНАРНІСТЬ КУБІЧНИХ ГРАФІВ  
 
Кубічний граф є непланарним тоді й тільки тоді, коли він не містить підграфів, 
гомеоморфних 3,3K . Для заданого 2-зв’язного кубічного графа G  позначимо через 

( )ed G  найменше число ребер в G , після викидання яких отримаємо планарний 

підграф, а через ( )g G  – рід графа G . Крім того, через ( )cr G  позначимо мінімаль-

не число (властивих) перетинів ребер графа G  серед усіх занурень (імерсій) графа 
в площині. Вивчаються співвідношення між характеристиками ( )ed G , ( )cr G  і 

( )g G  для деяких спеціальних класів графів і розглядається проблема їх обчис-
лення. 
 
О НЕПЛАНАРНОСТИ КУБИЧЕСКИХ ГРАФОВ 
 
Кубический граф является непланарным тогда и только тогда, когда он не 
содержит подграфов, гомеоморфных 3,3K . Для заданного 2-связного кубического 

графа G  обозначим через ( )ed G  наименьшее число ребер в G , после выбрасывания 

которых получаем планарный подграф, а через ( )g G  – род графа G . Кроме того, 

через ( )cr G  обозначено минимальное число (собственных) пересечений ребер графа 

G  среди всех погружений (имерсий) графа в плоскости. Изучаются соотношения 
между характеристиками ( )ed G , ( )cr G  и ( )g G  для некоторых специальных 
классов графов и рассматривается проблема их вычисления. 
 
Pidstryhach Inst. of Appl. Problems Received 
of Mech. and Math. NASU, L’viv, 28.04.11 
AGH Univ. of Sci. and Technol.,  
Сraсow, Poland 
 


