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ON THE FREDHOLM SOLVABILITY FOR A CLASS
OF MULTIDIMENSIONAL HYPERBOLIC PROBLEMS

We prove the Fredholm alternative for a class of two-dimensional first-order hy-
perbolic systems in the Shauder canonic form with periodic Dirichlet boundary
conditions. Our approach is based on a regularization via a right parametrix.

1 Introduction. The Fredholm property of linearizations plays the key
role in local investigations of nonlinear differential equations via the Implicit
Function Theorem and the Lyapunov — Schmidt reduction (see, e.g., [3, 4]). In
contrast to ODEs and parabolic PDEs almost nothing is known about the
Fredholm property for hyperbolic PDEs.

The Fredholm solvability for ODEs and many classes of parabolic PDEs
can be easily derived from the basic fact that Fredholm operators are exactly
compact perturbations of bijective operators. The hyperbolic case is much
more complicated. It is well known that the inverse of a first-order hyperbolic
operator decreases the smoothness. By this reason the Fredholm analysis of
hyperbolic problems requires establishing an optimal regularity relation be-
tween the spaces of solutions and right-hand sides of the differential equa-
tions and finding an appropriate regularization to compensate the loss-of-
smoothness effect.

In [7, 8] we presented a quite general approach to proving Fredholmness
for first-order one-dimensional hyperbolic PDEs. It is based on the construc-
tion of a right regularizer (right parametrix) and using a functional-analytic
criterion for Fredholmness in Banach spaces. The techniques of [7, 8] cover
the so-called traveling-wave models from laser dynamics. In the present pa-
per we extend this approach (applying completely different techniques) to a
class of multidimensional hyperbolic PDEs having the so-called Shauder cano-
nic form (see [1, 2]) and admitting an integral representation. Our results are
interesting from the theoretical point of view because the multidimensional
case is qualitatively different. We demonstrate a noteworthy effect that a
higher dimension requires more regularization for the inverse operator (see
Remark 2). Another interesting feature of the hyperbolic systems under consi-
deration is that the «lower order» terms are those terms contributing into the
system transversely to characteristic directions (c.f. the definition of the ope-
rator D in (11)). Note that well-posedness of initial-boundary problems for
multi-dimensional first-order hyperbolic PDEs in Shauder canonic form is
studied in [1, 2, 6, 9].

Specifically, we investigate a linear first-order two-dimensional hyperbo-
lic system of the kind

n n
Zaij(ociﬁtuj +0,u; + B0, u; +v,(x,y, u;) +Z b (x,y,t)u; =

j=1 j=1
= fi(a,y,1), i<n, (x,y,t)e(0,1)xRxR, (1)
supplemented with the periodic conditions in y and ¢
u;(x,y+Y,t+T)=u,(x,y,t), i<n, (x,y,t) €[0,1]x R xR, (2)
and the Dirichlet boundary conditions in x

u;(0,y,t) =0, i<k,  (y,t)eR?

u,(Ly,t)=0, k+1<i<n, (y,t)eR>. (3)
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Here the periods Y >0 and T >0 and the coefficients a,, o, #0, and B, #

i
# (0 are fixed real constants, the coefficients vy,, bij ([0,1]xRxR - R and
the right hand sides f; :[0,]]x RxR — R are known functions. Without loss
of generality, consider the case n >3 and 2<k <n-1. Fix an arbitrary { e
€ N in the range 1</ <k -1 and suppose that the matrix A = (aij)?’j:1 has

the following diagonal-block structure

A 0 0
A=|0 4, 0 | (4)
0 0 A

where A, A,, and A; are {x{, (k-{)x(k-{), and (n —k)x(n - k)-matri-
ces, respectively, while 0 denotes the null matrices of respective sizes. More-

over, the matrix B = (b;;);;_; is assumed to be one of the following two kinds:

0 0 B
B=|B, 0 0 (5)
0 By 0
or
0 B 0
B=|0 0 B, |, (6)
B, 0 0

3

where B, B,, B;, B, B,, and B, are, respectively, {x(n-k), (k—-{)x{,
nm-k)yx(k—-40), £Lx(k-¥¢), (k—{)x(n—-k), and (n—k)x £ -matrices. For defi-
niteness, we suppose (5) (the case of (6) is quite similar).

We investigate solvability of the problem (1)—(3) and state our result as a
Fredholm alternative. More precisely, we prove that the problem is solvable if
the right hand side is orthogonal to all solutions to the homogeneous adjoint
Ssystem

n n
zaji(_ o;0,u; —0,u; — B0, u; + yj(x,y,t)uj) + Zbﬁ(x,y,t)uj =0,
j=1 i=1
i<n, (x,y,t)e(0,1)xRxR, (7)
endowed with conditions (2) and (3).
We will work within the algebra CY’T([O,I] x R?) of continuous functions

which are Y -periodic in y and T -periodic in t. Let
W = (Cy (10,11 x R?))" (8)

denote the space of right-hand sides endowed with the usual max-norm and
let

Vz{ueW:ui((),y,t)zo for i<k, wu,(Ly,t)=0 for k+1<i<n,

j=1

n n
[Zaij(otiatuj + axuj + Biayuj)} eW for i< n} 9)
j=1

denote the space of solutions. Here u = (u,...,u,) and 6tuj, 6xuj, and ayuj

are generalized derivatives. The space V is endowed with the norm
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lully = lluly + (10)

n n
{Zaij((xiatuj + 6xuj + Biayuj)}
i=1 i=1lw
Note that the space V depends on the coefficients of system (1). Notice also
the continuous embedding
Cy 7 ([0,1]xR?) — V — Cy 1(10,1]x R?).

To state our result, let us introduce linear operators C e £(V;W) and
D e B(W) by

n

[Zalj(aiatui + axu]. + Biayuj + yi(x,y,t)uj)} ,

=1 i=1

Cu

-

n n
Du = [Zbij(x,y,t)uj] . (11)
j=1 i=1
The problem (1)—(3) can now be written as

Cu+Du=f.
In what follows, we also use notation

0, if b, =0 forall j<mn,
a; = !

o, otherwise,

~ [0, if bijEO for all j<mn,
i B; otherwise.

Theorem 1. Suppose that problem (1)—(3) satisfies the following assump-

tions:
v; € C((0,1),Cy 1 (R?)), b € Cy 7 ((0,1]x R?), (12)
det(a;)} -, #0 (13)
and
(B; —B,)@; — )~ (B; —B,)(@; —6;) =0 (14)

for all i,j,se{l,...,n} with 1<i<{, {+1<j<k, k+1<s<n unless b, =
=0 forall j<n. Let W and V be function spaces defined by (8), (9), and

(10). Let C € £(V;W) and D € £(W) be linear operators defined by (11). Then
the following is true:
(7) The operator C is an isomorphism from V onto W .
(i) The operator C + D 1is a Fredholm operator from V into W with
index zero.

Part (7) of the theorem is a necessary starting point of the Fredholm ana-
lysis. It shows that the couple of spaces (V,W) provides the desired optimal

regularity relation between the solutions and the right-hand sides of the
equations.

Remark 1. Since the set of Fredholm operators is open, the conclusion of

Theorem 1 survives under small perturbations in C((O,l),C;yT(Rz)) of the co-

efficients y, and in C;T([O,l]x R2) of the entries of B. Such perturbations

can modify the structure of matrix (5). Thus, the structure of (5) is not a ne-
cessary condition for the conclusion of the theorem (though it is essential for
our proof).
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In Section 2 we prove a criterion of Fredholmness for linear operators in
Banach spaces, which is useful, in particular, for hyperbolic PDEs. Section 3 is
devoted to the desired properties of the solution spaces. Our main result,
Theorem 1, is proved in Section 4.

2. Fredholmness criterion. Here we prove the following constructive
Fredholmness criterion:

Theorem 2. Let W be a Banach space, I be the identity in W, and K €
€ A(W) with K" being compact for some n € N. B Then I - K is a Fredholm
operator of index zero.

P r oo f Since

n-1
I-K"=(I-K)) K,
i=0
n-1
the sum z K' is a parametrix for the operator I - K € £(W). Therefore, the
i=0
Fredholmness of I — K follows, ie. from [11, Proposition 5.7.1] or [10, Theo-
rem 5.5]. Nevertheless, for the reader’s convenience here we give an indepen-
dent, simple, and self-contained proof (of this fact). Our proof extends the
argument that was used in [7] in the case n = 2. Note first that

dimker(I - K) < dimker(I - K") < o. (15)
Similarly dimker (I - K)* < o, hence codimm < . It remains to
show that Im (I — K) is closed.
Take a sequence (w;) W and an element w € W such that
(I- K)wj > w. (16)
We have to show that w e Im (I — K).
By (15) there exists a closed subspace V of W such that
W=ker(I-K)®V. 17
Consider the decomposition

w; =u; +v;, where ujeker(I—K) and v, eV.

From (16) we infer that
(I-Kypw; > w. (18)
Let us show that the sequence (v;) is bounded. Suppose this is not true.

Without loss of generality we can assume that

lim [ = . (19)
Jj—>®©
From (18) and (19) we get
(I—K)i—>0, (20)
[vi]
hence
(I—K”)i—>0. (21)
[,

Since K" is compact, there exist v € W and a subsequence (v].k Jeeny Such
that

Kt % 5. (22)
03]

25



The convergences (21) and (22) immediately imply that

v,
— —oveV. (23)
v
Combining (23) with (20), we get (I-K)v =0, ie. ve V[ 1ker(I-K) and
[v] = 1. This contradicts (17) and proves the boundedness of (v;).
Now we show that w e Im(I - K). As K" is compact, there exists v € W

and a subsequence (vjk) such that K"v]—k —> v as k —> w. By (18) we also

have
n-1 n-1
(I-K"); = > K'(I-Kjv; > > K'w.
i=0 i=0
Therefore,
n-1
. _ 1
Illl;lc}o v = Z Kw+o
=0
and

n-1
w = lim (I - K)v; =(I—K)(2Kiw+v)e1m(1—x)

k—o i=0

as desired. The Fredholm property is thereby proved.
To prove that I — K has index zero, we additionally use a homotopy ar-
gument. Let us consider the continuous function

seR—>I1-sKeB(W).

Since K" € A(W) is a compact operator, the operators (sK)" € £(W) are com-

pact for each s € R and, as we just proved, the operators I — sK are Fred-
holm. By [11, Proposition 5.8.1], ind (I — sK) = const for all s € R. It remains

to note that the identity operator I has index zero. 2 2

3. More about solution spaces. We now prove that V is a Banach space.
Lemma 1. The space V is complete.

Proof Let (u™),y beafundamental sequence in V. Then

™), N and [[Zaﬁ(ai@tu;ﬂ + 6xu;n + Bﬁyu;n )] ) .

7= i=1
are fundamental sequences in W . Due to the completeness of W, there exist
u,v € W such that
u™ > u
and
n n
[Z aij(ociétum +0,u™ + Biéyum)} —>v in W as m o o.
j=1 i=1

It remains to show that
n n
[Zaij(ociatuj +8xuj +[3¢8yuj)} =0
j=1 i=1

in the sense of generalized derivatives. Let (-,-): D" x D — R denote the
dual pairing. Then for all ¢,,...,¢, € D((0,1)x(0,Y)x(0,T)) we have
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i<ia”(aﬁ +0, +B,0 )u]’(P,>

i=1

= —ZZ% <uj’ (0,0, + 0, + Biay)(Pi> =
i=1j=1

n n

= —ZZ% lim <u;n’ (a;0, +0, + Biay)(Pi> =

i=lj=1 ~MD*®

n n n
= Z lim <Zai]’(aiat + ax + Biay)u;’nv (P1> = Z ’Ul, (p‘L
—] M—>® io1

as desired. ¢

4. Fredholm alternative (pr oo f of Theorem 1). To prove part (i) of
the theorem, it is sufficient to show that, given f € W, there exists a unique
u € V satisfying the system

n
Zal] ocau +0,u; +B,0 j+yi(ac,y,t)uj):fi(x,y,t), i<n, (24)
j=1

and the apriori estimate

lully < Clflly (25)

with a constant C independent of f and u. Rewrite (24) as

= fl(x1y7t) ’
E=x

(d§+yj{2a” u; (&y +PB;(E—x),t +a, (&~ x)}

i1<n.
Set

4, 0
(ot %)

Taking into account the structure of matrix A (assumptions (4)) and the non-
degenerateness of A (assumption (13)), system (24) has a unique solution in
V explicitly given by the formula

k x
i 0.0) = o 2 A" B Gy 0y Gy +
J= 0
+By(E— @)t + 0y - x)) e, isk,
1N a
w (@ 9.0 = G ];1 (A45) djE &z, 0f Gy +
+Bj(§—x),t+aj(&,—x))d§, k+1<i<m, (26)

where {(Afj)ad}i’j stands for the adjoint matrix to A, and
g
E;(&x,y,t) = eXp{Jl"i(éo;x,y,t)déo},
x

Ff(‘io;x,y,t) = Vi(é():y + Bi(‘tao —x),t+ ai(éo - x)). (27)
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It remains to prove (25). As a straightforward consequence of (26), we
have

”u”W < C"f"W’ (28)

where the constant C does not depend on f and wu. To derive (25) from (28),

it suffices to show that because u defined by (26) satisfies (1) in a distribu-
tional sense, then

n n
Zaij(aiatuj +0,u; +PB;0,u;) = —Zaijyi(x,y,t)uj + f;(x,y,t)
i=1 i=1

is a known continuous function for each 7 <n. To this end, notice that the
function I',(§; x,y,t) satisfies the equation (a0, + 0, + Biay)Fi =0 for almost

all € €(0,1). Now, fix 1<k (the case k+1<i<n is similar). Take ¢ €
€ O((0,1)x(0,Y)x(0,T)) and choose a C'([0,1]x [0, Y] x [0, T]) -sequence -
— f; in C([0,1]x[0,Y]x[0,T]) as m — . We have

<Zai].(aiat +0, +B,0,)u;, (p> =- <Zai].u]., (a0, + 0, + Biay)(p> =
j=1 i=1

= —<IEi(&;x,y,t)fi(é,y+Bi(&—x),t+ai(§—x))da,

0

(0,0, +0, + B,~6y)<p> =

m—>o0

= - lim <IE1»(<2; Y, OF" 6y + Bi(§ - x),t + oy (§ - x))dE,
0

(0,0, +0, + Biay)(\o> =

m-—>o0

x &
= lim <_"J-((xi8t +0, +B;0,)T;(Eg; 2, y,1) dEg x
0x
xE;(&x,y, 0)f" (& y +B;(E — x),t + 0; (€ — X)) dE, <p> +

+ lim <jEi(<i;x,y,t)(0t,0t +0, +B,0,)x
0

m—oo

Xfim(f';,y +B1(E_>_x)’t +0Li(f';—.x'))d§, (P>_
_<Yi(x’y7t)j Ei(&;;x7y1t)><

0
><fi(é,y+Bi(§—x),t+oci(§—x))d§, (P>+<fi’(P> =

= —<Zaijyi(ac,y,t)uj, (p>+<fi, o),

j=1

where the last equality holds by (26). The isomorphism property (Z) is thereby
proved.
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To prove part (iZ) of the theorem, note that C + D € £(V,W) is Fredholm
it I+DC™ e A(W) is Fredholm, where I is the identity in W . The proof will
be finished by setting K = -DC™' and applying Theorem 2 with n =3. We
only need to show that K® is compact.

Take a bounded set N « W and let M be its image under K*®. To show
that M is precompact in W, we use Arzela — Ascoli precompactness criterion
in C([0,1]x[0,Y]x[0,T]). As K® is a bounded operator on W, the set M is
uniformly bounded in W . It remains to check the equicontinuity property of
M in W. Given u e W, set & = DC'Du. Using the representation (24) for
C™, we get the following equalities:

if 1< /7, then

n n

1
~ _ 1 3 yad .
ui(xvyvt) - Z b”(‘r)yit) detA3 zl(Ar]) ‘{E‘r(é)x’yvt)x

j=k+1 r=k+
k
x 2 (b u)Ey+B.(E-2),t+a,E-x)dE,
q=0(+1

it /+1<i<k, then

4 4 x
_ 1
@, (x,y,t) = ) b (x,y,1) det A Al IEr(ﬁ; x,y,t) %
r=1 0

j=1

X Y (b, )&y + B — @), ¢+, (& -~ x))dE,

q=k+1

if k+1<i<n, then

k k x
~ 1
(., 1) = by (Y, 1) o A, ;I(Afj)ad [ERGERRIR
r={+ 0

j=0+1

4
X 3 (b, )&y + B, (€ —a),t +a, (& —x)) de.
q=1

Now, given f e W, let ﬁ:Clecflf. Note that for u defined by
the formulas above we have u :(Dcfl)gf. Furthermore, u is explicitely
given by:

if 1</, then

4 x
1 1 yad .
det Al ]Z:;(A]z) .[[E](EJ’ x1y7t) X

ﬁi(ﬂc,y,t) =

n

X Z bjr(E.ny +B]‘(E¢_x)’t + Otj(i—x))dix

r=k+1

n 1
1 a )
" det 4, q:%(Aé;) dlEq(al,é,ywj(a—x),t+aj<a—x))x

X fq(il,erBj(ﬁ—l’)Jr Bq(&l —§),t+0c].(§—x)+ aq(él —i))dﬁl,
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if /+1<1i<k, then

k x
— _ 1 2 yad .
u;(x,y,t) = det 4 j:;l(Aﬁ) {Ej(é,x,y,t)x

4

4
X 3 by, (&, + By — 2t + 0 (& — 2)) dE XAy ) x
e

= det A,

£
x [ By (58,4 +By(E—2),t + 0 (& — 2)) x
0

X (&Y +B(E—2) + By (&) —E),t+ o, (E— )+ oy (& ~ &) dE,,

if k+1<i<mn, then

n 1
= _ 1 3 \ad .
(Y0 = gy F%(Aﬁ) lEj(é,x,y,t)x
& 1 2 2 yad
* 2 by &y B E-m) tra G de g D (4g)" X
r=0+1 q=0+1

g
ijq(él;F;,y+[3j(<‘,—x),t+ocj(§—x))><
0

qu(il,erBj(i—x)Jqu(ﬁl —&),t+aj(§—x)+aq(§l —%))dil

To prove the desired equicontinuity property, we have to show the existence
of a function o : R, = R such that a(p) -0 as p - 0 and

[a(x + hy,y + hy,t + hy) — alx,y,t)| < alh]) (29)

uniformly in w e M and h = (h,hy,hy) € R®. To achieve (29) we transform

the expression for % to a convenient form. We make calculations only for one
summand contributing into % (similar argument works for all other sum-
mands as well), namely,

by (2,9, 0] E, (& 2, Y, )b, (&,y + B, (& — ), t + o, (§ — ) dE x

0
1

x [E, (&6 +B,(E—2),t + 0, (&= 2))x
<

xb, (&, Y +B,(E—2)+ B, (& —&),t+ 0, (E— )+, (& — &) dE, x
&

X [, (858 4 +B,(E—2)+B, (&) —E),t +a, (E—2)+ 0t (§ —E))x
0

X fn (o Yy + B (E =) + B (& =€) +B,, (&, — &),
t+o, (E-x)+a,E -8 +a,E -§))dE,  (30)

(note that this term is considered up to a multiplicative constant).
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Changing the order of integration, we have
x 1 & x & 1 1 1
[defde, [ de, = [de| [de,[de, + [de, [ de, | =
0 & 0 0 0 3 € 3

x x 1 x & 1 1 x 1
:jdézjdé_[dél +jdg2j dgjdgl +jdg2jdajd§1. (31)
0 & g 0 0 & x 0

Furthermore, we introduce new variables p and n (instead of & and &,) by

p=y-Bx+&B, —By)+ & B, =B,

nEt—ocrx+§(ocr—(xp)+§l(ocp—am). (32)
Owing to (5), the integers r, p, and m belong to three different sets
{1,...,¢}, {¢+1,...,k}, and {k+1,...,n}. On the account of (14), the mapping
(32) is therefore non-generate. Apply the mapping (32) to the plane (§,¢;)
and let A, denote the image of the triangle with vertices (§,,&,), (§,,1),
(x,1). Similarly, let A, denote the image of the triangle with vertices (0,0),
(0,1), (x,1) and IT be the image of the quadrangle with the vertices (0,¢&,),
(0,1), (&,,1), (&,,&,). By (31) and (32), the summand (30) transforms to

[ e, [[ F(a,y, 8,5, 1)y (B m) A +
oA

+ [ g, [[ Fla,y,t, 85,1,y (Eg, 1) O +
0 I1

1
+ jd§2 J‘J. F(x7 y’ t7 E_>27 Mi n)fm(EJ27 H,n) a“’ dn ’ (33)

x Ay
where F is a certain function of bij, brq, and bps. By assumption (12), F is
continuously differentiable in x, y, t. Our task is therefore reduced to obtai-
ning the estimate (29) with u replaced by (33). The latter is a straightforward
consequence of the fact that the lines bounding A,, A,, and Il depend line-

arly on x, y,t (due to the linearity of (32) in x, y, t). The proof is complete. ¢

Remark 2. Note that in the course of proving Theorem 1, we applied
Theorem 2 with m =3. This choice is essential: a simple analysis of our
argument shows that n =2 would mot work. This contrasts to the one-
dimensional hyperbolic case where n =2 makes the job (see [7, 8]). In general,
the structure of the regularizer of the problem depends on the number of
independent wvariables: for m -dimensional hyperbolic PDEs of kind (1) we
establish the Fredholm property if we regularize the problem by means of the

m .
right regularizer Z(DC"I)lC and apply Theorem 2 with n=m +1.
i=0
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NPO ®PEAIOJIbMOBY PO3B’A3HICTb OEAKOIO KIACY
BAFATOBUMIPHUX FNNEPBONIYHUX 3AO0AY

Jlogedeno aavmepHamugy Dpedzoavma 0aa xaacy 0808UMIPHUX 2iNePOOAIUHUX cucMmem
nepulozo nopaoxy 8 KaHoHiuHil gopmi Ilaydepa 3 neplodUUHUMU 2PAHULHUMU YMOBA-
mu [ipixne. B ocrogi nidxody aexcumds peeyaspusdayii 3a 0onomoz2ot0 npasgozo napa-
MEMPUKCY.

O ®PE[rONbMOBOW PA3PELLMMOCTU HEKOTOPOIO KNACCA
MHOIOMEPHbIX TMNMEPBONMYECKUX 3A0AY

Joxasana anvmepHamusa Dpedzoavma 0as xaacca 08YMepPHBLL 2UNEPOOAUUECKUX CUC-
mem nepsozo nopadxa 8 kanHoruueckol opme ILllaydepa ¢ nepuodurecKumu ePaHULHbL-
mu yeaosuamu Jupuxae. B ocnoge nodxoda sexrcum pezysspusayusi ¢ NOMOUHI0 NPasoo
napamempurca.
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