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DYNAMIC STRESSES DUE TO TIME-HARMONIC ELASTIC WAVE INCIDENCE
ON DOUBLY PERIODIC ARRAY OF PENNY-SHAPED CRACKS

The symmetric frequency-domain problem on the interaction effects in rectangular
lattice system of coplanar penny-shaped cracks located in an infinite elastic solid
is numerically investigated. The problem is reduced to a boundary integral equation
for the crack-opening-displacement in a wunit cell by means of 3D periodic
elastodynamic Green’s function. This function is adopted for the effective
calculation by its representation in the form of exponentially-convergent Fourier
integrals. A collocation method is used for the solution of the boundary integral
equation. Numerical results for the mode-I dynamic stress intensity factor in the
crack vicinities depending on the wave number and the lattice size are obtained
and analysed.

Introduction. Investigation of different kinds of periodic structures such
as phononic crystals, especially the elastic wave propagation in such struc-
tures, is of great importance because of their potential engineering applica-
tions [4, 8, 9]. In many cases periodic systems of cracks can act as the wave
scatterers in periodic structures with generation of specific wave patterns due
to their sharp edges. Previous known works, which take into account of the
presence of multiple cracks in 3D elastic wave field, are related to the si-
tuations with a few defects [2, 5, 6]. The reason lies in the computational dif-
ficulties of the corresponding large-scale problems. As was shown in 2D con-
figurations [7, 10], the models with periodically distributed cracks can simplify
the analysis, especially by the boundary integral equations (BIEs) method and
introducing effective Green’s functions to consider properly the dynamic in-
teractions between the infinite number of cracks.

There are usually two ways to deal with the periodic structures by the
BIEs method: one is that the BIEs are formulated in the unit cell according to
the wave equations and general Green’s functions, then the Bloch conditions
of periodicity are forced on the boundaries of the unit cell; the other is that
the Bloch conditions are first substituted into the wave equations, then the
BIEs are formulated based on the periodic Green’s functions. The first
approach has been successfully applied to compute band gaps of 2D phononic
crystals [4]. In the present work, the second approach, which does not demand
the BIEs formulation on the boundary of unit cell, is used for the analysis of
normally incident plane longitudinal elastic waves on doubly periodic array of
coplanar penny-shaped cracks.

1. Boundary integral equation formulation of the problem. Let us con-
sider an infinite elastic solid containing a doubly periodic rectangular lattice

array of coplanar penny-shaped cracks SMM) (m,n e Z) of the same radius a
in the plain a; = 0. The crack-surfaces are free of loads and their centres are
located on the parallel lines to Ox; axis with the periodic distance d; and on
the parallel lines to Ox, axis with the periodic distance d, (Fig. 1). The me-
chanical properties of the elastic solid are defined by the mass density p, the

shear modulus G and the Poisson’s ratio v. Here, only the symmetric time-
harmonic problem is considered, as a plane longitudinal elastic wave with the

circular frequency ® and the known constant stress amplitude 013% impinges
on the cracks from the direction Ox,.

The presence of multiple cracks in the solid leads to the superposed wave
field, in which the total displacements vector u(x) can be expressed as
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u(x) = u(x) + i i ul™ | (1)

m=—0 Nn=—0

(mn)(uﬁmn) (mn)

where u'™ is the displacement vector of the incident wave, u U
’ » 9 ’

ugm")) are unknown displacements of the scattered waves by the (mn)-th

crack, respectively. The governing equations for the displacement vector u(x)
are the well-known equations of motion [3]

k2V(V -u) - K’V x (Vxu) +u=0. (2)
Here, k; = (x)/cj, j=1,2, are the wave numbers, ¢, =4G/p and ¢, =

= ,/ 2(1-v)/(1-2v)c, are the transverse and longitudinal wave velocities, re-

spectively, V is a three-dimensional nabla operator. The radiation conditions
at the infinity are, of course, required.
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Fig. 1. Wave scattering by a doubly periodic array of penny-shaped cracks.

The boundary conditions on the crack-surfaces S™" are
045(x)=0, x¢€ S monelZ. (3)
From the above definition of the displacement vector u(m")(x) it follows that
(mn

the integral representations of its components u; ), 1=1,2,3, m,neZ, are

the same as in the case of an infinite homogeneous elastic solid with a single
crack [5]. Due to the symmetry of the problem they are given by

(mn), oy 0 2 (8 & ﬂ
U (X)——|:1+—(—+— X
! ox; ki \ox?  ox;
-n))
is, -
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where 3, is the Kronecker delta, |x —m| is the distance between the field

s(mn) |

point and the integration point, Augm”)(x) = [u(gm")_(x)—u(gmn)+(x)]/4n is the

crack-opening-displacement (COD) or the displacement jump across the
(mn) -th crack-surfaces in the x; direction.
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Then in accordance to the Hooke’s law, the normal stresses 0(3?") cor-

responding to the displacements (4) have the form

mn 4G 2 x mn exp (Zk |X - 11|)
GgS )(x) = _k.2 ZTj |: (‘U ) Aug )(n) J
S mn

ds } (5)
9 j=1 |X_T]| 1

In Eq. (5) T;‘ are the differential operators, which are given by
2 2 L2N\2 2 2 2 2
T = —(a—2+6—2+—2) , T = (6—2+a—2)(6—2+6—2+k22) (6)
ox?  oxi 2 Oxy Ox; /\0xi Oxj
According to the Bloch-theorem and the periodicity of the problem, the CODs
satisfy the following relation
Auémn)(gc1 +md, x, + nd) = Au,y(x;,x,), mmeZ, (7N

where Au, = Augoo) is the COD for the reference crack S = S" located in

the unit cell.
Following the boundary conditions (3) and the relations (1) and (5) we
obtain the BIE for the COD Au, in the form

: b-1 c—1
Géré(x)=‘;c—§jjAu3(n)[ >y R(r(m”))—L(x)}dSn, xeS. (8
2 S

m=-b+1ln=-c+1

Here, r™ = \/(.701 -y - moll)2 +(xy — My — nd2)2 , b, ¢ are arbitrary natural
numbers, the hypersingular (when m =n =0) kernel R(r(m")) describes the
interaction between the reference and the neighbouring cracks located in the
domains S™, —b+1<m<b-1, —c+1<n<c-1 and it is the same as for
a finite number of coplanar cracks in an infinite homogeneous solid [5]

R(r) = [9 = 9iler + (3 = 51 )r + il (2KE — ke + 3 (27 - kg)zrﬂ x

exp (ik;r)
X—

exp (ik,r)
s .

—[9 = 9ikyr — 4l3r? + dk)r’ | ———2— (9)
T T
The kernel L(x;,x,) in the BIE (8) describes the interaction of the reference

crack S with the rest cracks and can be written as the following lattice sums
which converge very slowly

o 2
Lz, x) = % YT [@™ (g, x,,x)]| (10)
m,n=-o j=1 3

where the double-dash over the summation indicates that the terms with
-b+1<m<b-1 and -c+1<n<c-1 are to be omitted, and the kernel

®™" is given by

exp (ikj\/(xl -, —md,)* + (2, — M, —ndy)* +23)

O™ (xy, 2y, X5) = . (11)

‘/("C1 - _mdl)z +(xy — My _nd2)2 +JC§

The sums (10) can be rewritten in a more convenient form by the Fourier
integral expressions. For this reason the following integral [1] is used
o T ‘/ﬁ
[ exp(iznH}(r{n? — ) dt = 2 eXp‘(/% =)
w0 ¥ +x

(12)
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where H" is the Hankel function of the first kind and the n-th order. Ac-

cording to Eq. (12) we can transform the kernel term (11) to a new integral
form, namely,

17 .
™" (2, 20y, 25) = 57 J. exp (facyt) x

—00

x HO( (2, 1, — md, 2 + (2 — ny —ndy)? k2 —¢2) de. (13)
Next steps are based on substituting the expression (13) into Eq. (10),
applying the Fourier integral transform to the kernel L(x;,x,) with respect

to x; and x, coordinates and performing the summation of the resulting

geometrical series having exp[—, g2 +t% — Ic]2] as the common ratio, where §

is the integral transform parameter. Then taking the inverse transform of the
resulting expressions and calculating analytically the corresponding integrals
by using the cylindrical coordinate system, and after taking derivatives (6) we
arrive at the following exponentially-convergent form of the kernel (10)

b-1 2 2
L(x;,x,) = z 22(62]‘_61 ) X
m=—b+1 (=1 j=1
frexe 10y —8,)(x, —ny) + cdy V()
) V,(0[1 - exp (- d,V,(1))]

X

><Qj(.7c1 -1, +md;,t)dt +
© 2 2
ERIPRHALY

]‘3 texp {—[(8y, —8;,)(x; —m;) +bd; |V, (1)}
1)1 - exp(—d,V;(1))]

X

ij(xz—n2+nd2,t)dr. (14)

Here, V].(r) = ,/ - Ic]2 (Im Vj <0), Sj/ is the Kronecker delta, J, (-) is the
Bessel function of the n -th order, and

2 2 9
Ql(T,T):JO(TT)(%—kf) +#(W)(__kzj 3T JZ(TT)’

3J,(tr)  Kk2J,(tr)
_ .2 2 _ %Yy
Q,(r,1) =1 ( 2 o )
The kernel L(x,,x,) can be understood as a periodic Green’s function of

the considered problem. The parameters b>2 and c =2 in the kernel (14)
are integers. Taking b and c¢ to be sufficiently large, one can improve the
convergence of the integrals. It should be mentioned also, that the integrand

in the kernel L(x,,x,) has singularities at the two points coinciding with the
roots of the functions V,(tr) and V,(1). Therefore, before the numerical
procedure, a regularization of the kernels R and L in the BIE (8) is needed.

3. Efficient numerical solution of the BIE. To determine explicitly the
singularities in the kernel R of BIE (8), this equation is identically trans-
formed to
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1-v in
G SEED

xesS, (15)

7-12v + 8v?2

Here, g =g 0y [x—nl=r

, the hypersingular and weakly singular
kernels are contained in the first and second integrals, respectively, and they
have the same form as in the static case. As a consequence, to describe the
appropriate local behavior of the solution at the crack-front correctly, the
following representation for the COD is used

Aug(x) = ,/a —x — xk ax), xedS, (16)

where o(x) is a new unknown function of sufficient smoothness. It is
important that the multiplicative square-root separation in the COD allows us
to compute the SIF accurately without using any special boundary elements
at the crack-front. With considering the ansatz (16) the singular integrals of
the BIE (15) are recast into the following forms, where the integrals on the
right-hand side are regular

[ 2 2 2
a -n Ny 2 1 2 Oda(x) 1 2 ﬁa(x)
——— = am)dS, =-ntux)- =T, —~ -1
H x -1 n 277 ox; 27 77 ox,
o* (x(x) d%a(x)

4a? —
[ a® xl 2] 1 8 x1 2 G 0, +

da(x)

2
T 2 2
+§[4a —31'1— 2] o 2

+ﬂ“ %[Mn amrwm—xo%%?—
da(x) _1 o*a(x)
““Z‘xz’an‘E(”l‘xf oot
62a(x) 1 9 62a(x)
—(ny =) _x2)axlax2 —5 (M — ) Toxt ds,, (17

2

_n?_n? 2
a -mn Ny _ T 2 2 2
” —|X ey a(n) dSn =T [2a° — x] — ay |a(x) +

+H“ IX nl N [o(m) - ()] dS, -
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Concerning the improper integrals in the kernel L of the BIE (8), they
are regularized by the subtraction technique with the analytical evaluation of
the special regularizing integrals and taking into account the following behav-

iour of the contained expressions in the vicinities of peculiar points © =k :

;
1 1
1-exp(-dV;(1)) dV;(1) '

By the implementation of the above mentioned regularization techniques
to the BIE (15) its regular analogue is obtained, which is suitable for the
numerical solution. To this end, a collocation method is used to obtain a well-
conditioned system of linear algebraic equations.

After the numerical solution of the BIE (8) or (15), the dynamic stress
intensity factor (SIF) in the crack-front vicinity can be computed. In our case
only the mode-I SIF K; is present and can be easily determined from the

relation

(18)

K, (¢) = -260/ma .

T xesS, (19)

=-asin ¢ ’
9 =acos @
where ¢ is the angular coordinate of the crack-front point (see Fig. 1).
4. Numerical results. Numerical computations have been carried out for
a doubly periodic array of penny-shaped cracks with a square lattice and
different lengths of periodicity or distances between the cracks d, =d, =d.
The Poisson’s ratio of the elastic solid has been taken as v =0.3. The static

SIF K;'= 20%%\/% has been chosen as a normalization factor for the
dynamic mode-I SIF, i.e. K; = |K;|/K;".

In the calculation the crack-surface has been discretized into 217 con-
stant boundary elements with Ar = 0.la in the radial direction and A = /12
in the polar coordinate direction. The convergence controlling parameters in
the kernel L(x,,x,) have been selected as b = ¢ = 3, and the truncation para-
meters for the sum (14) as p =25 and for the integral in Eq. (14) as 7., =
=16¢,/a .

Fig. 2 illustrates the variations of the normalized mode-I dynamic SIF
with the dimensionless wave number at the two representative crack-front
points with the angular coordinates ¢ =0 (Fig. 2a) and ¢ =n/4 (Fig. 2b),

which describe the location along the sides and diagonal of the lattice, re-
spectively. The curves correspond to the following lengths of periodicity:
d=21la, 2.2a, and d =2.3a; and the marked curve corresponds to the SIF
for a single crack subjected to the same wave loading.
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Fig. 2. Normalized mode-I dynamic SIF versus the wave number.
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An essential contrast in the behaviour of the K;-factor versus the wave
number for a single crack and multiple cracks can be found in Fig. 2. Periodic

cracks lead to fast changing I?I -factor in comparison with the more smooth

dependence of the KI -factor for a single crack. This fact confirms the res-

onant interaction in the periodic system of closely located cracks on the wave
field. At low frequencies, the dynamic SIF for interacting multiple cracks is
larger than that for a single crack, and after reaching a peak value a rapid

decrease and a reduction of the K;-factor compared to that for a single crack

are observed. These effects are more pronounced as the crack distance be-
comes smaller in the directions of the periodicity. The wave numbers, at

which the peaks of the I_{I -factor are achieved, are much smaller in the case

of periodic cracks.

The present numerical method provides an efficient way for the analysis
of cracked solids with more complicated periodic microstructures, including
doubly periodic cracks with non-circular shapes and non-orthogonal lattices,
multiple layers of doubly periodic cracks, partially disordered periodic systems
of cracks, etc. Special attention should be paid in future to the wave reflection
and transmission phenomena to analyze band gaps and resonances of elastic
waves in such structures.
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AWHAMIYHI HANPYXEHHSA 3A NALIHHA MPYXXHOI FAPMOHIYHOI XBUJI HA
OBOMNEPIOANYHUN MACUB OUCKOBUX TPILWWH

YV wacmomuiti 06aacmi 4ucao8o po3s’s3aH0 cumempuury 3adauy npo OUHAMIUHY 63ae-
MO0 Y NPAMOKYMHO-2PAMEKOBIL cUCmMemi KOMNAAHAPHULX OUCKOBUX MPIUUH, PO3MI-
wenux Yy 6eamexncHomMy npyxcHomy miai. 3adauy 38edeno 00 2PAHUUHO0 THME2PALLHO20
PIBHAHHA 8IOHOCHO PYHKYIL OUHAMIUHOZO0 POZKPUMMS MPIWUHU 8 YHIMAPHIT KOMIPYL
30 Aonomoz010 MPUBUMIPHOT nepioduunoi Pymryii I pina. o Pynryio adanmosarno do
eheKxmugHo20 PO3PAXYHKY uepe3 il NO0aAHHA Y POPML eKCNOHEHYIAALHO 30THCHUX THMee-
paaie dyp’e. Ins po3s’a3aHHA 2PAHULHOZ0 THMEZPAAbHO20 PIBHAHHA BUKOPUCTAHO HUC-
a08Y cxemy memoly Koaokayil. [Jas PisHUX PO3MIPI8 KOMIPKU BCTMAHOBAEHO 3AAEMHC-
HOCMIT KoehiyieHma THMeHCUBHOCME OUHAMIYHUX HANPYHCeHb 810PUBY 8 0KOAT MPIWUH
810 X8uUAb08020 YUCAA.

AWHAMWYECKUE HANPSXEHUA MPU NAOEHUN YNPYrO rAPMOHUYECKOW BOJHbI HA
AOBYXNEPUOOUYECKUN MACCHUB OUCKOBbIX TPELLUH

B uwacmommoti obaacmu YUCAEGHHO peweHa cummempuinas 3adaua o OuHaMUYeCKOM
e3aumodeticmeul 8 MNPAMOY20ALHO-PEUEMOUHOU cucmeme KOMNAGHAPHBLL OUCKOBBLL
mpewunr, PacnoLoNeHHbLX 8 beckoneunom Yynpyzom meane. 3adaua ceedena K 2PAHUU-
HOMY UHMEZPAALHOMY YPABHEHUNO OMHOCUMEIbHO PYHKYUU OUHAMULECKO20 DPACKPbL-
MU MPeWUHbL 8 YHUMAPHOU Auelike C NOMOWDIO MPexrmePpHOU nepuodureckol HyHK-
yuu I'puna. Ima Pynryus adanmuposana K P@Pexmusnsvim pacueman uepes npeo-
cmasaetue ee 8 opme IKCNOHEHYUALLHO crodawuxcs unmezparos Pypve. Jas pewe-
HUSL 2PAHUUHOZ0 UHMEZPAALHO20 YPAEHEHUS UCNOAB308AHA UUCACHHAS CXemd memoda
Koaroxayul. Jas pasHsvle pasmepos AuelKu YCMAHOBAEHDBL 3A8UCUMOCTIU KOIPPHPUYUEH-
ma UHMEeHCUBHOCTU OUHAMUUECKUT HANPANCEHUL OMPbLEA 8 OKPecmHOCMU MPewuH
0m 80AH08020 HUCAA.
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