UDC 51253 Dedicated to the memory of
Magdalena von Gétting
0. V. Gutik', K. P. Pavlyk®

PSEUDOCOMPACT PRIMITIVE TOPOLOGICAL INVERSE SEMIGROUPS

In the paper we study pseudocompact primitive topological inverse semigroups. We
describe the structure of pseudocompact primitive topological inverse semigroups
and show that the Tychonoff product of a family of pseudocompact primitive
topological inverse semigroups is a pseudocompact topological space. Also we prove
that the Stone — Cech compactification of a pseudocompact primitive topological
inverse semigroup is a compact primitive topological inverse semigroup.

Introduction and preliminaries. Further we shall follow the terminology
of [3—5, 9, 20]. The set of positive integers is denoted by N.

A semigroup is a non-empty set with a binary associative operation. A
semigroup S is called inverse if for any x € .S there exists a unique y e S

such that x-y-x=a and y-x-y=y. Such an element y in S is called

1

inverse of x and denoted by x . The map defined on an inverse semigroup

S which assigns to element x of S its inverse x ! is called the inversion.
If S is a semigroup, then by E(S) we denote the subset of idempotents

of S, and by st (respectively, S") we denote the semigroup S with the
adjoined unit (respectively, zero). Also if a semigroup S has zero 0Og, then for
any Ac S we denote A" = A\ {04}.

If E is a semilattice, then the semilattice operation on E determines the
partial order < on E:

e<f if and only if ef = fe=e.

This order is called natural. An element e of a partially ordered set X is
called minimal if f <e implies f =e for f € X. An idempotent e of a semi-
group S without zero (with zero) is called primitive if e is a minimal element
in E(S) (in (E(S))").

Let S be a semigroup with zero and A be a cardinal >1. On the set
B, (S) = (A xS x 1)U {0} we define the semigroup operation as follows

(a’)ab)s)’ B = ’Y?
0, B=v,
and (a,a,B)-0=0-(a,a,)=0-0=0, for all ao,B,y,60€ A and a,be S.If S=

(0"0'1[3) : (Y7b’8) = {

= S' then the semigroup B, (S) is called the Brandt A-extension of the
semigroup S [12]. Obviously, J ={0}U{(a,0,B)| O is the zero of S} is an
ideal of B, (S). We put B;(S) = B,(S)/J and we shall call B}(S) the Brandt
A" —extension of the semigroup S with zero [13]. Further, if A < .S then we
shall denote Aa’ﬁ ={(a,s,B):se A} if A does not contain zero, and Aa,B =
={(a,s,B):se A\{0}}U{0} if 0 A, for o,Ber. If T is a trivial semi-
group (i. e, Z contains only one element), then by 7 % we denote the semi-
group Z with the adjoined zero. Obviously, for any A > 2 the Brandt A —ex-
tension of the semigroup 7 0 s isomorphic to the semigroup of A x A -matrix

units and any Brandt A’-extension of a semigroup with zero contains the
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semigroup of A xA-matrix units. Further by B, we shall denote the se-
migroup of A xA-matrix units and by Bg(l) the subsemigroup of A xA-ma-

trix units of the Brandt A’-extension of a monoid S with zero. A completely
0 -simple inverse semigroup is called a Brandt semigroup [20]. By Theorem
I1.3.5 [20], a semigroup S is a Brandt semigroup if and only if S is isomor-
phic to a Brandt A -extension B, (G) of some group G.

Let {S; :i € 4} be a disjoint family of semigroups with zero such that 0,
is zero in S, for any ieg. We put S={0}U{S;:ie 4}, where 0¢

¢ U{S] :i € 4}, and define a semigroup operation on S in the following way

’ st, if st e S: for some i€ 9,
s-t=
0, otherwise.

The semigroup S with such defined operation is called the orthogonal sum of
the family of semigroups {S,:i€ 4} and in this case we shall write
S=>5;.

ied

A non-trivial inverse semigroup is called a primitive inverse semigroup if
all its non-zero idempotents are primitive [20]. A semigroup S is a primitive
inverse semigroup if and only if S is the orthogonal sum of a family of
Brandt semigroups [20, Theorem II.4.3]. We shall call a Brandt subsemigroup
T of a primitive inverse semigroup S maximal if every Brandt subsemi-
group of S which contains T, coincides with T.

Green’s relations ¥, # and .# on a semigroup S are defined by:

ayb  if and only if  {a}USa ={b}USb,
azb if and only if  {a}UaS ={b}UDbS,

H=F$NR,
for a,b € S. For details about Green’s relations see [5, § 2.1] or [11]. We ob-
serve that two non-zero elements (a4,s,;) and (a,,t,,) of a Brandt semi-
group B, (G), s,teG, ay,0,,B,B, €A, are J -equivalent if and only if
o, =a, and B; =B, (see [20, p. 93]).
In this paper all topological spaces are Hausdorff. If Y is a subspace of a
topological space X and A c Y, then by cly(A) we denote the topological

closure of A in Y.
We recall that a topological space X is said to be
e compact if each open cover of X has a finite subcover;
e countably compact if each open countable cover of X has a finite
subcover;
o pseudocompact if each locally finite open cover of X is finite.
According to Theorem 3.10.22 of [9], a Tychonoff topological space X is
pseudocompact if and only if each continuous real-valued function on X is
bounded. Also, a Hausdorff topological space X is pseudocompact if and only
if every locally finite family of non-empty open subsets of X is finite. Every
compact space and every countably compact space are pseudocompact (see [9]).
We recall that the Stone — Cech compactification of a Tychonoff space X
is a compact Hausdorff space BX containing X as a dense subspace so that

each continuous map f:X — Y to a compact Hausdorff space Y extends to
a continuous map ]7 BX > Y [9]
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A topological semigroup is a Hausdorff topological space with a con-
tinuous semigroup operation. A topological semigroup which is an inverse
semigroup is called an inverse topological semigroup. A topological inverse se-
migroup is an inverse topological semigroup with continuous inversion. A to-
pological group is a topological space with a continuous group operation and
inversion. We observe that the inversion on a topological inverse semigroup is
a homeomorphism (see [8, Proposition II.1]). A Hausdorff topology t on a
(inverse) semigroup S is called (inverse) semigroup topology if (S,t) is a
topological (inverse) semigroup.

Definition 1 [12]. Let T&® be some category of topological semigroups.
Let A be a cardinal >1 and (S5,1) € ObTG&® be a topological monoid. Let 20
be a topology on B, (S) such that

(@) (B, (S),15) € ObTEH;

(b) for some o € A the topological subspace (Sa’a,rB

) is naturally

o,a

S
homeomorphic to (S,1).
Then (B, (S),15) is called a topological Brandt A -extension of (S,t) in TGS .
Definition 2 [13]. Let TG, be some category of topological semigroups
with zero. Let A be a cardinal 21 and (S,7) € ObT&&,. Let 15 be a topo-
logy on BQ(S) such that

(@) (BY(S),15) € ObTGB,;

(b) for some o € A the topological subspace (Sow,rB s

oy

) is naturally

homeomorphic to (S,1).

Then (BQ(S),TB) is called a topological Brandt A0 -extension of (S,1) in TGYE,.

We observe that for any topological Brandt A-extension B, (S) of a topo-
logical semigroup S in the category of topological semigroups there exist a
topological monoid T with zero and a topological Brandt 1" -extension BR(T)
of T in the category of topological semigroups with zero, such that the semi-
groups B, (S) and BR(T) are topologically isomorphic. Algebraic properties of
Brandt A’-extensions of monoids with zero, non-trivial homomorphisms be-
tween them, and a category which objects are ingredients of the construction

of such extensions were described in [17]. Also, in [14] and [17] a category
which objects are ingredients in the constructions of finite (respectively, com-
pact, countably compact) topological Brandt A’-extensions of topological
monoids with zeros was described.

Gutik and Repovs [16] proved that any 0 -simple countably compact to-
pological inverse semigroup is topologically isomorphic to a topological Brandt
L -extension B, (H) of a countably compact topological group H in the cate-
gory of topological inverse semigroups for some finite cardinal A >1. Also,
every 0 -simple pseudocompact topological inverse semigroup is topologically
isomorphic to a topological Brandt A-extension B, (H) of a pseudocompact
topological group H in the category of topological inverse semigroups for
some finite cardinal A > 1 [15]. Next Gutik and Repovs showed in [16] that the
Stone — Cech compactification B(T) of a 0 -simple countably compact topolo-
gical inverse semigroup T is a 0 -simple compact topological inverse semi-

group. It was proved in [15] that the same is true in the case of 0 -simple
pseudocompact topological inverse semigroups.



In the paper [2] the structure of compact and countably compact primi-
tive topological inverse semigroups was described and showed that any count-
ably compact primitive topological inverse semigroup embeds into a compact
primitive topological inverse semigroup.

In this paper we describe the structure of pseudocompact primitive topo-
logical inverse semigroups and show that the Tychonoff product of a family
of pseudocompact primitive topological inverse semigroups is a pseudocompact
topological space. Also we prove that the Stone — Cech compactification of a
pseudocompact primitive topological inverse semigroup is a compact primitive
topological inverse semigroup.

1. Primitive pseudocompact topological inverse semigroups.

Proposition 1. Let S be a Hausdorff pseudocompact primitive topological
inverse semigroup and S be an orthogonal sum of the family {BM (G)}iey of

topological Brandt semigroups with zeros, i.e. S = ZBM (G;). Then the fol-
ied
lowing statements hold:
(@) every nmon-zero idempotent of S is an isolated point in E(S) and E(S)
18 a compact semilattice;
(12) every mon-zero J -class in S 1is a pseudocompact closed-and-open
subset of S;
(227) every maximal subgroup in S s a pseudocompact subspace of S ;
(tv) every maximal Brandt subsemigroup of S is a pseudocompact space
and has finitely many idempotents.

P r o o f. (7). First part of the statement follows from Lemma 7 [2]. Then
the continuity of the semigroup operation and inversion in S implies that the
map ¢:S — E(S) defined by the formula e¢(x)= x-x' is continuous and
hence by Theorem 3.10.24 [9], E(S) is a pseudocompact subspace of S such
that every non-zero idempotent in E(S) is an isolated point. Therefore E(S)
is compact. Otherwise there exists an open neighbourhood U(0) of the zero 0
of S in E(S) such that the set E(S)\ U(0) is infinite. But this contradicts the
pseudocompactness of E(S).

(i1). By Corollary 8 from [2] every non-zero .J -class in S is a closed-
and-open subset of S and hence by Exercise 3.10.F(d) is pseudocompact.
Statement (ii7) follows from (7).

(iv). Let B, (G;) be a maximal Brandt subsemigroup of the semigroup S.
Then statement (7) implies that E(S) is compact and since every non-zero
idempotent of S is an isolated point of E(S) we conclude that E(B, (G,)) is

compact for every i € .9. By Corollary 3.10.27 of [9] the product of a compact
space and a pseudocompact space is a pseudocompact space, and hence we

have that the space E(B, (G;))x S is pseudocompact. Since S is a primitive
inverse semigroup we conclude that B, (G;) = E(B, (G;)) xS . Now, the conti-
nuity of the semigroup operation in S implies that the map f: E(B, (G;))x

xS — S defined by the formula f(e,s) = e-s is continuous, and since the con-
tinuous image of a pseudocompact space is pseudocompact we conclude that
B, (G,) is pseudocompact. The last statement follows from Theorem 1 of [15]. 4

Lemma 1. Let U be an open non-empty subset of a topological group G
and A be a dense subset of G. Then A-U=U-A=G.

P r o o f. Since G is a topological group we have that there exists a non-

empty open subset V of G such that V1 =U.Let x be an arbitrary point
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of G. Then x-V is a nonempty open subset of G, because translations in
every topological group are homeomorphisms. Then we have that x-V [ A #
#@ and hence x € A-V'=A.U. Therefore we get that G < A-U. The
converse inclusion is trivial Hence A-U =G. The proof of the equality
U-A=G is similar. ¢

Lemma 2. Let A > 2 be any cardinal and U be an open non-empty subset
of a topological inverse Brandt semigroup B, (G) such that U # {0}. Then
A-U-A=B,(G) for every dense subset A of B, (G).

Pr oo f By Lemma 7 [2] we have that every non-zero idempotent of
the topological inverse semigroup B, (G) is an isolated point in E(B, (G)). The
continuity of the semigroup operation and inversion in S implies that the
map e¢:S — E(S) defined by the formula e(x) = x-x' is continuous and
hence Ga,B is an open-and-closed subset of B, (G) for all a,B € A. Since A is

a dense subset of B, (G) we conclude that A} Ga,B is a dense subset in Ga,B

for all o, € A. Also, since A >2 we have that 0 € A-U - A. This implies that
it is sufficient to show that G,5; c A-U-A for all o,Ben.

Since Ga,B is an open subset of B, (G) for all o, €A, without loss of

generality we assume that U < G%’BO for some o,B, €r,ie, U=V for

LOE
some open subset V < G. Fix arbitrary o,p € A. Then there exists subsets

L,R G such that A Goay = Log, and A N Gg,p = B, p- It is obviously
that L, , and Ry 5 are dense subsets of G,, and Gy 5, respectively. This
implies that L and R are dense subsets of G. Then by Lemma 1 we have
that
GOL,B = (L : V : R)ayﬁ = L(X,OLO : VOto,B() ’ RB(),B =
:(AﬂGa7a0)~U~(AﬂGﬁ0,ﬁ)g A-U-A.

This completes the proof of the lemma. ¢

Lemma 1 implies the following

Proposition 2. Let U be an open non-empty subset of a topological
inverse Brandt semigroup B;(G) such that U # {0}. Then for every dense
subset A of B,(G) the following statements hold:

(7)) A-U-A=B|(G) in the case when 0 s an isolated point in B,(G);

(i) (AU{0})-U-(AU{0}) = B|(G) in the case when 0 is a mon-isolated

point in B (G).
Lemma 2 and Proposition 2 imply the following

Proposition 3. Let S be a Hausdorff primitive inverse topological semi-
group such that S be an orthogonal sum of the family {B, (G,)},., of topolo-

gical Brandt semigroups with zeros. Let |.¢ | >1 and U be an open non-empty
subset of S such that (UN B, (G,)\{0} # D forany ic 9. Then A-U-A=S
1

for every dense subset A of S .
Remark 1. Since by Theorem I1.4.3 of [20] a primitive inverse semigroup
S is an orthogonal sum of a family of Brandt semigroups, i.e, S 1is an
orthogonal sum ZBM (G;) of Brandt A, -extensions B, (G;) of groups G,
ied
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we have that Proposition 12 from [2] describes a base of the topology at any
non-zero element of S.

Later by TJ6® we denote the category of topological inverse semi-
groups, where Ob%TJG66 are all topological inverse semigroups and
Mor TJ6® are homomorphisms between topological inverse semigroups.

The following theorem describes the structure of primitive pseudocom-
pact topological inverse semigroups.

Theorem 1. Every primitive Hausdorff pseudocompact topological inverse
semigroup S 1is topologically isomorphic to the orthogonal sum ZB;\V(GJ of

i
ied

topological Brandt A, -extensions B, (G,) of pseudocompact topological groups

G, in the category TIG® for some finite cardinals A, >1. Moreover the
family
$(0) = {S\(Bxi (Gil) U...u Bxi (Gin))* Dy i, €9, ne N}, (1)

determines a base of the topology at zero 0 of S .

P r oo f. By Theorem I14.3 of [20] the semigroup S is an orthogonal
sum of Brandt semigroups and hence S is isomorphic to the orthogonal sum
ZBN(Gi) of Brandt A, -extensions B, (G;) of groups G,. We fix any i, € J.
ied
Since S 1is a topological inverse semigroup, Proposition I1.2 [8] implies that
B, (Gio) is a topological inverse semigroup. By Proposition 1, B, (Gio) is a

) L)

pseudocompact topological Brandt A, -extension of pseudocompact topological

group G, in the category TJG® for some finite cardinal A, >1. This com-
’LO )

pletes the proof of the first assertion of the theorem.
The second statement of the theorem is trivial in the case when the set of
indices 4 is finite. Therefore henceforth we assume that the set .# is infinite.
Suppose on the contrary that #(0) is not a base at zero 0 of S. Then,

there exists an open neighbourhood U(0) of zero 0 such that U()U
U(B;Li1 (Gi1)U"'UBMn (Gin )" #S for finitely many indices iy,...,1, € 9. Let

V(0)cU(0) be an open neighbourhood of 0 in S such that V(0)-V(0)- V(0)c
c U(0). Then we have that V(0)U (B, (GiI)U-“UBn (G, )" #S. We state
7y iy n

that there exist a sequence of distinct points {x, },_y of the semigroup S

and a sequence of open subsets {U(x))},.y 0of S such that the following
conditions hold:

(B a, eUlxy) B’»ik (G, ) forsome 1, €9,

U
(@) if a3, € Bxik (G, ) forsome 4 €., then k =ky;
@i1) U U(x,) < S\ V(0).

keN
Otherwise we have that V(0) is a dense subset of the subspace

§'=S\UB, (G,)U...UB, (G,),

for some positive integer n. Since S’ with induced operation from S is a
primitive inverse semigroup Proposition 3 implies that V(0)-V(0)-V(0)= S’
which opposes the choice of the neighbourhood U(0). The obtained contra-
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diction implies that there exists finitely many indices 1i,...,%,,...,1, €4

where m > n such that
U)U (BM‘I (Gi1 yu...u Bxi (Gin yu...u Bxi (Gin N =S.
This completes the proof of the theorem. ¢

Proposition 4. Let S be a primitive Hausdorff pseudocompact topological
inverse semigroup which is topologically isomorphic to the orthogonal sum
ZBM (G;) of topological Brandt X, -extensions Bxi (G;) of topological groups
ied
G, in the category TIG® for some cardinals A; 2 1. Then the following con-
ditions hold:

(2) the space S 1is Tychonoff if and only if for every i € .4 the space of

the topological group G, is Tychonoff, i. e., G, is a T,-space;

(22) the space S is normal if and only if for every i1 € 4 the space of the

topological group G; is normal.

Proof We observe that the T,-topological space of a topological

group is Tychonoff (see Theorem 2.6.4 in [19]).
() Implication (=) follows from Theorem 2.1.6 of [9].

(<) . Suppose that for every i € J the space of the topological group G,

is Tychonoff. We fix an arbitrary element x € .S. First we consider the case
when x # 0. Then there exists a non-zero . -class H which contains x. By
Proposition 12 from [2] there exists 7 € 4 such that the topological space H is
homeomorphic to the topological group G,. Then by Proposition 1.5.8 from [9]
for every open neighborhood U(x) of x in H there exists a continuous map

f:H —>[0,1] such that f(x)=0 and f(y)=1 for all y € H\ U(x). We define
the map )~‘ : S > [0,1] in the following way:

- f(y)’ y € H7
fy) =
1, yeS\H
Since by Proposition 12 from [2] every non-zero J -class is an open-and-

closed subset of S we conclude that such defined map ]N‘:S — [0,1] is con-

tinuous.
Suppose that ax=0. We fix an arbitrary U(0)=S\(B, (Gil)U...
u

U Bxi (Gin )" € #(0). Then by Proposition 12 from [2], U(0) is an open-and-

closed subset of S. Thus we have that the map f:S — [0,1] defined by the
formula
~ 07 y € U(0)7
fy) =
L yeS\U(©),
is continuous, and hence by Proposition 1.5.8 from [9] the space S is
Tychonoff.
Next we shall prove statement (7).
(=). Suppose that S is a normal space. By Lemma 9 of [2] we have that

every J -class of S is a closed subset of S'. Then by Theorem 2.1.6 from [9]
we have that every J -class of S is a normal subspace of S and hence De-
finition 1 and Proposition 12 of [2] imply that for every i € 4 the space of the
topological group G, is normal.
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(<) . Suppose that for every i € 4 the space of the topological group G,
is normal. Let F, and F, be arbitrary closed disjoint subsets of S'.

At first we consider the case when 0 ¢ F; UF,. Then there exists an open
neighbourhood U(0) of zero in S such that F,UF, < S\ U(0), ie, there

exist finitely many 14,,...,7, € 4 such that

RUF, < (B, (G,)U...UB, (G, )\{0}.

By Corollary 8 of [2] every non-zero J -class of S is open subset in S,
and hence we get that the subspace (B, (G;) U...UB, (G;)\{0} of S isa
topological sum of some non-zero . -classes of S, and hence it is an open
subspace of S. Then by Theorem 227 from [9] we have that

(B, (Gil)U...UBx_ (G, )\ {0} is a normal space. Therefore, there exist
'Ll 'L," n

disjoint open neighbourhoods V(F;) and V(F,) of F and F, in
(Bxi (Gi1 yU...uU Bxi (Gin ))\ {0}, and hence in S, respectively.

Suppose that 0 € F; UF,. Without loss of generality we can assume that

0 € F}. Then there exist finitely many 1i,,...,7, € J such that

F, c (BM1 (Gil)U"'UBM (Gin )\ {0}.
The assumption of the proposition implies that the set (Bx. (GiI)U
B

U...UB, (G, ))\{0} is closed in S and hence

F =FN(B,, (G)U...UB, (G, N\{0})

is a closed subset of S, as well. Then the previous arguments of the proof
imply that

(B, (G;)U...UB, (G, )\ {0}

is a normal space, and hence there exist open disjoint neighbourhoods W(f‘l)
and U(F,) of the closed sets F, and F, in (B, (G;)U...UB, (G, ))\{0},

and hence in S, respectively. We put
UF) =S5\ (BM1 (Gi1 yu...u BM (Gin )" U W(ﬁ'l).
Then we have that U(F,) and U(F,) are open disjoint neighbourhoods of
F, and F, in S, respectively. This completes the proof of statement (2). ¢

Theorem 1 and Proposition 4 imply the following

Corollary 1. Every primitive Hausdorff pseudocompact topological inverse
semigroup S is a Tychonoff topological space. Moreover the topological space
of S 1is normal if and only if every maximal subgroup of S is a normal
subspace.

By Theorem 3.10.21 from [9] every normal pseudocompact space is
countably compact, and hence Corollary 1 implies the following

Corollary 2. Every primitive Hausdorff pseudocompact topological inverse
semigroup S such that every maximal subgroup of S is a normal subspace in
S is countably compact.
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Proposition 5. Every primitive pseudocompact topological inverse semi-
group S 1is a continuous (non-homomorphic) image of the product E‘S xGg,
where Es is a compact semilattice and Gg is a pseudocompact topological
group.

Pr oo f By Theorem 1 the topological semigroup S is topologically
isomorphic to the orthogonal sum ZBA,(GI‘) of topological Brandt A, -exten-

ied !
sions B, (G;) of pseudocompact topological groups G, in the category TIG®
for some finite cardinals A; 21 and the family defined by formula (1) deter-
mines the base of the topology at zero of S'.

Fix an arbitrary ¢ € .. Then by Proposition 1 (iv) the set E(B, (G;)) is
finite. Suppose that |E(B;V(Gi))| =n, +1 for some integer n;. Then we have

that A, =n, >1. On the set E, = (A, x1,)U{0}, where 0¢ A, x\, we define
the binary operation in the following way
(o, ), if (a,P) =(y,9),
(0 B)- (1,0) = {0, otherwise,
and 0-(a,B) =(a,B)-0=0-0=0 for all a,B,y,5 € A,. Simple verifications show
that E, with such defined operation is a semilattice and every non-zero idem-
potent of E; is primitive.

By E; we denote the orthogonal sum ZEi. It is obvious that E‘s is a

ied
semilattice and every non-zero idempotent of E’S is primitive. We determine
on Es the topology of the Alexandroff one-point compactification 1, : all non-

zero idempotents of E  are isolated points in E‘S and the family
$0)={U:U>0 and Eg\U is finite}

is the base of the topology t, at zero 0 e ES. Simple verifications show that

E‘S with the topology 7, is a Hausdorff compact topological semilattice. Later

we denote (E‘S,rA) by E‘S.

Let G, = II G, be the direct product of pseudocompact groups G,
S ey 1t i
je.

i€ 9, with the Tychonoff topology. Then by Comfort — Ross Theorem (see
Theorem 1.4 in [6]) we get that G4 is a pseudocompact topological group. Also

by Corollary 3.10.27 from [9] we have that the product E‘s x Gg is a pseudo-

compact space.

Later, for every ¢ e 4 by w;, : Gg = II G, - G, we denote the projection
jedg

on the 7-th factor.
Now, for every ¢ e we define the map f, : E, xGg — B, (G;) by the
formulae f;((a,B),g)=(a,m;(g),B) and f;(0,9)=0,, where 0, is zero of the semi-

group B, (G;), and put f = U f;. It is obvious that the map f: E¢xGg —> S

1ed

is well defined. The definition of the topology 1, on E‘S implies that for every
((o,B),9) € E, x G, < Es x G, the set {(a,B)} x G, is open in Es x Gg and hence
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the map f is continuous at the point ((«,B),g). Also for every U(0) =
:S\(BMI(GH)U'“UBM (Gin))* the set f‘l(U(O))z(Es\((kilxkiI)U...

U (kin X kin ))) x Gg is open in E‘S xGg, and hence the map f is continuous. ¢

The following theorem is an analogue of Comfort — Ross Theorem for pri-
mitive pseudocompact topological inverse semigroup.

Theorem 2. Let {S,:i e 4} be a non-empty family of primitive Haus-
dorff pseudocompact topological inverse semigroups. Then the direct product

I1 S; with the Tychonoff topology is a pseudocompact topological inverse
jeJdg

semigroup.
P r o o f. Since the direct product of the non-empty family of topologi-
cal inverse semigroups is a topological inverse semigroup, it is sufficient to

show that the space II S]. is pseudocompact. Let Es. , Gg ,and f]. : Es. xGg —
jed j j j j
— S, be, respectively, the semilattice, the group and the map, defined in the

proof of Proposition 5 for any j € .. Since the space Hy(ES_ x Gg ) is homeo-
je. i j

morphic to the product Hy Es. X Hy Gg we conclude that by Theorem 3.2.4,
jes Pi jey i

Corollary 3.10.27 from [9] and Theorem 1.4 from [6] the space Hy(E’S_ xGg ) is
je. j j

IT Sj is conti-

pseudocompact. Now, since the map II fi: IT (ES. xGg )
] ] jed

jedg jedg

nuous we have that II S, is a pseudocompact topological space. ¢
jedg

Theorem 2 implies the following
Corollary 3. Let {S, :i € 4} be a non-empty family of Brandt Hausdorff

pseudocompact topological inverse semigroups. Then the direct product II S,
jeg

with the Tychonoff topology is a pseudocompact topological inverse semigroup.

Remark 2. E. K. van Douwen [7] showed that Martin’s Axiom implies the
existence of two countably compact groups (without non-trivial convergent
sequences) such that their product is not countably compact. Hart and van
Mill [18] showed that Martin’s Axiom for countable posets implies the exist-
ence of a countably compact group the square of which is not countably

compact. Tomita in [21] showed that under MA for each positive

countable
integer k there exists a group such that its k-th power is countably compact
but its 2k-th power is not. In particular, there was proved that for each
positive integer k there exists ¢ =k,...,2k —1 and a group the /-th power of
which is not countably compact. In [22] Tomita constructed a topological

group under MA_ ... the square of which is countably compact but its

cube is not. Also, Tomita in [23] showed that the existence of 2° mutually in-

corparable selective ultrafilters and 2° = 22 imply that there exists a topologi-

cal group G such that G' is countably compact for all cardinals y < =, but

G® is not countably compact for every cardinal @ < 2°. Using these results

and the construction of finite topological Brandt A’-extensions proposed in
[17] we may show that statements similar to aforementioned hold for Haus-
dorff countably compact Brandt topological inverse semigroups and hence for
Hausdorff countably compact primitive topological inverse semigroups.

16



2. The Stone — Cech compactification of a pseudocompact primitive to-
pological inverse semigroup. Let a Tychonoff topological space X be a topo-
logical sum of subspaces A and B, ie, X =A®B. It is obvious that every

continuous map f: A —- K from A into a compact space K (respectively,

f:B—> K from B into a compact space K) extends to a continuous map
]A‘ : X —» K. This implies the following

Proposition 6. If a Tychonoff topological space X is a topological sum of
subspaces A and B, then BX is equivalent to PA®PB.

The following theorem describes the structure of the Stone — Cech com-
pactification of a primitive pseudocompact topological inverse semigroup.
Theorem 3. Let S be a primitive pseudocompact topological inverse semi-
group. Then the Stone — Cech compactification of S admits a structure of pri-
mitive topological inverse semigroup with respect to which the inclusion mapp-
ing of S into BS is a topological isomorphism. Moreover, BS is topologically
isomorphic to the orthogonal sum Z B, (BG;) of topological Brandt A, -exten-
ied

sions B, (BG;) of compact topological groups BG, in the category TISS for
some finite cardinals A, > 1.

Proof By Theorem 1, every primitive pseudocompact topological
inverse semigroup S is topologically isomorphic to the orthogonal sum
ZB?»,- (G;) of topological Brandt A,-extensions B, (G;) of pseudocompact
ied
topological groups G, in the category TJG&® for some finite cardinals A, 21,
such that any non-zero . -class of S is an open-and-closed subset of S, and
the family #(0) defined by formula (1) determines a base of the topology at
zero 0 of S.

By Theorem 2, S§x.S is a pseudocompact topological space. Now by
Theorem 1 of [10], we have that B(S x.S) is equivalent to BS xpS, and hence
by Theorem 1.3 [1], S is a subsemigroup of the compact topological semi-
group BS.

By Proposition 6 for every non-zero J -class (G;),,, k,{ € L;, we have

19

that clgo((G;), ) is equivalent to B(G;), ,, and hence it is equivalent to BG,.
Therefore we get that z B, (G;) = BS . Suppose that z B, (G,)#BS. We fix

ied ied
an arbitrary x € S\ ZBX_(Gi). Then Hausdorffness of BS implies that
ied

there exist open neighbourhoods V(x) and V(0) of the points x and 0 in

BS, respectively, and there exist finitely many 1i,...,7, € 4 such that

VO)NBS 2S5\ (B;Li (Gi1 yu...u BM (Gin ))". Then we have that

V(x)NS < (B;, (Gil yu...u Bxi (Gin ))* c

< (B, (BG;)U..UB, (G, )",

and since by Theorem 1, X, is finite for every i e ./, we get a contradiction
with the initial assumption.
This completes the proof of the theorem. ¢
Theorem 3 implies the following
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Corollary 4. Let S be a primitive countably compact topological inverse
semigroup. Then the Stone — Cech compactification of S admits a structure of
primitive topological inverse semigroup with respect to which the inclusion
mapping of S into BS is a topological isomorphism.

Remark 3. Theorem 3 and Corollary 4 give the positive answer to the
Question 1, which we posed in [2].

We define the series of categories as follows:
(3) Let Ob (%" (¢¢T ©)) be all Hausdorff 0 -simple countably compact
topological inverse semigroups;
let Ob(#"(2€7G)) be all Hausdorff pseudocompact topological inverse
Brandt semigroups;
let Ob(#2 €7 §) be all primitive Hausdorff pseudocompact
topological inverse semigroups;
let Ob(2€€79) be all primitive Hausdorff pseudocompact topological
inverse semigroups.
(i1) Let Mor (%" (€¢€7G))), Mor (5™ (#€7G)), Mor(22¢7§), and
Mor (#€¢€7§) be continuous homomorphisms of corresponding
topological inverse semigroups. 5
Comfort and Ross [6] proved that the Stone — Cech compactification of a
pseudocompact J:opological group is a topological group. Therefore the functor
of the Stone — Cech compactification B from the category of pseudocompact

topological groups back into itself determines a monad. Similar result Gutik
and Repovs proved in [17] for the category of all Hausdorff 0 -simple count-

ably compact topological inverse semigroups % (€¢¢J7§). In the our case by
Theorem 3 and Corollary 4 we get the same

Corollary 5. The functor B: B (€¢€TG) — B (¢€TG) of the Stone — Cech

compactification (respectively, B: B (P€TG) —> B (P€TG), B:PPCTG—
- PP€TG,and B: PCCTG —> P€€TG) determines a monad.
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NMCEBAOOKOMMAKTHI NPUMITUBHI TOMONOTIYHI IHBEPCHI HAMIBIrPYMNu

Buguatomsca 2ayc0opdosi nces0OKOMNAKMHL NPUMIMUEBHT TMONOAOIUHT THBEPCHI HA-
nigepynu. Onucano cmpyxmypy MaKux Haniezpyn i nNoKa3aHo, U0 MUXOHO8CHKUL 00-
oYymox cim’i nceslOKOMNAKMHUX NPUMIMUSHUL MONOA0IUHUX THBEPCHUX HANIBZPYN €
nced0OKOMNAKMHUM MONoL02IUHUM npocmopom. Takoxu 0OosedenHo, wo Komnaxkmugpi-
kayia Cmoyna — Yexa nces0oKoMNAKMHOL NPUMIMUBHOT MONOA0TUHOT THBEPCHOT HANIE-
2PYNU € KOMNAKMHON NPUMIMUEHOIO MONOAOLILHON THEEPCHOI HANI82PYNOT0.

NCEBOOKOMMAKTHbIE MPUMUTUBHBIE TOMOJNTIOMMYECKUE MHBEPCHBbLIE NONYTIPYMIbl

M3yuaromes xayc0opdosv. ncesdoKoMNaKmMHble NPUMUMUBHDBLE MONOAOUYECKUE UH-
gepcHble noayzpynnsvl. Onucana cmpyxmypa Mmaxux nNOAYZPYnNN U MNOKA3AHO, UMO
muxoHosckoe npouseederue cembl NCeBOOKOMNAKMHBIL NPUMUMUBHBLL MONOA0ZUUEC-
KUX UHBEPCHBLLL NOAYZPYNN A8AAeMCS NCeBOOKOMNAKMHDBLM MONOAOLULECKUM NPO-
cmpancmeom. Taxace Goxasano, umo vomnaxmugpurayus Cmoyna — Yexa ncesdokom-
NAKMHOU NPUMUMUBHOT MONOA0ULECKOU UHBEPCHOU NOAYZPYNNBL A6ALEMCS KOM-
NAKMHOU NPUMUMUBHOU MONOA0LULECKOU UHBEPCHOU NOAY2PYNNOU.
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