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PSEUDOCOMPACT PRIMITIVE TOPOLOGICAL INVERSE SEMIGROUPS 
 

In the paper we study pseudocompact primitive topological inverse semigroups. We 
describe the structure of pseudocompact primitive topological inverse semigroups 
and show that the Tychonoff product of a family of pseudocompact primitive 
topological inverse semigroups is a pseudocompact topological space. Also we prove 
that the Stone – Čech compactification of a pseudocompact primitive topological 
inverse semigroup is a compact primitive topological inverse semigroup. 

 
Introduction and preliminaries. Further we shall follow the terminology 

of [3–5, 9, 20]. The set of positive integers is denoted by N . 
A semigroup is a non-empty set with a binary associative operation. A 

semigroup S  is called inverse if for any x S∈  there exists a unique y S∈  

such that x y x x⋅ ⋅ =  and y x y y⋅ ⋅ = . Such an element y  in S  is called 

inverse of x  and denoted by 1x− . The map defined on an inverse semigroup 

S  which assigns to element x  of S  its inverse 1x−  is called the inversion. 
If S  is a semigroup, then by ( )E S  we denote the subset of idempotents 

of S , and by 1S  (respectively, 0S ) we denote the semigroup S  with the 
adjoined unit (respectively, zero). Also if a semigroup S  has zero 0S , then for 

any A S⊆  we denote \ 0SA A∗ = { } . 

If E  is a semilattice, then the semilattice operation on E  determines the 
partial order ≤  on E : 

 e f≤   if and only if  ef fe e= = . 

This order is called natural. An element e  of a partially ordered set X  is 
called minimal if f e≤  implies f e=  for f X∈ . An idempotent e  of a semi-

group S  without zero (with zero) is called primitive if e  is a minimal element 

in ( )E S  (in ( ( ))E S ∗ ). 
Let S  be a semigroup with zero and λ  be a cardinal 1≥ . On the set 

( ) ( ) 0B S Sλ = λ × × λ { }ò  we define the semigroup operation as follows 

 
( , , ), ,

( , , ) ( , , )
0, ,

ab
a b

α δ β = γ
α β ⋅ γ δ = 

β ≠ γ
 

and ( , , ) 0 0 ( , , ) 0 0 0a aα β ⋅ = ⋅ α β = ⋅ = , for all , , ,α β γ δ ∈ λ  and ,a b S∈ . If S =  
1S=  then the semigroup ( )B Sλ  is called the Brandt λ -extension of the 

semigroup S  [12]. Obviously, 0 ( , , ) |= α βJ O O∪{ } {  is the zero of S}  is an 

ideal of ( )B Sλ . We put 0 ( ) ( )/B S B Sλ λ= J  and we shall call 0 ( )B Sλ  the Brandt 
0λ -extension of the semigroup S  with zero [13]. Further, if A S⊆  then we 

shall denote α β = α β ∈, ( , , ) :A s s A{ }  if A  does not contain zero, and ,Aα β =  

= α β ∈ ∪( , , ) : \ 0 0s s A{ { }} { }  if 0 A∈ , for ,α β ∈ λ . If I  is a trivial semi-

group (i. e., I  contains only one element), then by 0I  we denote the semi-

group I  with the adjoined zero. Obviously, for any 2λ ≥  the Brandt 0λ -ex-

tension of the semigroup 0I  is isomorphic to the semigroup of λ × λ -matrix 

units and any Brandt 0λ -extension of a semigroup with zero contains the 
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semigroup of λ × λ -matrix units. Further by Bλ  we shall denote the se-

migroup of λ × λ -matrix units and by 0 (1)Bλ  the subsemigroup of λ × λ -ma-

trix units of the Brandt 0λ -extension of a monoid S  with zero. A completely 
0 -simple inverse semigroup is called a Brandt semigroup [20]. By Theorem 
II.3.5 [20], a semigroup S  is a Brandt semigroup if and only if S  is isomor-
phic to a Brandt λ -extension ( )B Gλ  of some group G . 

Let :iS i ∈{ }I  be a disjoint family of semigroups with zero such that 0i  

is zero in iS  for any i ∈ I . We put 0 :iS S i∗= ∈∪{ } { }I , where 0 ∉ 
∗∉ ∈∪ :iS i{ }I , and define a semigroup operation on S  in the following way 

 
, if    for some   ,

0, otherwise.
ist st S i

s t
∗ ∈ ∈⋅ = 



I
 

The semigroup S  with such defined operation is called the orthogonal sum of 
the family of semigroups :iS i ∈{ }I  and in this case we shall write 

i
i

S S
∈

= ∑
I

. 

A non-trivial inverse semigroup is called a primitive inverse semigroup if 
all its non-zero idempotents are primitive [20]. A semigroup S  is a primitive 
inverse semigroup if and only if S  is the orthogonal sum of a family of 
Brandt semigroups [20, Theorem II.4.3]. We shall call a Brandt subsemigroup 
T  of a primitive inverse semigroup S  maximal if every Brandt subsemi-
group of S  which contains T , coincides with T . 

Green’s relations L , R  and H  on a semigroup S  are defined by: 

a bL  if and only if a Sa b Sb=∪ ∪{ } { } , 

a bR  if and only if a aS b bS=∪ ∪{ } { } ,  

= ∩H L R , 

for ,a b S∈ . For details about Green’s relations see [5, § 2.1] or [11]. We ob-

serve that two non-zero elements 1 1( , , )sα β  and 2 2( , , )tα β  of a Brandt semi-

group ( )B Gλ , ,s t G∈ , 1 2 1 2, , ,α α β β ∈ λ , are H -equivalent if and only if 

1 2α = α  and 1 2β = β  (see [20, p. 93]). 

In this paper all topological spaces are Hausdorff. If Y  is a subspace of a 
topological space X  and A Y⊆ , then by cl ( )Y A  we denote the topological 

closure of A  in Y . 
We recall that a topological space X  is said to be 

● compact if each open cover of X  has a finite subcover; 

● countably compact if each open countable cover of X  has a finite 
subcover; 

● pseudocompact if each locally finite open cover of X  is finite. 
According to Theorem 3.10.22 of [9], a Tychonoff topological space X  is 

pseudocompact if and only if each continuous real-valued function on X  is 
bounded. Also, a Hausdorff topological space X  is pseudocompact if and only 
if every locally finite family of non-empty open subsets of X  is finite. Every 
compact space and every countably compact space are pseudocompact (see [9]). 

We recall that the Stone – Čech compactification of a Tychonoff space X  
is a compact Hausdorff space Xβ  containing X  as a dense subspace so that 

each continuous map :f X Y→  to a compact Hausdorff space Y  extends to 

a continuous map :f X Yβ →  [9]. 
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A topological semigroup is a Hausdorff topological space with a con-
tinuous semigroup operation. A topological semigroup which is an inverse 
semigroup is called an inverse topological semigroup. A topological inverse se-
migroup is an inverse topological semigroup with continuous inversion. A to-
pological group is a topological space with a continuous group operation and 
inversion. We observe that the inversion on a topological inverse semigroup is 
a homeomorphism (see [8, Proposition II.1]). A Hausdorff topology τ  on a 
(inverse) semigroup S  is called (inverse) semigroup topology if ( , )S τ  is a 
topological (inverse) semigroup. 

Definition 1 [12]. Let TSG  be some category of topological semigroups. 

Let λ  be a cardinal 1≥  and τ ∈( , )S ObTSG  be a topological monoid. Let 0λ  

be a topology on ( )B Sλ  such that 

(a) λ τ ∈( ( ), )BB S ObTSG ;  

(b) for some α ∈ λ  the topological subspace 
,

,( , )B S
S

α α
α α τ  is naturally 

homeomorphic to ( , )S τ . 
Then ( ( ), )BB Sλ τ  is called a topological Brandt λ -extension of ( , )S τ  in TSG . 

Definition 2 [13]. Let 0TSG  be some category of topological semigroups 

with zero. Let λ  be a cardinal 1≥  and 0( , )S τ ∈ ObTSG . Let Bτ  be a topo-

logy on 0 ( )B Sλ  such that 

(a) 0
0( ( ), )BB Sλ τ ∈ ObTSG ; 

(b) for some α ∈ λ  the topological subspace 
,

,( , )B S
S

α α
α α τ  is naturally 

homeomorphic to ( , )S τ . 

Then 
0( ( ), )BB Sλ τ  is called a topological Brandt 0λ -extension of ( , )S τ  in 0TSG . 

We observe that for any topological Brandt λ -extension ( )B Sλ  of a topo-

logical semigroup S  in the category of topological semigroups there exist a 

topological monoid T  with zero and a topological Brandt 0λ -extension 0 ( )B Tλ  

of T  in the category of topological semigroups with zero, such that the semi-

groups ( )B Sλ  and 0 ( )B Tλ  are topologically isomorphic. Algebraic properties of 

Brandt 0λ -extensions of monoids with zero, non-trivial homomorphisms be-
tween them, and a category which objects are ingredients of the construction 
of such extensions were described in [17]. Also, in [14] and [17] a category 
which objects are ingredients in the constructions of finite (respectively, com-

pact, countably compact) topological Brandt 0λ -extensions of topological 
monoids with zeros was described. 

Gutik and Repovš [16] proved that any 0 -simple countably compact to-
pological inverse semigroup is topologically isomorphic to a topological Brandt 
λ -extension ( )B Hλ  of a countably compact topological group H  in the cate-

gory of topological inverse semigroups for some finite cardinal 1λ ≥ . Also, 
every 0 -simple pseudocompact topological inverse semigroup is topologically 
isomorphic to a topological Brandt λ -extension ( )B Hλ  of a pseudocompact 

topological group H  in the category of topological inverse semigroups for 
some finite cardinal 1λ ≥  [15]. Next Gutik and Repovš showed in [16] that the 
Stone – Čech compactification ( )Tβ  of a 0 -simple countably compact topolo-

gical inverse semigroup T  is a 0 -simple compact topological inverse semi-
group. It was proved in [15] that the same is true in the case of 0 -simple 
pseudocompact topological inverse semigroups. 
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In the paper [2] the structure of compact and countably compact primi-
tive topological inverse semigroups was described and showed that any count-
ably compact primitive topological inverse semigroup embeds into a compact 
primitive topological inverse semigroup. 

In this paper we describe the structure of pseudocompact primitive topo-
logical inverse semigroups and show that the Tychonoff product of a family 
of pseudocompact primitive topological inverse semigroups is a pseudocompact 
topological space. Also we prove that the Stone – Čech compactification of a 
pseudocompact primitive topological inverse semigroup is a compact primitive 
topological inverse semigroup. 

1. Primitive pseudocompact topological inverse semigroups. 
Proposition 1. Let S  be a Hausdorff pseudocompact primitive topological 

inverse semigroup and S  be an orthogonal sum of the family ( )i ii
B Gλ ∈{ } I  of 

topological Brandt semigroups with zeros, i. e. ( )ii
i

S B Gλ
∈

= ∑
I

. Then the fol-

lowing statements hold: 
(i) every non-zero idempotent of S  is an isolated point in ( )E S  and ( )E S  

is a compact semilattice; 
(ii) every non-zero H -class in S  is a pseudocompact closed-and-open 

subset of S ; 
(iii) every maximal subgroup in S  is a pseudocompact subspace of S ; 
(iv) every maximal Brandt subsemigroup of S  is a pseudocompact space 

and has finitely many idempotents. 
P r o o f.  (i). First part of the statement follows from Lemma 7 [2]. Then 

the continuity of the semigroup operation and inversion in S  implies that the 

map : ( )S E S→e  defined by the formula 1( )x x x−= ⋅e  is continuous and 
hence by Theorem 3.10.24 [9], ( )E S  is a pseudocompact subspace of S  such 
that every non-zero idempotent in ( )E S  is an isolated point. Therefore ( )E S  
is compact. Otherwise there exists an open neighbourhood (0)U  of the zero 0  
of S  in ( )E S  such that the set ( ) \ (0)E S U  is infinite. But this contradicts the 
pseudocompactness of ( )E S . 

(ii). By Corollary 8 from [2] every non-zero H -class in S  is a closed-
and-open subset of S  and hence by Exercise 3.10.F(d) is pseudocompact. 

Statement (iii) follows from (ii). 
(iv). Let ( )

i iB Gλ  be a maximal Brandt subsemigroup of the semigroup S . 

Then statement ( )i  implies that ( )E S  is compact and since every non-zero 

idempotent of S  is an isolated point of ( )E S  we conclude that ( ( ))
i iE B Gλ  is 

compact for every i ∈ I . By Corollary 3.10.27 of [9] the product of a compact 
space and a pseudocompact space is a pseudocompact space, and hence we 
have that the space ( ( ))

i iE B G Sλ ×  is pseudocompact. Since S  is a primitive 

inverse semigroup we conclude that ( ) ( ( ))
i ii iB G E B G Sλ λ= × . Now, the conti-

nuity of the semigroup operation in S  implies that the map : ( ( ))
i iE B Gλ ×f  

× →S S  defined by the formula ( , )e s e s= ⋅f  is continuous, and since the con-
tinuous image of a pseudocompact space is pseudocompact we conclude that 

( )
i iB Gλ  is pseudocompact. The last statement follows from Theorem 1 of [15].  

Lemma 1. Let U  be an open non-empty subset of a topological group G  
and A  be a dense subset of G . Then A U U A G⋅ = ⋅ = . 

P r o o f.  Since G is a topological group we have that there exists a non-

empty open subset V  of G  such that 1V U− = . Let x  be an arbitrary point 
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of G . Then x V⋅  is a nonempty open subset of G , because translations in 
every topological group are homeomorphisms. Then we have that ⋅ ≠∩x V A  

≠ ∅  and hence 1x A V A U−∈ ⋅ = ⋅ . Therefore we get that G A U⊆ ⋅ . The 
converse inclusion is trivial. Hence A U G⋅ = . The proof of the equality 

U A G⋅ =  is similar.  
Lemma 2. Let 2λ ≥  be any cardinal and U  be an open non-empty subset 

of a topological inverse Brandt semigroup ( )B Gλ  such that 0U ≠ { } . Then 

( )A U A B Gλ⋅ ⋅ =  for every dense subset A  of ( )B Gλ . 

P r o o f.  By Lemma 7 [2] we have that every non-zero idempotent of 
the topological inverse semigroup ( )B Gλ  is an isolated point in ( ( ))E B Gλ . The 

continuity of the semigroup operation and inversion in S  implies that the 

map : ( )S E S→e  defined by the formula 1( )x x x−= ⋅e  is continuous and 

hence ,Gα β  is an open-and-closed subset of ( )B Gλ  for all ,α β ∈ λ . Since A  is 

a dense subset of ( )B Gλ  we conclude that ,A Gα β∩  is a dense subset in ,Gα β  

for all ,α β ∈ λ . Also, since 2λ ≥  we have that 0 A U A∈ ⋅ ⋅ . This implies that 

it is sufficient to show that ,G A U Aα β ⊆ ⋅ ⋅  for all ,α β ∈ λ . 

Since ,Gα β  is an open subset of ( )B Gλ  for all ,α β ∈ λ , without loss of 

generality we assume that 
0 0,U Gα β⊆  for some 0 0,α β ∈ λ , i. e., 

0 0,U Vα β=  for 

some open subset V G⊆ . Fix arbitrary ,α β ∈ λ . Then there exists subsets 

,L R G∈  such that 
0 0, ,A G Lα α α α=∩  and 

0 0, ,A G Rβ β β β=∩ . It is obviously 

that 
0,Lα α  and 

0 ,Rβ β  are dense subsets of 
0,Gα α  and 

0 ,Gβ β , respectively. This 

implies that L  and R  are dense subsets of G . Then by Lemma 1 we have 
that 

 
0 0 0 0, , , ,( ) ,G L V R L V Rα β α β α α α β β β= ⋅ ⋅ = ⋅ ⋅ =  

 
0 0,( ) ( ),A G U A G A U Aα α β β= ⋅ ⋅ ⊆ ⋅ ⋅∩ ∩ . 

This completes the proof of the lemma.  
Lemma 1 implies the following 
Proposition 2. Let U  be an open non-empty subset of a topological 

inverse Brandt semigroup 1( )B G  such that 0U ≠ { } . Then for every dense 

subset A  of 1( )B G  the following statements hold: 

(i) 1( )A U A B G⋅ ⋅ =  in the case when 0  is an isolated point in 1( )B G ; 

(ii) 1( 0 ) ( 0 ) ( )A U A B G⋅ ⋅ =∪ ∪{ } { }  in the case when 0  is a non-isolated 

point in 1( )B G . 

Lemma 2 and Proposition 2 imply the following  
Proposition 3. Let S  be a Hausdorff primitive inverse topological semi-

group such that S  be an orthogonal sum of the family ( )
i i iB Gλ ∈{ } I  of topolo-

gical Brandt semigroups with zeros. Let 1>I  and U  be an open non-empty 

subset of S  such that ( ( ))\ 0ii
U B Gλ ≠ ∅∩ { }  for any i∈ I . Then A U A S⋅ ⋅ =  

for every dense subset A  of S . 
Remark 1. Since by Theorem II.4.3 of [20] a primitive inverse semigroup 

S  is an orthogonal sum of a family of Brandt semigroups, i. e., S  is an 
orthogonal sum ( )

i i
i

B Gλ
∈
∑

I

 of Brandt iλ -extensions ( )
i iB Gλ  of groups iG , 
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we have that Proposition 12 from [2] describes a base of the topology at any 
non-zero element of S . 

Later by TISG  we denote the category of topological inverse semi-
groups, where ObTISG  are all topological inverse semigroups and 

MorTISG  are homomorphisms between topological inverse semigroups. 
The following theorem describes the structure of primitive pseudocom-

pact topological inverse semigroups. 
Theorem 1. Every primitive Hausdorff pseudocompact topological inverse 

semigroup S  is topologically isomorphic to the orthogonal sum ( )
i i

i

B Gλ
∈
∑

I

 of 

topological Brandt iλ -extensions ( )
i iB Gλ  of pseudocompact topological groups 

iG  in the category TISG  for some finite cardinals 1iλ ≥ . Moreover the 
family 

 ∗
λ λ= ∈ ∈∪ … ∪ …

1 1 1(0) \( ( ) ( )) : , , ,  
ni i ni i nS B G B G i i n{ }B I N , (1) 

determines a base of the topology at zero 0  of S . 

P r o o f.  By Theorem II.4.3 of [20] the semigroup S  is an orthogonal 
sum of Brandt semigroups and hence S  is isomorphic to the orthogonal sum 

( )
i i

i

B Gλ
∈
∑

I

 of Brandt iλ -extensions ( )
i iB Gλ  of groups iG . We fix any 0i ∈ I . 

Since S  is a topological inverse semigroup, Proposition II.2 [8] implies that 

0 0
( )

i iB Gλ  is a topological inverse semigroup. By Proposition 1, 
0

0
( )ii

B Gλ  is a 

pseudocompact topological Brandt iλ -extension of pseudocompact topological 

group 
0i

G  in the category TISG  for some finite cardinal 
0

1iλ ≥ . This com-

pletes the proof of the first assertion of the theorem. 
The second statement of the theorem is trivial in the case when the set of 

indices I  is finite. Therefore henceforth we assume that the set I  is infinite. 
Suppose on the contrary that (0)B  is not a base at zero 0  of S . Then, 

there exists an open neighbourhood (0)U  of zero 0  such that (0)U ∪  
∗

λ λ ≠∪ ∪ L ∪
1 1

( ( ) ( ))
ni i ni iB G B G S  for finitely many indices ∈…1, , ni i I . Let 

⊆(0) (0)V U  be an open neighbourhood of 0  in S  such that ⋅ ⋅ ⊆(0) (0) (0)V V V  

⊆ (0)U . Then we have that ∗
λ λ ≠∪ ∪ … ∪

1 1
(0) ( ( ) ( ))

ni i ni iV B G B G S . We state 

that there exist a sequence of distinct points k kx ∈{ } N  of the semigroup S  

and a sequence of open subsets ( )k kU x ∈{ } N  of S  such that the following 

conditions hold: 
(i) ( ) ( )

ki kk k ix U x B Gλ∈ ⊆  for some ki ∈ I ; 

(ii) if 
1 2
, ( )

ki kk k ix x B Gλ∈  for some ki ∈ I , then 1 2k k= ; 

(iii) ( ) \ (0)k
k

U x S V
∈

⊆∪
N

. 

Otherwise we have that (0)V  is a dense subset of the subspace 

 ∗
λ λ

′ = ∪ ∪ … ∪
1 1

\ ( ( ) ( ))
ni i ni iS S B G B G , 

for some positive integer n . Since S′  with induced operation from S  is a 

primitive inverse semigroup Proposition 3 implies that (0) (0) (0)V V V S′⋅ ⋅ =  
which opposes the choice of the neighbourhood (0)U . The obtained contra-
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diction implies that there exists finitely many indices ∈… …1, , , ,n mi i i I  

where m n>  such that 

 ∗
λ λ λ =∪ ∪ … ∪ ∪ … ∪

11
(0) ( ( ) ( ) ( ))

n mi n i ni i ii
U B G B G B G S . 

This completes the proof of the theorem.  

Proposition 4. Let S  be a primitive Hausdorff pseudocompact topological 
inverse semigroup which is topologically isomorphic to the orthogonal sum 

( )
i i

i

B Gλ
∈
∑

I

 of topological Brandt iλ -extensions ( )
i iB Gλ  of topological groups 

iG  in the category TISG  for some cardinals 1iλ ≥ . Then the following con-
ditions hold: 

(i) the space S  is Tychonoff if and only if for every i ∈ I  the space of 
the topological group iG  is Tychonoff, i. e., iG  is a 0T -space; 

(ii) the space S  is normal if and only if for every i ∈ I  the space of the 
topological group iG  is normal. 

P r o o f.  We observe that the 0T -topological space of a topological 

group is Tychonoff (see Theorem 2.6.4 in [19]). 
(i) Implication ( )⇒  follows from Theorem 2.1.6 of [9]. 

( )⇐ . Suppose that for every i ∈ I  the space of the topological group iG  

is Tychonoff. We fix an arbitrary element x S∈ . First we consider the case 
when 0x ≠ . Then there exists a non-zero H -class H  which contains x . By 
Proposition 12 from [2] there exists i ∈ I  such that the topological space H  is 
homeomorphic to the topological group iG . Then by Proposition 1.5.8 from [9] 

for every open neighborhood ( )U x  of x  in H  there exists a continuous map 

: 0,1f H → [ ]  such that ( ) 0f x =  and ( ) 1f y =  for all \ ( )y H U x∈ . We define 

the map % : 0,1f S → [ ]  in the following way: 

 % ( ), ,
( )

1, \ .

f y y H
f y

y S H

∈
= 

∈
 

Since by Proposition 12 from [2] every non-zero H -class is an open-and-

closed subset of S  we conclude that such defined map % : 0,1f S → [ ]  is con-
tinuous. 

Suppose that 0x = . We fix an arbitrary λ= ∪ …
1 1

(0) \( ( )
i iU S B G  

∗
λ ∈… ∪ ( )) (0)

ni ni
B G B . Then by Proposition 12 from [2], (0)U  is an open-and-

closed subset of S . Thus we have that the map : 0,1f S → [ ]  defined by the 
formula 

 % 0, (0),
( )

1, \ (0),

y U
f y

y S U

∈
= 

∈
 

is continuous, and hence by Proposition 1.5.8 from [9] the space S  is 
Tychonoff. 

Next we shall prove statement (ii). 
( )⇒ . Suppose that S  is a normal space. By Lemma 9 of [2] we have that 

every H -class of S  is a closed subset of S . Then by Theorem 2.1.6 from [9] 
we have that every H -class of S  is a normal subspace of S  and hence De-
finition 1 and Proposition 12 of [2] imply that for every i ∈ I  the space of the 
topological group iG  is normal. 
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( )⇐ . Suppose that for every i ∈ I  the space of the topological group iG  

is normal. Let 1F  and 2F  be arbitrary closed disjoint subsets of S . 

At first we consider the case when 1 20 F F∉ ∪ . Then there exists an open 

neighbourhood (0)U  of zero in S  such that 1 2 \ (0)F F S U⊆∪ , i. e., there 

exist finitely many ∈…1, , ni i I  such that 

 λ λ⊆∪ ∪ … ∪
1 11 2 ( ) ( ) \ 0

ni i ni iF F B G B G { }( ) . 

By Corollary 8 of [2] every non-zero H -class of S  is open subset in S , 
and hence we get that the subspace λ λ∪ … ∪

1 1
( ) ( ) \ 0

ni i ni iB G B G { }( )  of S  is a 

topological sum of some non-zero H -classes of S , and hence it is an open 
subspace of S . Then by Theorem 2.2.7 from [9] we have that 

λ λ∪ … ∪
1 1
( ) ( ) \ 0

ni i ni iB G B G { }( )  is a normal space. Therefore, there exist 

disjoint open neighbourhoods 1( )V F  and 2( )V F  of 1F  and 2F  in 

λ λ∪ … ∪
1 1
( ) ( ) \ 0

ni i ni iB G B G { }( ) , and hence in S , respectively. 

Suppose that 1 20 F F∈ ∪ . Without loss of generality we can assume that 

10 F∈ . Then there exist finitely many ∈…1, , ni i I  such that 

 λ λ⊆ ∪ … ∪
1 12 ( ) ( ) \ 0

ni i ni iF B G B G { }( ) . 

The assumption of the proposition implies that the set 
1 1
( )

i iB Gλ ∪(  

λ∪… ∪ ( ) \ 0
ni ni

B G { })  is closed in S  and hence 

 λ λ=% ∩ ∪ … ∪
1 11 1 ( ( ) ( )) \ 0

ni i ni iF F B G B G { }( )  

is a closed subset of S , as well. Then the previous arguments of the proof 
imply that 

 λ λ∪ … ∪
1 1
( ) ( ) \ 0

ni i ni iB G B G { }( )  

is a normal space, and hence there exist open disjoint neighbourhoods 1( )W F%  

and 2( )U F  of the closed sets 1F
%  and 2F  in λ λ∪ … ∪

1 1
( ) ( ) \ 0

ni i ni iB G B G { }( ) , 

and hence in S , respectively. We put 

 ∗
λ λ= %∪ … ∪ ∪

1 11 1( ) \ ( ) ( ) ( )
ni i ni iU F S B G B G W F( ) . 

Then we have that 1( )U F  and 2( )U F  are open disjoint neighbourhoods of 

1F  and 2F  in S , respectively. This completes the proof of statement (ii).  

Theorem 1 and Proposition 4 imply the following 
Corollary 1. Every primitive Hausdorff pseudocompact topological inverse 

semigroup S  is a Tychonoff topological space. Moreover the topological space 
of S  is normal if and only if every maximal subgroup of S  is a normal 
subspace. 

By Theorem 3.10.21 from [9] every normal pseudocompact space is 
countably compact, and hence Corollary 1 implies the following 

Corollary 2. Every primitive Hausdorff pseudocompact topological inverse 
semigroup S  such that every maximal subgroup of S  is a normal subspace in 
S  is countably compact. 
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Proposition 5. Every primitive pseudocompact topological inverse semi-

group S  is a continuous (non-homomorphic) image of the product S SE G×% , 

where SE%  is a compact semilattice and SG  is a pseudocompact topological 
group. 

P r o o f.  By Theorem 1 the topological semigroup S  is topologically 
isomorphic to the orthogonal sum ( )ii

i

B Gλ
∈
∑

I

 of topological Brandt iλ -exten-

sions ( )
i iB Gλ  of pseudocompact topological groups iG  in the category TISG  

for some finite cardinals 1iλ ≥  and the family defined by formula (1) deter-

mines the base of the topology at zero of S . 
Fix an arbitrary i ∈ I . Then by Proposition 1 (iv) the set ( ( ))

i iE B Gλ  is 

finite. Suppose that ( ( )) 1
i i iE B G nλ = +  for some integer in . Then we have 

that 1i inλ = ≥ . On the set ( ) 0i i iE = λ × λ ∪ { } , where 0 i i∉ λ × λ  we define 
the binary operation in the following way 

 
( , ), if  ( , ) ( , ),

( , ) ( , )
0, otherwise,

α β α β = γ δ
α β ⋅ γ δ = 


 

and 0 ( , ) ( , ) 0 0 0 0⋅ α β = α β ⋅ = ⋅ =  for all , , , iα β γ δ ∈ λ . Simple verifications show 

that iE  with such defined operation is a semilattice and every non-zero idem-

potent of iE  is primitive. 

By SE%  we denote the orthogonal sum i
i

E
∈
∑

I

. It is obvious that SE%  is a 

semilattice and every non-zero idempotent of SE%  is primitive. We determine 

on SE%  the topology of the Alexandroff one-point compactification Aτ : all non-

zero idempotents of SE%  are isolated points in SE%  and the family 

 (0) : 0  and  \   is finiteSU U E U= %B { }å  

is the base of the topology Aτ  at zero 0 SE∈ % . Simple verifications show that 

SE%  with the topology Aτ  is a Hausdorff compact topological semilattice. Later 

we denote ( , )S AE τ%  by SE% . 

Let S i
j

G G
∈

=
I
  be the direct product of pseudocompact groups iG , 

i ∈ I , with the Tychonoff topology. Then by Comfort – Ross Theorem (see 
Theorem 1.4 in [6]) we get that SG  is a pseudocompact topological group. Also 

by Corollary 3.10.27 from [9] we have that the product S SE G×%  is a pseudo-
compact space. 

Later, for every i ∈ I  by :i S i i
j

G G G
∈

π = →
I
  we denote the projection 

on the i -th factor. 
Now, for every i ∈ I  we define the map : ( )

ii i S if E G B Gλ× →  by the 

formulae (( , ), ) ( , ( ), )i if g gα β = α π β  and (0, ) 0i if g = , where 0i  is zero of the semi-

group ( )
i iB Gλ , and put i

i
f f

∈
= ∪

I
. It is obvious that the map : S Sf E G S× →%  

is well defined. The definition of the topology Aτ  on SE%  implies that for every 

(( , ), ) i i S ig E G E Gα β ∈ × ⊆ ×%  the set ( , ) iGα β ×{ }  is open in S SE G×%  and hence 
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the map f  is continuous at the point (( , ), )gα β . Also for every (0)U =  
∗

λ λ= ∪ … ∪
1 1

\ ( ( ) ( ))
ni i ni iS B G B G  the set − = λ × λ% ∪ …

1 1

1( (0)) \ (( )S i if U E(  

λ × λ ×… ∪ ( ))
n ni i SG)  is open in ×%

S SE G , and hence the map f  is continuous.  

The following theorem is an analogue of Comfort – Ross Theorem for pri-
mitive pseudocompact topological inverse semigroup. 

Theorem 2. Let :iS i ∈{ }I  be a non-empty family of primitive Haus-
dorff pseudocompact topological inverse semigroups. Then the direct product 

j
j

S
∈I
  with the Tychonoff topology is a pseudocompact topological inverse 

semigroup. 

P r o o f.  Since the direct product of the non-empty family of topologi-
cal inverse semigroups is a topological inverse semigroup, it is sufficient to 

show that the space j
j

S
∈I
  is pseudocompact. Let 

jSE% , 
jSG , and :

j jj S Sf E G× →%  

jS→  be, respectively, the semilattice, the group and the map, defined in the 

proof of Proposition 5 for any j ∈ I . Since the space ( )
j jS S

j
E G

∈
×%

I
  is homeo-

morphic to the product 
j jS S

j j
E G

∈ ∈
×%

I I
   we conclude that by Theorem 3.2.4, 

Corollary 3.10.27 from [9] and Theorem 1.4 from [6] the space ( )
j jS S

j
E G

∈
×%

I
  is 

pseudocompact. Now, since the map : ( )
j jj S S j

j j j
f E G S

∈ ∈ ∈
× →%

I I I
    is conti-

nuous we have that j
j

S
∈I
  is a pseudocompact topological space.  

Theorem 2 implies the following  

Corollary 3. Let :iS i ∈{ }I  be a non-empty family of Brandt Hausdorff 

pseudocompact topological inverse semigroups. Then the direct product j
j

S
∈I
  

with the Tychonoff topology is a pseudocompact topological inverse semigroup. 

Remark 2. E. K. van Douwen [7] showed that Martin’s Axiom implies the 
existence of two countably compact groups (without non-trivial convergent 
sequences) such that their product is not countably compact. Hart and van 
Mill [18] showed that Martin’s Axiom for countable posets implies the exist-
ence of a countably compact group the square of which is not countably 
compact. Tomita in [21] showed that under countableMA  for each positive 

integer k  there exists a group such that its k -th power is countably compact 
but its 2k -th power is not. In particular, there was proved that for each 
positive integer k  there exists , ,2 1k k= −…l  and a group the l -th power of 
which is not countably compact. In [22] Tomita constructed a topological 
group under countableMA  the square of which is countably compact but its 

cube is not. Also, Tomita in [23] showed that the existence of 2c  mutually in-

corparable selective ultrafilters and 22 2=
cc  imply that there exists a topologi-

cal group G  such that G γ  is countably compact for all cardinals γ < æ , but 

Gæ  is not countably compact for every cardinal 2≤ cæ . Using these results 

and the construction of finite topological Brandt 0λ -extensions proposed in 
[17] we may show that statements similar to aforementioned hold for Haus-
dorff countably compact Brandt topological inverse semigroups and hence for 
Hausdorff countably compact primitive topological inverse semigroups. 
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2. The Stone – Čech compactification of a pseudocompact primitive to-
pological inverse semigroup. Let a Tychonoff topological space X  be a topo-
logical sum of subspaces A  and B , i. e., X A B= ⊕ . It is obvious that every 

continuous map :f A K→  from A  into a compact space K  (respectively, 

:f B K→  from B  into a compact space K ) extends to a continuous map 

$ :f X K→ . This implies the following  

Proposition 6. If a Tychonoff topological space X  is a topological sum of 
subspaces A  and B , then Xβ  is equivalent to A Bβ ⊕ β . 

The following theorem describes the structure of the Stone – Čech com-
pactification of a primitive pseudocompact topological inverse semigroup. 

Theorem 3. Let S  be a primitive pseudocompact topological inverse semi-
group. Then the Stone – Čech compactification of S  admits a structure of pri-
mitive topological inverse semigroup with respect to which the inclusion mapp-
ing of S  into Sβ  is a topological isomorphism. Moreover, Sβ  is topologically 

isomorphic to the orthogonal sum ( )
i i

i

B Gλ
∈

β∑
I

 of topological Brandt iλ -exten-

sions ( )
i iB Gλ β  of compact topological groups iGβ  in the category TISG  for 

some finite cardinals 1iλ ≥ . 

P r o o f.  By Theorem 1, every primitive pseudocompact topological 
inverse semigroup S  is topologically isomorphic to the orthogonal sum 

( )
i i

i

B Gλ
∈
∑

I

 of topological Brandt iλ -extensions ( )
i iB Gλ  of pseudocompact 

topological groups iG  in the category TISG  for some finite cardinals 1iλ ≥ , 

such that any non-zero H -class of S  is an open-and-closed subset of S , and 
the family (0)B  defined by formula (1) determines a base of the topology at 
zero 0  of S . 

By Theorem 2, S S×  is a pseudocompact topological space. Now by 
Theorem 1 of [10], we have that ( )S Sβ ×  is equivalent to S Sβ × β , and hence 

by Theorem 1.3 [1], S  is a subsemigroup of the compact topological semi-
group Sβ . 

By Proposition 6 for every non-zero H -class ,( )i kG l , , ik ∈ λl , we have 

that ,cl (( ) )S i kGβ l  is equivalent to ,( )i kGβ l , and hence it is equivalent to iGβ . 

Therefore we get that ( )
i i

i

B G Sλ
∈

⊆ β∑
I

. Suppose that ( )
i i

i

B G Sλ
∈

≠ β∑
I

. We fix 

an arbitrary \ ( )
i i

i

x S B Gλ
∈

∈ β ∑
I

. Then Hausdorffness of Sβ  implies that 

there exist open neighbourhoods ( )V x  and (0)V  of the points x  and 0  in 

Sβ , respectively, and there exist finitely many 1, , ni i ∈… I  such that 
∗

λ λβ ⊇∩ ∪ … ∪
1 1

(0) \ ( ( ) ( ))
ni i ni iV S S B G B G . Then we have that 

 ∗
λ λ⊆ ⊆∩ ∪ … ∪

1 1
( ) ( ( ) ( ))

ni i ni iV x S B G B G  

 ∗
λ λ⊆ β β∪ … ∪

1 1
( ( ) ( ))

ni i ni iB G B G , 

and since by Theorem 1, iλ  is finite for every i ∈ I , we get a contradiction 
with the initial assumption.  

This completes the proof of the theorem.  
Theorem 3 implies the following 
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Corollary 4. Let S  be a primitive countably compact topological inverse 
semigroup. Then the Stone – Čech compactification of S  admits a structure of 
primitive topological inverse semigroup with respect to which the inclusion 
mapping of S  into Sβ  is a topological isomorphism. 

Remark 3. Theorem 3 and Corollary 4 give the positive answer to the 
Question 1, which we posed in [2]. 

We define the series of categories as follows: 

(i) Let ( ( ))∗Ob B C C T G  be all Hausdorff 0 -simple countably compact 
topological inverse semigroups; 

let ( ))∗Ob B (P C T G  be all Hausdorff pseudocompact topological inverse 
Brandt semigroups; 

let ( )Ob P P C T G  be all primitive Hausdorff pseudocompact 
topological inverse semigroups; 

let ( )Ob P C C T G  be all primitive Hausdorff pseudocompact topological 
inverse semigroups. 

(ii) Let ( ( )))∗Mor B C C T G , ( ( ))∗Mor B P C T G , ( )Mor P P C T G , and 

( )Mor P C C T G  be continuous homomorphisms of corresponding 
topological inverse semigroups. 

Comfort and Ross [6] proved that the Stone – Čech compactification of a 
pseudocompact topological group is a topological group. Therefore the functor 
of the Stone – Čech compactification β  from the category of pseudocompact 
topological groups back into itself determines a monad. Similar result Gutik 
and Repovš proved in [17] for the category of all Hausdorff 0 -simple count-

ably compact topological inverse semigroups ( )∗B C C T G . In the our case by 
Theorem 3 and Corollary 4 we get the same 

Corollary 5. The functor : ( ) ( )∗ ∗β →B C C T G B C C T G  of the Stone – Čech 

compactification (respectively, : ( ) ( )∗ ∗β →B P C T G B P C T G , :β →P P C T G  

→ P P C T G , and :β →P C C T G P C C T G ) determines a monad. 

This research was carried out with the support of the Estonian Science 
Foundation and co-funded by Marie Curie Action, grant ERMOS36. 
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ПСЕВДОКОМПАКТНІ ПРИМІТИВНІ ТОПОЛОГІЧНІ ІНВЕРСНІ НАПІВГРУПИ 
 
Вивчаються гаусдорфові псевдокомпактні примітивні топологічні інверсні на-
півгрупи. Описано структуру таких напівгруп і показано, що тихоновський до-
буток сім’ї псевдокомпактних примітивних топологічних інверсних напівгруп є 
псевдокомпактним топологічним простором. Також доведено, що компактифі-
кація Стоуна – Чеха псевдокомпактної примітивної топологічної інверсної напів-
групи є компактною примітивною топологічною інверсною напівгрупою. 
 
ПСЕВДОКОМПАКТНЫЕ ПРИМИТИВНЫЕ ТОПОЛОГИЧЕСКИЕ ИНВЕРСНЫЕ ПОЛУГРУППЫ 
 
Изучаются хаусдорфовы псевдокомпактные примитивные топологические ин-
версные полугруппы. Описана структура таких полугрупп и показано, что 
тихоновское произведение семьи псевдокомпактных примитивных топологичес-
ких инверсных полугрупп является псевдокомпактным топологическим про-
странством. Также доказано, что компактификация Стоуна – Чеха псевдоком-
пактной примитивной топологической инверсной полугруппы является ком-
пактной примитивной топологической инверсной полугруппой. 
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