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EQUILIBRIUM OF ELASTIC HOLLOW INHOMOGENEOUS CYLINDERS WITH A
CROSS-SECTION IN THE FORM OF CONVEX SEMI-CORRUGATIONS

The paper presents solution of a three-dimensional boundary-value stress problem
of the theory of elasticity for hollow inhomogeneous orthotropic cylinders with a
cross-section in the form of convex semi-corrugations with zones of large
curvature. The boundary conditions at the cylinder ends make it possible to
separate variables along the length. The additional functions are included into the
resolving system of differential equations. These functions enable the variables to
be separated along a directrix using discrete Fourier series. The boundary-value
problem derived for the system of ordinary differential equations is solved by the
stable numerical method of discrete orthogonalization over the cylinder thickness.
The results in the form of plots and tables are presented.

1. Introduction. Problems on the stress state of circular cylinders under
mechanical and thermal loads have been considered earlier by Timoshenko
[16]. In the review of Soldatos [15] it is pointed out that noncircular cylindrical
shells with small or large eccentricity are widely used in aerospace and
mechanical engineering applications. It is also noted that the number of
studies devoted to noncircular cylinders is rather scanty in comparison with
the extended literature on circular cylinders. However, in contrast to circular
cylinders, where in solving the boundary-value problems the dimensionality
may be reduced by representing the resolving functions in the form of
Fourier series along a circumferential coordinate, the problem solution in the
case of noncircular cylinders is complicated, making it necessary to solve a
three-dimensional problem.

Employment of the approaches based on various simplified physical
assumptions is not always justified, making it necessary to consider this class
of problems in a spatial formulation. To obtain a rather accurate solution of
the problem on the equilibrium of noncircular cylinders, it is necessary to
have a particular kind of apparatus combining analytical transformations,
which make it possible to reduce the dimensionality of the problem, and the
stable numerical method of integrating ordinary differential equations.

Of especial interest is study of the stress state in hollow cylinders with
complex-shaped cross-section. In particular, this class of shells includes cylin-
ders with cross-section in the form of joined together convex semi-corruga-
tions such ones as that being addressed in the present paper. In certain works
(e.g., [8]), the semi-corrugations are described by a segment of a sphere or a
segment of a sinusoid, where at the points of conjugation, the discontinuities
of derivatives of these curves hold. This rules out the possibility the condition
of semi-corrugation conjunction to be satisfied. In this connection it is neces-
sary to assign such function that makes it possible to describe the cylinder
cross-section with allowance for continuity of derivatives. In the present
paper we adopt, as such curve, a shortened epicycloid [6] assuming that the
cylinders at the points of conjugation are highly curved.

The present paper presents solution of a new intrinsic problem of the
spatial theory of elasticity for hollow layered inhomogeneous cylinders whose
cross-section has the shape of convex semi-corrugations with zones of large
curvature. The solution of this problem is of great theoretical interest and has
applied importance. In solving the problem, the nontraditional approach with
employment of discrete Fourier series (see [5, 12] and [13]) and stable
numerical method of discrete orthogonalization ([1, 2, 10] and [4]) are used.

2. Problem statement. Let us consider a spatial stress problem for elastic
hollow layered noncircular constant-thickness cylinders with the cross-section
at each point having the form of a shortened epicycloid [7, 14].
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We choose the orthogonal curvilinear coordinate system s, y, vy, where
s is the arc length along a generatrix, y is the polar angle at the cross-
section, y is the normal coordinate along the thickness of the cylinder.

The curve equation at the cross-section of the reference surface is
specified in the parametrical form as follows:

x = (A+a)cosw—?uacos(A;aw),

y:(A+a)sinw—kasin(A;awj, @9)]

where A is the radius of the fixed circumference, a (a > 0) is the radius of
the moving circumference, A <1 is the distance to the radius of the moving
circumference, y is the angular parameter (0 < y < 2n) that makes up the

central angle at the cross-section (Fig. 1). In this case the first quadratic form
can be written as

ds® = ds® + Ay (y,y)dy’ +dy’, 2)
where
Ay (y,v) = Ay = Hy(y, v)o(y), H,(y,y) = Hy =1+ y/R(y),

= (82T (2]

g

Fig. 1 Fig. 2
Here R(y) is the curvature radius of the curve at the cross-section:

3/2
(A+ a)(l + 22 -2\ cos (% \VD

1+xz(A+a)_x(A+2ajcos(éw)
a a a

Let the cylinders be hollow and composed of three rigidly joined (Fig. 2)
(without slip and separation) layers under the uniform load g, = q, sin (ns/{)

R, = R(y) = @)

(g, = const) applied to the external surface. The material of each layer is

inhomogeneous over the thickness and homogeneous along the generatrix and
directrix. According to the conditions of joint operation of the layers the

stresses o,, T, T, and displacements u,, Ug, u,on the interface between

the ¢-th and (i + 1) -th layers should be continuous. Then, at y =y, we have:
i i+l i i+l i i+l

Gy =%y Tsy = Ty Tyy = Tyy o

i il i_ i+l i i+l
u, =u, o, u; =u, o, Uy, = Uy - (5)

Taking into account (1)—(4), we can write the basic equations of the
spatial theory of elasticity, which describe the class of the problems being

considered for the i-th layer, ¢ =0,1,..., P, as follows:

110



— expressions for strains
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— equilibrium equations

A" ot! o
gD 10w +i(H111 )=0,
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oc" . ot OH! .
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— relations of generalized Hooke’s law for an orthotropic body
‘ ; :
'\/ )
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_ i i i i i
e, = @130, + ay30,, + 330,
i i dd i i
€y, = QgqTyy, e = U55Tg, sy = g6T (8)
where for an orthotropic material
i i i i
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for an isotropic material
i i i 1
Ay = Ooy = Qg = —
11 22 33 )
E’L
i
i _ i o _ i _ _V
Oy = Q13 = Qg3 = B
i
i o_ o0 _ i _20+Vv)
Qg = Q55 = Qgg = PP
i i i i i i i i i . .
E, E\v’ Ey, G\w’ Gsy, Gsw, Vyys Vs Vg, are the corresponding elastic

moduli along the coordinate axes, shear moduli, and Poisson’s ratios.

Relations (6)—(8) make up the closed system of partial differential
equations, which describe the stress state of the cylinders being considered in
the domain (0<s<¢, 0<y<2m v, <y<vy,) The boundary conditions on

the outside and inside surfaces of the cylinders are specified as follows:

0 _ 0 _ 0 _ _
GY = 0, TS“/ - 0, T‘VV - 0 at y - Vo ’
c$ =q,, rfy =0, TSY =0 at Y=Y, (10)
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Let us consider conditions for cylinders with simply supported ends:

ci:uf‘,:uizo at s=0, s=/. (11)

As resolving functions, with allowance for the conjugation and boundary
conditions, we choose the stress and displacement components (5;, r;y, rfw,
ul, ul

vr Uso u\lu Upon performing some transformations, from (6)—(8) we obtain

the resolving system of sixth-order partial differential equations with variable
coefficients for each layer in the form

oo, (i -1 1 0Hy ; Oty 1 0%, (1 8Hy)
—L=(cy -1)——2%0 - - = +byy | — ul +
oy H, Oy 7 Os A} Oy H, or) 7
i LaH; ou; ., 1 OH, 0w,
P HD Oy 0s P pial oy oy’
oty 99, 1 OHj i 1 OHy 0wy dug

o " as T mioy v RHlap s M ag

i 2,1
_bi 1 a(l aus)_(bi +bl) 1 6u:,
Caioplal oy) T 4T dsoy

O 199 poHy Li(LaHé ui)_
oy 2ai oy gL oy VT P aloy gl ooy

. . o2l . ou' 0%l
_(bi2+bé6) 1 us b’L 1 0 ( 1 W)_ 1 v

Al Osoy Al oyl oy ) 0 g
i ; ; i
ou, ., ;1 0H, ; ou ;1 04,
oy 4% T i e M T AT T By
Y H: o s Pal oy
. i i 1 1
Ou, it — ou, ou,, gl _Lauv +L6H; ul (12)
— ™55 Vsy ’ T Y44 tyy i ] A
oy 0s oy Al Oy HI Oy
with the boundary conditions (10) and (11), where
bi = 95056 bi = _ a15856
11 — Qi ’ 12 — Qi )
ot o 9
bi = a1,g6 b — a1,a3, — a5
22 Qi ’ 66 — Qi )
Q" = (a;,a), — a53)ag, c; = —(baj; +bjyas;),
c; = —(bf2af3 + b;2a;3), Ci = a:is + Cfafs + c;a;3.

3. Method for solving the problem. Conditions (11) make it possible to
reduce the dimensionality of the problem by separating the variables along
the generatrix and representing the components of the resolving functions
and loads as expansions into the Fourier series along the coordinate s (in what
follows, for simplicity, the index 7 will be omitted):

N
X(s,9,7) = 2 X, (v,y)sink,s,

n=1

N
Y(s,w,7) = D Y, (y,7)cosh,s, (13)

n=0
where
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X = {Gy,tw,uy,u\v,qy}, Y = {rsy,us}, A, = %, 0<s</{.

Substituting (13) in system (12) and boundary conditions (10), (11), upon
separating the variables, we arrive at the two-dimensional boundary-value
problem for the amplitude values of expansions (13).

To reduce the two-dimensional boundary-value problem to a one-
dimensional one, we will use an approach based on the application of discrete
Fourier series. To this end, we change products of the resolving functions and
coefficients that hinder separation of variables along the directrix with new
additional functions (the index n is omitted):

j_ LOoHy | .. .1 0H g
(Pl H2 a,Y GV’TSY,uV’uS,HZ a’Y uy ) J ;---757

_ 1 OH, )
% =g, oy Ceited

i=12,

Jo_ 1 aG}’.au\’.aus .

(p?, A Y AL AL A (0 ]_17273’
A, | oy oy’ oy

0] _1 0Ty, Ouy .1 0H, ou,,

Ay | oy "oy 'H, oy Oy

}, j=123, (14)

-1 0 -1 0 10 2
¢5 = A, oy P Qg A, oy P3Oy A, oy Py -

Thus, the resolving system of equations with the additional functions
becomes:

o, 1 1 5 4 3
R (o =Dy + Ay, Ty = Oy + by + biyh, 07 + b0,

Oty _ A 2 2 2 nod % ol
&y - —¢ A, 0, + by A U — 07 = biph, 07 — b — (by + bgg )L, 0,
0Ty, — b2 1 1 s
6_y = bggh,, Uy, = CoP3 = 205 — byy®s — (byy + bgg ), @5 — byy 7,
ou,
6_yy =00, + U, — c2(pi - c2(pf ,
ou auw 2 2
WS = 55Ty, — Knuy, W =ayT, — 03 + ¢, (15)
with the boundary conditions
c,=0, 1,=0 1,=0 at Y=Y,
G, =4q,, Ty =0, Tyy =0 at Y=Yp- (16)

Including additional functions (14), we arrive at the system of equations
whose coefficients formally are independent of the coordinate y that makes

it possible to separate the variables along the directrix by representing the
resolving functions, additional functions, and load components in the form of
expansions into Fourier series along the directrix:

K K
X(y,7) = Y X, (y)cosky, Y(y,y) = DY, (y)sinky, (17)
k=0 k=1
where
X ={c,, 7%, u,0],0}.96,0,} Y ={t,,.u,.0},0},0;,0,}.
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After substituting expansions (17) into the resolving system of equations
(15) and corresponding boundary conditions (16) and separating the variables,
we arrive at the system of ordinary differential equations with respect to the
amplitude values of expansions (17):

do
Y.k 1 1 5 4 3
dy =(Co =Dy p + A To o = Py g T bos @y g + 0ok, @15 + bos @l g,

dr

sy, k 2 2 3

“dy == A0, F by U — 07 — by, 07 —
2
= bgePs . — (byy + bgg ), Py »

dr

vy,k 2 1 1 3

dy =bggh,, Uy e~ CoP3 e = 209 1 — byo®5 5 — (byy +bgg Ay @35 — baa®q
du

.k 2 3

“dy = €0, 5 + O A UG — CoPlp — CoT g
dus’k
&y %otk T Aty g
du,,

d“;’ = Q4T — O3 + 03 K=0,...,K, (18)

with the boundary conditions

Y=7: Oy = 0, Ty = 0, Tyy ke = 0,
Y=7%p: Oy =i Ty =0, Typ =0. (19)

Equations of system (18) are integrated simultaneously for all harmonics
of expansions (17).

The amplitude values (pin’k of additional functions which enter into (18)

are calculated by integrating system (18) at each step for y = const using the

current values of the resolving functions. The relations that define the con-
nectedness of all the equations of system (18) take the form

0l = 0L 10, Ty iU sy G=1,5,
0y = 0 vty ) T=12,

(Pé,k = (Pg;,k {vio, s, isug ek, j=123,
0L = LV Ty %y b 1123,

P5p = (P5,k{y;uy,£}7 Pere = ‘P6,k{Y§us,e}’

(P7,k = (p7,k{y;uw’é}y { = 0,...,K . (20)

Equations of system (18) are integrated by the stable numerical method
of discrete orthogonalization using the Runge—Kutta method with orthogona-
lization of the solutions at separate points of the interval y, <y <y,. Values
of the additional functions are calculated by expressions (14) at each
succeeding step of integration at certain points on the interval [0, 2n]. The
discretely specified functions derived in such a way are used to construct the
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Fourier series whose amplitude values are substituted into the resolving
system of equations (18) after which the next step of integration is conducted.
At the beginning of integration, using the associated values of the resolving
functions with (19), the amplitude values of additional functions are de-
termined.

The approach, which involves the discrete-orthogonalization method and
the discrete Fourier series, makes it possible to solve problems rather
accurately since, as the number of points, where values of additional functions
are calculated, increases, the discrete Fourier series becomes progressively less
distinguished from the exact Fourier series [9]. The convergence of the
solutions of the equilibrium problem for cylinders of a complex-shaped cross-
section obtained with the above approach, depending on the number of points
of orthogonalization, points, at which tabulated values of additional functions
(14) are calculated, and on the number of terms retained in expansions (17),
was demonstrated in [12].

4. Numerical results and discussion. Based on the above approach, we
will analyze the stress state of hollow three-layered cylinders, which have a
cross-section in the form of convex semi-corrugations, under the uniform load
q, =q sin(ns/f), q, = const. The cylinder thickness H is h; + h, + h;, where

h, and h; are the thicknesses of the internal and external layers, res-
pectively, h, is the thickness of the middle layer. The problem is solved for
h, =h; =2, h, =4, and the cylinder length ¢ =60. The parameters of the
cross-section of the shortened epicycloid (Fig. 1) are equal to: A=16, a =2
and a =4, y=04. At first, we will consider the problem involving cylinders
with isotropic layers, when the elastic moduli of the external and internal
layers are E, = Ev = E;, the elastic modulus of the middle layer is E\u =dE,

(d =0.1, 0.25,0.5,1.0). For all the layers we used Poisson’s ratio v =0.3. In
the second case, the middle layer is orthotropic with the following parameters
[7]: E; =3.68E,, E, =268E,, E =11E,, v, =0105, v, =0405, v =

vy
=0431, G,, = 05E,, G, =045E,, G, =041E,.

Results of the problem solution are presented in Fig. 3—5 and Tables 1-3.

Fig. 3a,b show the distributions of stresses o, along the cylinder directrix on

the external and internal surfaces for a =2 and a = 4. Here, in the case of
isotropic material, solid lines with symbols correspond to the external surface,
without symbols to the internal surface, dashed ones to the middle orthotropic
layer. In Fig. 3a, the curves are presented in the interval 0 <y < n/8, in
Fig. 3b in the interval 0 < y < /4.

Fig. 3a, b shows how the inhomogeneity of the structure, mechanical
properties of the material, and corrugation frequency affect the distribution
of stresses along the directrix. As it is seen from Fig. 3a, the stresses o, peak

at y =0 on the external surface of the cylinder with the middle soft isotropic
layer for d =0.1 and are minimum when this layer is orthotropic. The
stresses o, on the internal surface peak at y = n/8 demonstrating the same

dependency as on the external surface. The similar situation holds at a =4
(Fig. 3b). It should be noted that the stresses have peaked values in cylinders
with the orthotropic middle layer, homogeneous and with isotropic soft
middle layer in the following ratios: 1) on the external surface at a =2 as
0.59:1:1.71; 2) on the internal surface at a =2 as 0.71:1:1.54; 3) on the
external surface at a =4 as 0.79:1:1.89; 4) on the internal surface at a =4
as 0.74:1:1.72.
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a) b)
Fig. 3. Distribution of stresses Gw/qo along the directrix on the internal and external

surfaces of the cylinder for various values of a .

From the plots and relations presented it follows that values of the stres-
ses on the external surface of the isotropic cylinders weakly depend on the
corrugation sizes (in this case a number of corrugations decreases) whereas in
the cylinders with the orthotropic middle layer they increase significantly.
However, the difference on the internal surface reaches 20—30%. The mini-
mum values of the stresses increase almost by a factor of 1.5, whence it fol-
lows that the load in the cylinder with eight corrugations (a =2) is distri-
buted more uniformly than in the cylinder with four corrugations (a = 4).

As for the distribution of stresses c, over the cylinder thickness (see

Fig. 4 and 5, notation is the same), it should be noted the following. Fig. 4a,b
show the distributions of stresses for a=2 and a=4 at the valley of the cor-

rugation (y =0), where they take maximum values. From Fig. 4a we can see

that the stresses for three variants of the middle layer up to the middle thick-
ness are equal to zero and peak (compressive stresses) on the upper boundary
of the middle layer (y =2), the stress reaches the largest value at d =0.1.

G\u/ 9 G\u/ 9
=9 F =4
I a=2] ol a=4]
0
-20 -
-40 -
80 L | d=0.1 |
4 2 0 2 Y 4 2 2 Y

- - 0

a) b)

Fig. 4. Distribution of stresses csw/q0 over the cylinder thickness at the corrugation valley
for various values of a .

If a=4 (Fig. 4b), the character of the stress distribution over the
cylinder thickness changes. At y = —2, the stresses on the lower boundary of
the middle layer by this time are nonzero and reach the half of the peak
values on the upper boundary of the middle layer at y = 2. The stresses peak
reaches in the case of a soft layer at d =0.1.

The differences in the stress distributions at a =2 and a = 4 are caused
by the influence of corrugations.
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Fig. 5. Distribution of stresses Gy /q, over the cylinder thickness at the corrugation apex

for various values of a .

6\|//qO

Fig. ba,b demonstrate how the stresses oy are distributed at the apex of
the corrugation at a =2 and a =4. From Fig. 5a it is seen that the stresses
peak at the corrugation apex (y ==m/8) on the internal surface at y =4,
where the largest one corresponds to the cylinder with a soft middle layer for
d =0.1. As the distance to the inner surface increases, the stresses decrease

and increase slightly on the upper boundary of the middle layer at vy = 2.

From Fig. 5b it follows that for a =4 the stress distribution pattern over
the cylinder thickness at the corrugation apex (y = n/4) remains close in the
form to that for a =2, but stresses increase roughly by a factor of 1.5. As it
is seen from Fig. 4 and 5, the maximum stresses hold in the cylinder with a
soft middle layer in the corrugation valley for d = 0.1 and a = 2.

Table 1
o, -10/q,
a = a=4

d H v n/32 2n/32 | 3n/32 | n/16 | 2m/16 3n/16
—4 | 32.31 22.26 40.64 | —1.55 | 47.89 87.29

-2 | 62.00 15.37 6.47 60.68 44.31 31.38

0.1 0 7.06 3.55 4.26 6.63 7.72 7.36
2 | 46.95 38.04 31.40 29.85 60.63 49.17

4| 51.78 51.36 30.39 95.75 46.13 28.30

—4 | 35.28 23.80 37.81 9.67 44.79 74.29

—2 | 54.67 17.02 13.84 40.85 41.17 41.20

025 0| 13.85 5.87 7.32 11.70 13.37 12.59
2 | 45.81 32.57 26.08 40.63 48.99 36.69

4 | 44.89 44.23 26.90 73.81 41.31 26.07

—4 | 3441 22.38 33.31 9.75 37.75 63.71

-2 | 45.12 16.36 17.15 28.79 35.89 41.36

0.5 0| 22.54 8.88 11.22 18.06 20.30 18.97
2 | 44.05 27.28 21.54 41.04 39.95 28.90

4| 39.32 38.27 23.53 61.72 36.67 21.79

—4 | 27.56 18.57 27.37 5.31 28.16 51.64

-2 | 33.85 13.71 17.00 18.01 27.89 35.35

1 0 | 34.55 12.96 16.48 26.33 29.28 27.20
2 | 40.01 21.08 16.62 36.65 30.89 21.32

4| 32.99 31.47 19.31 51.13 30.44 16.17

—4 | 13.46 9.49 1949 | —5.81 14.18 35.13

-2 | 19.24 7.40 10.20 6.64 14.74 21.46

ort 0| 53.67 21.06 26.37 39.53 43.84 40.34
2 | 25.56 11.78 9.24 23.87 18.16 10.22

4| 23.60 20.44 10.81 38.02 18.29 6.05

117



Table 1 presents values of stresses o, over the cylinder thickness for
a =2 within the interval y/32 <y < 3y/32 and for a =4 within y/16 <y <
< 3y/16. The Table 1 shows how stresses G, vary depending on the struc-

ture inhomogeneity and cylinder corrugation.
Table 2

u,Ey/q, tfor a =2

a INYl o | w32 | 2n/32 | 3n/32 | 4n/32

—4 | 5341 | 51.09 47.12 45.48 45.49
—2 | 52.90 | 50.57 46.61 45.02 45.05
0.1 0| 53.63 | 53.55 53.27 52.89 52.70
2 | 62.27 | 60.63 58.30 58.26 58.91
4 | 4718 | 53.19 60.95 59.14 55.59
—4 | 49.20 | 47.59 45.25 45.11 45.70
—2 | 48.54 | 46.96 44.67 44.54 45.12
0.25] 0] 47.64 | 4740 | 4727 47.78 48.18
2 | 51.86 | 50.58 | 49.09 49.85 50.82
4 | 39.71 | 44.65 51.39 50.81 48.42
—4 | 4247 | 4140 | 40.16 40.80 41.61
-2 | 41.83 | 40.80 39.60 40.18 40.95
0.5 0| 40.87 | 40.64 | 40.64 41.44 42.01
2 | 43.28 | 42.28 | 41.28 42.28 43.28
4 | 33.54 | 37.59 43.32 43.33 41.66
—4 | 33.68 | 33.01 3241 33.24 34.00
—2 | 3319 | 32.55 31.95 32.64 33.30
1 0] 3249 | 32.26 32.22 32.88 33.36
2 | 33.74 | 33.01 32.32 33.14 33.93
4 | 26.60 | 29.68 34.12 34.31 33.15
-4 | 21.29 | 20.73 19.79 19.43 19.46
=2 | 21.20 | 20.66 19.60 18.91 18.74
ort 0 20.20 | 19.82 18.84 17.79 17.33
2 ] 19.85 | 19.15 17.77 16.84 16.59
4] 16.15 | 17.72 19.47 18.37 17.08

Tables 2 and 3 summarize values of the displacements u, over the

cylinder thickness for a =2 within the interval 0 < v < /8 (Table 2) and for
a=4 within 0<wy<mn/4 (Table 3) with the isotropic middle layer at
d =0.1,0.25,0.5,1.0 and with the orthotropic middle layer. In this case it can
be noted, as it follows from Tables 2 and 3, that values of the maximum
displacements for the cylinders with the soft middle layer for d =0.1 at a =2
are in the ratio as 0.59:1:1.8 while at a =4 as 0.71:1:2.6, i.e. they become
more pliable in such sequence.

In solving the above problems with construction of the discrete Fourier
series for additional functions, we found their values at 80 points taking into
account the first 15 harmonics. In this case, to get a stable result by the

numerical method used, we adopted 41 orthogonalization points.
Table 3

u,Ey/q, for a =4

d 0 n/16 | 2m/16 | 3m/16 | 4m/16

—4 | 205.73 | 183.28 | 143.74 | 93.68 69.14
—2 | 206.31 | 183.35 | 142.72 | 91.49 66.55
0.1 0 | 206.51 | 189.30 | 150.56 | 100.97 | 78.04
2 || 215.84 | 200.74 | 156.89 | 107.53 | 85.67
4 | 214.24 | 198.61 | 155.11 | 106.40 | 84.98
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—4 | 141.60 | 12943 | 11032 | 85.71 73.53
-2 | 142.04 | 12949 | 109.28 | 83.45 70.82
0.25) 0| 14151 | 131.24 | 111.38 | 86.27 74.28

2| 14446 | 134.85 | 112.81 | 88.56 77.00

4 | 14292 | 133.05 | 11153 | 88.08 76.96
—4 | 108.28 | 100.58 | 89.18 73.46 65.39
—2 | 108.83 | 100.78 | 88.27 71.33 62.80
0.5 0] 10853 | 101.33 | 88.57 71.81 63.48

2 | 109.29 | 10233 | 88.65 72.58 64.51

4| 10791 | 100.84 | 87.81 72.59 64.94
-4 | 8173 76.60 68.72 56.88 50.62
-2 | 8250 77.01 68.03 55.04 48.33
1 0| 8247 77.14 67.68 54.57 47.87

2 | 82.25 77.03 67.31 54.71 48.21

4] 8113 75.93 66.97 55.23 49.13
—4 | 5747 53.05 44.10 31.15 24.52
-2 | 5856 53.77 43.73 29.81 22.78
ort 0| 5861 53.45 42.19 2745 20.13
2| 56.18 51.23 40.11 26.15 19.18
4| 5539 50.84 40.60 2748 20.87

Thus, variation in cylinder characteristics makes it possible to choose
rational parameters of similar elements of structures.

Conclusions. In conclusion we can note the following. The approach
proposed provides an effective tool for constructing solutions of the three-
dimensional boundary-value problem concerning equilibrium of hollow
noncircular inhomogeneous cylinders of intricate cross-section. For this case
we used the Fourier series method for discretely specified functions and
stable numerical method of discrete orthogonalization. This approach allowed
us to solve the problems for hollow cylinders of various cross-sectional shapes.
Besides, the approach being based on a continuous scheme makes it possible
to obtain relatively accurate approximate solution. This problem can not be
solved by projective or variational methods. The approach was validated in
solving problems for single-layered isotropic cylinders with corrugated
circular [11] and elliptical [3] cross-sections. The possibility to employment the
proposed approach to the solution of problems of the given class has been
illustrated by a number of examples. The solution obtained falls in the
category of exact solutions of the theory of elasticity which first of all serve
as a basis for construction and evaluation of the reliability of applied
mathematical models and design schemes as well as for development and
estimation of the accuracy of the approximate methods for calculating
elements of structures.
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PIBHOBAT A MPYXXHUX NOPOXHUCTUX HEOOAHOPIAHUX LUNIHAPIB 3 MOMNEPEYHUM
MEPEPI3OM Y BUMMAOI ONYKNUX HAMIBFrO®PIB

Hagedeno po36’sa30Kk mMpusumiproi Kpaitogoi 3adaui meopii MPYIHOCML NPo HANPY*ce-
HUU CMAH MOPOHCHUCTUX HEOOHODPIOHUXL OPMOMPONHUX YUATHODIE 3 nonepeyHum me-
pepizom Yy 8uzasidi ONYKAUX HANI820PHPI8 13 30HAMU 3HAYHOT KPUBUIHU. ['DaHUYHI YymO8U
HA MOPYAX YuriHOpa 003804810Mb 8i00KPeMUMU 3MIHHT 8 HANPAMKY 008HCUHU. ¥ PO3-
8’a3ysanvry cucmemy OuPepenyianbHuxr PieHAHD 8800AMbCA OONOBHANLHI PYHKYIL, AKI
0ozgoastomsb 8i0oKpemumu 3MIHHE 83008HC HANPAMHOT 34 PAXYHOK BUKOPUCTMAHH Ouc-
Kkpemnux padie dyp’e. Ompumana kpavosa 3adaua Oas cucmemu 38udatinuxr ougeper-
YIAABHUX PIBHAHD P03 AZYEMBCA CMIUKUM YUCEABHUM Mmemodom OUCKPemMHOT 0PmMoeo-
HaAI3aYil o Mmoswuri yuaindpa. Hagodamuvesa pesysvmamu pose’sa3anHsa 3adaui y eu-
280t epagixie © madbAUYb.

PABHOBECHME YMNPYI'nX nonbiX HEOQHOPOOHbIX LUUWNTMHAPOB C NOMEPEYHbLIM
CEYEHMEM B BUOE BbIMNYKIbIX NONYrO®POB

ITpedcmasaeno peweHue mpexmepHol Kpaesol 3adauu Meopulu Ynpyzocmu O HANPS-
HCEHHOM COCTMOSAHUU NOABLL HEOOHOPOOHBLL OPMOMPONHBLLL YUAUHOPOS C NONePeUHbLM
ceuenuem 8 sulde BHINYKABLL MOAY20(HPO8 € 30HAMU 00ALWOU KPUBUIHDBL. ['panuunvle
YCA0BUS HA MOPUAX YUAUHOPA MOo380aA10M pasddeiumds nepemennsvie no Oaune. B pas-
pewaowyro cucmemy OuPPepeHyUILbHBLE YPasHeHU 8800AMcs O00NoAHUMEAbHbLE
PyrryuU, KOmopsvle no3goasitiom paszdesumds nepemenHble NO HANPasAsiowel 3a cuem
ucnoav3osarus duckpemuwvixr pados Pypve. Iloayuennas kpaesas 3adaua Oas cucmemsl
00bIKHOBEHHBLL OUPPePeHUUALBHBLL YPABHEHUU Peulaemcs YcmoUtuuusblm YUCACHHBLM
memodom OUCKPEMHOU OPMOOHAAU3AYUU NO  MmoswuHe yuauropa. IIpusodamesa
pes3yavmamsl peweHus 3adauu 8 sude 2paguros u madaiuy.
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