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CONGRUENCES ON THE MONOID OF MONOTONE INJECTIVE PARTIAL
SELFMAPS OF L, x ,..Z WITH CO-FINITE DOMAINS AND IMAGES

n

lex) Of monotone injective partial

We study congruences on the semigroup J0, (Z

selfmaps of the set of L, x . .Z having co-finite domains and images, where

L x
n

with the usual linear order. The structure of the sublattice of congruences on

exZ s the lexicographic product of n -elements chain and the set of integers

90, (Zy,,) which contain in the least group congruence is described.

We follow the terminology [6, 7] and [8]. We shall denote the additive
group of integers by Z(+).

An algebraic semigroup S is called inverse if for any element x € S
there exists a unique x ' €S such that xx 'z =x and ax'xax™ =x'. The

element ' is called the inverse of x € S.If S is an inverse semigroup, then
the function v : S — S which assigns to every element x of S its inverse

element x! is called an inversion.

If ¢ is an arbitrary congruence on a semigroup S, then we denote by
®, : S —> S§/¢ the natural homomorphisms from S onto the quotient
semigroup S/€. A congruence ¢ on a semigroup S is called non-trivial if €
is distinct from universal and identity congruences Ag on S, and group if the
quotient semigroup S/€ is a group. Every inverse semigroup S admits the
least (minimum) group congruence G :

acb if and only if there exists e € E(S) such that ae = be
(see [8, Lemma III1.5.2].)

If S is a semigroup, then we shall denote the subset of idempotents of
S by E(S).If S is an inverse semigroup, then E(S) is closed under multipli-

cation and we shall refer to E(S) as a band (or the band of S ). If the band
E(S) is a non-empty subset of S, then the semigroup operation on S deter-
mines the following partial order < on E(S): e < f if and only if ef = fe =e.
This order is called the natural partial order on E(S). A semilattice is a com-

mutative semigroup of idempotents. A semilattice E is called linearly ordered
or a chain if its natural order is a linear order. A maximal chain of a semi-
lattice E is a chain which is properly contained in no other chain of E.

If S is a semigroup, then we shall denote the Green relations on S by
R, ¥, I, D and H (see [2, Section 2.1]):

aRb if and only if  aS' =bS*,

a?b if and only if ~ S'a =S,

a.9b if and only if  S'aS! = S'bS!,

D=FoR=RY,

JH=FLNR.
A semigroup S is called simple if S contains no proper two-sided ideal, ie,
S has a unique . -class, and bisimple if S has a unique % -class.

If a: X —Y is a partial map, then by doma and ranoa we denote the
domain and the range of a, respectively.
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Let .4, denotes the set of all partial one-to-one transformations of an
infinite set X of cardinality A endowed with the following semigroup opera-
tion: x(ap) = (xa)p if x € dom(ap)={y € doma |yo € domB}, for a,Be.g .
The semigroup .4, is called the symmetric inverse semigroup over the set X
(see [2, Section 1.9]). The symmetric inverse semigroup was introduced by
Wagner [1] and it plays a major role in the theory of semigroups. An element
o € 4, is called co-finite, if the sets A\dom o and A\rano are finite.

Let (X,<) be a partially ordered set. We shall say that a partial map
a: X — X is monotone if x <y implies (x)a < (y)a for each x,y € X.

Let Z Dbe the set of integers with the usual linear order «<». For any
positive integer n by L, we denote the set {1,...,n} with the usual linear

order «<». On the Cartesian product L, xZ we define the lexicographic
order, ie.,
(z,m) £ (j,n) if and only if (i<j) or (=7 and m <n).

Later the set L, xZ with the lexicographic order we denote by L, x  Z.

Also, it is obvious that the set Z x L, with the lexicographic order is order
isomorphic to (Z,<).

By J0,(Z},) we denote a semigroup of injective partial monotone

selfmaps of L, x . Z with co-finite domains and images. Obviously,

n

IO, (Z1,) is an inverse submonoid of the semigroup 4, and J0,(Z}.) is a

countable semigroup. Also, by J0 (Z) we denote a semigroup of injective
partial monotone selfmaps of Z with co-finite domains and images.

Furthermore, we shall denote the identity of the semigroup 40, (Z},,) by
I and the group of units of .40, (Z]..) by H(I).

lex

Gutik and Repovs in [5] showed that the semigroup Jw/ (N) of partial co-
finite monotone injective transformations of the set of positive integers N has
algebraic properties similar to those of the bicyclic semigroup: it is bisimple
and all of its non-trivial semigroup homomorphisms are either isomorphisms
or group homomorphisms.

In [4] Gutik and Repovs studied the semigroup .Z{ (Z) of partial co-finite
monotone injective transformations of the set of integers Z and they showed
that Jw/ (Z) is bisimple and all of its non-trivial semigroup homomorphisms

are either isomorphisms or group homomorphisms.

n
lex

In the paper [3] we studied the semigroup 40, (Z,. ). There we described

) is bi-
simple and established its projective congruences. Also, there we proved that

Green’s relations on J0,_(Z, ), showed that the semigroup .40, (Z].

lex lex

J0,(Z1.,) is finitely generated, every automorphism of J0, (Z) is inner and

n

showed that in the case n =2 the semigroup 0, (Z,,
morphisms. In [3] we proved that for every positive integer n the quotient

) has non-inner auto-

semigroup 40, (Z}. )/o, where o is the least group congruence on

lex
g0, (7"

lex ) » 18 isomorphic to the direct power (Z(+))2".

n
lex

By Proposition 2.3 (iv) [3], the semigroup $0, (Z,, ) is isomorphic to the

direct power (40, (Z))". Fixing this isomorphism further we shall identify
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n

elements of the semigroup $0, (Z,

) with elements of the direct product
(J0,(Z)", ie., every element o of S0, (Z],) we present in the form
(04, 0y,...,0,), where all a, belongs to J0,(Z). Later by o; we shall denote

the element with the form (I,...,I, ;,a;,I .,1,,), where ]Ij is the identity

oo Qg dygs e

of the j-th factor of (J0,(Z))" for all j and o, € (S0, (Z)). It is obvious that

o

for every a = (ay,...,a,) € IO, (Z;; .

lex) We have that o =aj...a

For every 7 =1,...,n we define a binary relation G[;) on the semigroup
J0,(Z1,,) in the following way:

occ[i]B if and only if there exists an idempotent

ee IO (ZL,) such that ag; = Pe;.

lex

n

lex) for every =

In [3] we proved that o[y is a congruence on J0 _(Z
=1,...,n. Also, there is shown that for any subset {i,...,7,} < {l,...,n} of

distinct integers, the relation o, =0} °.-°0p, ) Is a congruence on

)"°7ik]
J0,(Zy.,) and is described the properties of the congruence Oliy,..ip] (S€€

Propositions 2.11-2.13, 2.15 and 2.18 in [3]). Moreover, o, , is the least

group congruence on the semigroup 40, (Z.,).

For every i =1,...,n we define a map n' : .40, (Z',) — J0,(Z,) by the

lex

formula (o)n' = a;, ie, (04,...,0;,...,0,)n" = {,....,L_;,a,L.,...,I ). Simple

verifications show that the map = 290, (Zy,) > I0,(Zy,,) is a homomor-

n

phism. Let % be the congruence on the semigroup 0, (Z,,,

) which is gene-

rated by the homomorphism 7’.
Let S be an inverse semigroup. For any congruence p on S we define a

congruence p_, on S as follows:
ap,i,b if and only if ae =be for some e e E(S) and epa"lapb_lb

(see [8, Section IIL.2]). Then Proposition 2.17 from [3] implies that
j #
T, = Opyy ©+++© Opi_1) © Opiyq) ©---© O

n]

for every i =1,...,n.
This paper is a continuation of [3] and we study congruences on the semi-

group J0,(Z}.,.). Here we describe the structure of the sublattice of

n

congruences on Y0 _(Z,,

) which contained in the least group congruence.
For arbitrary elements o =(a,,...,a,) and B =(B;,...,B,) of the semi-

n

group S0, (Z,,
D,s={ie{l,...,n}|o, #B,}.

It is obvious that elements o,B € .40, (Z., ) are equal if and only if D,s = .

lex

) we define:

Lemma 1. Let € be a congruence on the semigroup 40, (Z7.. ). Let o and

lex

be two distinct € -equivalent elements of the semigroup S0 _(Z}.). Then
0 lex

there exists an element o in JO,(Z}..) such that I€o and D, = Da,B.



n
lex

P r o o f. By Proposition 2.3 (iv) from [3] the semigroup 0, (Z,) is
isomorphic to the direct power (S0, (Z))". We denote a = (a,...,a,) and B =
= (By,..-,B,)- Then for every ¢ e D,; we have that o, # ;.

We fix an arbitrary i € D,;- Then one of the following cases holds:

1) o, /B, in IO, (Z);

2) o, and B, are not J -equivalent in S0, (Z).

Suppose that case 1) holds. By Proposition 2.3 from [4] the semigroup
JO_(Z) is bisimple and hence by Theorem 23 from [2] there exist
Y;,0; € $0,(Z) such that n;, =v,0,9, and (, = y,B,0, are distinct elements of
the group of wunits of the semigroup ¢, (Z). Then we have that
n;lni = n;lyiaiéi =1, is the wunit of the semigroup J0_(Z) and
n;'¢; = n;'v;B,8, # I,. Hence, without loss of generality we can assume that
there exist elements y, and J, of the semigroup .40, (Z) such that
v,0,6, = I, is the unit of 40 _(Z) and y,3,5, #I,.

Suppose that the elements o, and B, are not J -equivalent in S0, (Z).

Then by Proposition 2.1 (vit) from [4] we have that at least one of the fol-
lowing conditions holds:

doma, # dom§, or rano, # ranf;.

Since every subset with finite complement in Z is order isomorphic to Z we
conclude that there exist monotone bijective maps vy, :Z — doma; and

d; :rana; — Z. Then we have that y,0,9; is an element of the group of units
of the semigroup J0,_(Z), because dom (y,a,d;) = ran(y;a;0,) =Z.
Suppose we have that domoa, # domf,. If there exists an integer ke

€ doma; such that k¢ domp;, then (k)yi_1 e dom (y,;0.) and (k)y;le‘

i%:0;
¢ dom (y,B,8,). If there exists an integer k € domp,; such that k ¢ doma,,
then (k)yi_1 € dom (y,B,8,) and (Ic)yi_1 ¢ dom (y,0,9;). Therefore, we get that
dom (y,B,6,) # dom (y,a,9;).

Suppose we have that rano, #ranp,. If there exists an integer ke
erana; such that keranf;, then (k)§, eran(y,0,d;,) and (k)J, ¢
¢ ran(y,B,;0,). If there exists an integer k € ranf, such that k ¢ rana,, then
(k)5 eran(y,;6,) and (k)d, ¢ ran(y;a;6,). This implies that ran(y,3;5,) #
# ran(y,;a;0,).

Since every translation on an arbitrary element of the group of units of

the semigroup J0, (Z) is a bijective map of the set of integers Z, without
loss of generality we can assume that the element y 0,8, is the unit of the
semigroup S0, (Z).

Next, we define elements y = (y,,...,7,,) and & =(5;,...,8,) of the semi-

n
lex

group J0,(Z) in the following way. For ¢ e D, ; we define y, and 5, to
be the elements of the semigroup .0, (Z) so constructed above. For ¢ e
e{l,...,n}\Dm[3 we put vy, and §, are the elements of the semigroup
J0,(Z) such that y,a,8, =v,8,0, =1, is the unit of the semigroup S0, (Z).
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The existence of so elements vy, and §, in J0_(Z) follows from Theorem 2.3

from [2] and the fact that the semigroup J0, (Z) is bisimple (see [4, Propo-

sition 2.3]).
Hence we get that

yad =1, o=yBd=#1 and oCl in IO, (Z1.,) -
Moreover, our construction implies that Dy , = D,;s- ¢

Lemma 2. Let € be a congruence on the semigroup J0,(Z,, ). Let o and

B be two distinct € -equivalent elements of the semigroup J0,(Z},. ). Then

there exists an element v in 40, (Z}.,) such that 1€y, D

lex

Ly =Dyp and

elements I and y are not J -equivalent in IO, (Z1.,) .
Proof If o and B are not J# -equivalent elements of the semigroup
J0, (2}

lex

), then by case 2) of the proof of Lemma 1 we obtain that
I¢w = yBd and the elements I and ® are not J -equivalent in .40, (Z]..).

lex

Next, we suppose that a. B and put o =(o,,...,a,) and B =(B,,...,B,).
Then by Proposition 2.3 from [4] the semigroup $0, (Z) is bisimple and hence
by Theorem 2.3 from [2] for every i =1,...,n there exist y,,5, € $0,(Z) such
that y,0,8, =1, is the unit of the semigroup 40, (Z) and y,8,;5, # I, for each

ieD,g. Since o/ and by Proposition 2.3 (v) from [3] the semigroup
J0 (2}

lex) 1s isomorphic to the direct power (90,(2))" we conclude that

y,B,8;, is an element of the group of units of J0,(Z) for each ¢ e{l,...,n},
and moreover 78,8, =1, = y,a,8;, for any 7 e {1,...,n}\ D,s-

We denote y =(y;,...,7,) and 6=(3,...,6,) and put @ =(z,...,2,)=
= yBS. Then we have that D, =D; . Also the relation a/'B implies that

I#x, and since J0,(Z].,) is an inverse semigroup we get that I#&™ for

every integer m. By Proposition 2.2 from [4] the group of units of the
semigroup J0, (Z) is isomorphic to Z(+). Hence, this implies that without loss

of generality we can assume that (p)z; = p+m;, where m, # 0, for every
1€ Da,B

Next, for every integer ¢ =1,...,n we define a partial map y, : Z = Z in
the following way:

(a)if 1€{1,...,n}\ D,g, then we define y, : Z — Z be the identity map;

(b)if ieD,; and m; >1, then we define domy,; =Z, rany, =Z\{1,...,m;}

and
k+m;, it k>1,
(o: = {k if k<0,
(c)if ieD,, and m; <-1, then we define domy,; =Z, rany, =Z\{m,,...,-1}
and
k, it k>0,
(oo: = {k +m,, if k<-1
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We put y =(x,-..,%,)- The definition of the semigroup J0,(Z},) implies
1 n

that y and its inverse y~ lex

are elements of J0, (Z,,). Simple verifications

show that I=yy ' =yIx'. Also, since ¢ is a congruence on the semigroup
J0, (2}

lex

) we conclude that T = yIy ‘¢yay .
Now simple calculations imply that
(#)if m; > 0 then

k+m,, if k>1,
(k)y,®;x;" = {undefined, if -m, <k <0,
k+m,, it k<-m,

and similarly
(#1)if m; <0 then

k+m,, it kz-m,
(k)xiaeixlfl = <undefined, if 0<k<-m,
k+m,, if k<-1.

Next we put y = y2y *, and hence we obtain that I¢y but domy # Z.

This completes the proof of our lemma. ¢
Remark 1. The proof of Lemma 2 implies that for element vy =

=(y,,...,V¥,) the following property holds:
vy, is not J€ -equivalent to the unit of the semigroup S0, (Z) for

every i €D, g.

Proposition 1. Let € be a congruence on the semigroup J0,(Z,. ). Let a

and B be two distinct € -equivalent elements of the semigroup J0,(Z..) .

Then there exists a mon-unit idempotent ¢ in J0,(Z;,, ) such that I€e and
D, =D,;.
P r oo f. Lemma 2 implies that there exists an element y of the semi-

n
lex

group J0, (Z,,, ) such that yCI, D;,, =D,g and elements I and y are not

n
lex

JC -equivalent in YO, (Z;,, ). Also, by Remark 1 for every integer ¢ e D, the

element v, is not J -equivalent to the unit I, of the semigroup J0_(Z).
This implies that for every integer teD,; at least one of the following
conditions holds:
VRTSE or vily, 21, in S0 (Z).
Since J0,(Z},,) is an inverse semigroup we have that I¢y ™. This
implies that I€yy ' and I€y 'y, and hence we get that IC€e, where
€= \u\y_l\u_lw. The above arguments show that D, = D,s- ¢

Proposition 2. Let € be a congruence on the semigroup J0,(Z}.. ). Let a

and B be two distinct € -equivalent elements of the semigroup J0,(Z1..).

lex
Then ICe for any idempotent ¢ in S0, (Zy,,) such that Dy, =D

o,p
P r o o f. By Proposition 1 there exists an idempotent & of the semi-

n
lex

group J0,(Z.) such that I€¢ and D; =D, ;. We fix an arbitrary non-unit

idempotent t e S0, (Z, ) such that e <t in E(J0,(Z},,)). Then we have that

lex
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7l =t and hence the relation I€e implies that t = tl€te = ¢€l. Therefore, for

every ieD,; there exists an idempotent &; such that &I and the set
Z \ domg; is singleton. We put {m,} =Z\ domg; for every integer i e D ;.
We fix an arbitrary integer p, for ie D,g and define the map p,:Z > Z
by the formula:
(Gp; =j—m,; +p, for every jeZ.

Then p, is an element of the group of units of the semigroup ¢, (Z) and
hence p,p;' =p;'p, =1, in 40, (Z). Moreover, it is obvious that p;'eip, is an
idempotent of the semigroup .40, (Z) such that dom (pi_ls;pi) =Z\ {p,}. Also,
we obtained that I, = p{lﬂipic’lpglszpi in 40, (Z). Now the definition of the
semigroup J$0,(Z) implies that ICt; for any idempotent t in 0, (Z),
because every idempotent t in the semigroup J0, (Z) is equal to a product of
finitely many idempotents of the form t;, i< {l,...,n}, with the property

that the set Z\domrt; is singleton. Then for every idempotent & of the

n
lex

semigroup J0, (Z.,) with the property D; =D, g, we have that

o o . .
€=¢ -..-¢ , where {i, i} =Dy

and hence [€¢. This completes the proof of the proposition. ¢

Theorem 1. Let ¢ be a congruence on the semigroup S0, (Z},,). Then the

following statements hold:
@ If A

A =Cor =0 .

90,0 (Zlay)

so. @) cCc S, 10 for some i, €{l,...,n}, then either

@) If oy yc€coy, i forany subset {i;,....1,,%,,,} <

U peens 1,

c {1,...,n}, then either Oliyennin ] = ¢ or €= Oy,

'?imvimﬂ].
P r o o f. By Proposition 2.15 from [3] we have that for any collection

{1;,....15.} = {1,...,n} of distinct indices, k <n, and, hence, oo

J0,(Zy.,) if and only if asz sfk =B€Z sfk for some idempotents

o o

i By

e J0 (Z.. ). This implies that Hcs[ily_wik]s for every idempotent ¢ of

lex

n
lex

the semigroup 40, (Zy,) such that D; c {i,...,5}. Then applying Propo-

sition 1 we get the statement of the theorem. ¢

For any proper subset if indices Ic<{l,...,n} we define a map

nl g0 (Z",) > IO, (Z) by the formula (ay,...,a,)n; = (By,...,B,), where

lex lex

5 a;, if iel,
PO, it die{l,..,n}\L

1

Simple verifications show that such defined map =': .90, (Z" ) — 90, (Z! )

lex lex

n

lex) Which is

is a homomorphism. Let n'* be the congruence on .40, (Z

generated by the homomorphism 7' .
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Proposition 3. Let I be an arbitrary proper subset of {l,...,n}. Then
Tmin = Ofiy] © -+ ° Opg,.p» Where {ip,.. 4} ={1,...,n}\ I
n

lex) for some ele-

P r oo f Suppose that 0‘(6[1’1] °---°G[ik])B in JO_(Z
ments o = (a,,...,a,) and B =(B,...,B,). Proposition 2.15 from [3] implies

that 0(8?1...8; =BSZ...8Z€ for some idempotent €= (g,...,g,) such that

g, =1, for all iel, ie, ae=Pe. Then we have that a, =, for all ¢ eI, and

hence og” = Be” for &" =(g7,...,&" ), where
1 y“n/>

-1 —1 . .

o = L% a, =B, B, if el

C e it ie{l,..,n}\L

It is obvious that &*n'*a*an'B™'B. This implies the inclusion

I#

., 0 o . A
Oliy1 ©+ ° O] S Tmin

Suppose that omffinﬁ in JO,(Z}.,) for some elements o = (ay,...,0,) and

B =(B;,...,B,). Then there exists an idempotent €= (¢,...,€,) in IO, (Z1,)

lex

I

such that oe =pe and exn #a’lanI#B’IB. The last two equalities imply that

a;lai :Bi’lﬁi =¢; for all 7el. This and the equality oe = e imply that
a;e; = B,¢; for all i e I and hence we obtain that a, = a;a;"

=B,B;'B, =B, for all iecI. Therefore we have that as’ =Be’, where the

o, = o8 =Pe =
idempotent ¢" = (¢},..., ¢, ) defined in the following way

& = . .
if ie{l,...,n}\L

. oila,, it del
€

19
This implies that aaz sfk :Ba?1 afk . By Proposition 2.15 from [3] we get that

. ) i #
(x(c[il] °...0 G[ik])ﬁ in JO,(Z},,), and hence we get that n); SO °--° O -

This completes the proof of equality n. = Opiy1 ©+++ ° Oy - L4
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KOHIPYEHLUII HA MOHOIAl MOHOTOHHUX IH’EKTUBHUX
YACTKOBWX MEPETBOPEHb MHOXWHWU L, x | Z 3 KO-CKIHYEHHUMMU

OBJIACTAMU BUSHAYEHHA | BHAYEHb

n

lex) MOHOMOHHUX TH EKMUBHUX UACTKO-

Bueuatomuca konepyenyii nanisepynu J0, (Z
6ux nepemeopent mHoMcunu L, x | 7 3 KO-CKIHUEHHUMU OOAACTNAMU BUSHAUEHHA 1§
sHauenv, de L, x 7 — aexcuxoepadiunuil 000YmMOK N -eiemMenmH020 AQHYI02A Mma
MHONCUHU YLAUX YUCeA 31 36UUAUHUM ATHIUHUM nopadkom. Onucyemuves cmpyrkmypa
nidepamxu xouepyenyit na J0, (Z;.

lox ) s KL MICMAMBCA 6 MIHIMAALHIL 2PYNO0BItl KOH-
2PpYeryii.

KOHIPY3HUMN HA MOHOUOE MOHOTOHHbLIX MHBEKTUBHbIX
YACTUYHBLIX MPEOBPA30BAHUA MHOXECTBA L, x ,.,Z CKO-KOHEYHbIMU

OBJIACTAMU OMNPEQENEHUA U 3HAYEHUN

n

lex) MOHOMOHHBLX UHBEKMUBHBLX UaAC-

Msyuaromes wowepyanyuu mnoayepynnov. IO, (Z
MUYHBLLL NPeodpasosarutl muoxecmea L, x | 7 ¢ KO-KOHeUHbLMU obaacmamu onpede-
AeHus u 3Hauenus, ede L, x 7 — aexcuxoepaguueckoe npouseedenue n -asemeHmHo

Yenu U MHOHCeCMBA Yeablr yuceas ¢ 00bLUHbBLM AUHeUHbLM nopadkom. Onucana cmpyx-

n

mypa nodpewémxu Konepyaryui va J0, (Zy, ), xomopbvie codepicamcs 6 MUHUMANLHOL

2PpYnnoeoti KOHZPYIHYUU.
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