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If a commutative ring R has a nonzero derivation d such that d(z) = 0 or d(z)
is regular for every x € R, then the classical ring of quotients @ is a field or Q =
T[X]/(X?), where the characteristic char T = 2, d(T) = 0 and d(X) = 1+ aX for some
a € Z(T). We also prove that if a right Goldie ring has a non-identity automorphism
¢ such that  — p(z) is zero or regular for any = € R, then it is a semiprime ring with
the classical right ring of quotients ) which is either

(1) a division ring T', or

(2) the ring direct sum 7@ T, or

(3) the ring M>(T') of 2 X 2 matrices over a division ring 7.

Jlykamenko Mapist. IIpo dupepenyitoanma 3 pezyiaprumMy 3HAUEHHAMYU 6 KiAbUAT |/
Mar. Bica. Hayk. ToB. im. T. IlleBuenka. — 2014. — T.11. — C. 5-11.

SIkmo komyTraTuBHe Kinbue R mae nHenynbose nudepenniosanns d take, mo d(z) = 0
abo d(z) perymapuuii ayis Gyab-akoro © € R, Toxi KiacwaHe Kimbie apobis @ € momxem
a6o Q = T[X]/(X?), ne xapaxrepucruka charT = 2, d(T) = 0i d(X) = 1+ aX mn=
nesikoro a € Z(T). Takox mOBeneHO, WO SKIIO mpase Kijbue [0yl Mae HeoquHIIHMIA
aBToMOpPdi3M ¢ Takwmii, Mo T —@(2) € HyIOBAM ab0 PeryIapHuM Jyisda 0y1b-aKkoro € R,
TO R — HamiBIIepBUHHE Kiblle 3 KJIACHIHAM IIPABUM KijaboeM Japobie (), mo €

(1) Timom T, a6o

(2) xinbuesoro npsimoio cymoo I’ @ T, abo

(3) xinbuem marpuns Mz (T') posmipy 2 X 2 nHax Timom T
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Introduction

Henceforth, R will be an associative ring with the identity element 1. J. Bergen,
I. Herstein and C. Lanski [4] have proved that if R has a nonzero derivation d
such that d(z) = 0 or d(x) is invertible for any = € R, then either R is a division
ring or a ring of 2 x 2 matrices over a division ring T or R = T[X]/(X?) is a
quotient ring of a polynomial ring T[X] by the ideal (X?) over a division ring
T of characteristic 2, d(T) = 0 and d(X) = aX + 1 for some a € Z(T). Some
time ago J. Bergen and L. Carini |5] have obtained similar results in the case of
invertible values on a Lie ideal. Results of these studies are summarized in [14],
9], 18], [12] and [15]. J. Bergen |7]| has examined semiprime rings R possessing
a nonzero derivation d such that d(z) is nilpotent or invertible for all z € R.
Recently I. Kaygorodov and Y. Popov [13] have investigated alternative algebras
with a derivation that takes invertible values.

If ¢ is an automorphism of R, then 1 — ¢ is its p-derivation (in the sense of |3,
§ 1.1]). J. Bergen and 1. Herstein [6] have characterized rings R in which z = ¢(x)
or x — ¢(x) is invertible for every = € R. In this paper we obtain some extensions
of results from [4] and |6]. For this, recall that an element € R is called left
reqular (respectively right reqular) in R if, for every r € R, the implication

re = 0 (respectively zr =0) = r =0

is true. If x € R is both left and right regular in R, then it is reqular. We say
that R satisfies the condition (x) if there is a nonzero derivation d : R — R such
that, for every element € R, d(z) = 0 or d(z) is a regular element in R.

We prove the following

Proposition. Let R be a commutative ring. Then R has a nonzero derivation d
satisfying the condition (x) if and only if the classical ring of quotients Q(R) is
a field or Q(R) = T[X]/(X?), where the characteristic char T = 2, d(T) = 0 and
d(X) =1+ aX for some a € Z(T).

A ring R is called a right Goldie ring if it contains no infinite direct sum of right
ideals and satisfies the a.c.c. on right annihilators. We say that an automorphism
¢ of aring R satisfies the condition (xx) if, for the ¢-derivation 1—¢, the property
(x) is true. We obtain an extension of Theorem from [6].

Theorem. Let R be a right Goldie ring. If R has a non-identity automorphism
¢ such that © — ¢(x) is zero or regular for any x € R, then it is a semiprime ring
with the classical right ring of quotients ) which is either

(1) a division ring T', or

(2) is the ring direct sum T @& T, or

(3) the ring Ma(T') of 2 x 2 matrices over a division ring T

By [6], any automorphism ¢ : Q — @ extending an automorphism ¢ : R — R
with the property (xx) has the following propeties:
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(7) an automorphism & is non-inner if and only if 7" has a non-inner automor-
phism 1) such that ¥?(x) = u~'zu for every z € T, where )(u) = u and
u # y(u) for any y € T,

(74) an automorphism @ is inner if and only if 7" does not contains all quadratic
extensions of Z(T).

Any unexplained terminology is standard and follows [11]| and [16].

1. Derivation with regular values

Lemma 1.1. Let R be a ring satisfying the condition (x) and x € R. If d(z) = 0,
then x = 0 or z is a regular element in R.

Proof. Suppose that = # 0. Since d is nonzero, we have d(y) # 0 for some element
y € R. By the condition (%), d(y) is a regular element. Then

d(zy) = xd(y) # 0 and d(yz) = d(y)x # 0,

and hence zd(y) and d(y)x are regular. If b € R and bz = 0 (respectively xb = 0),
then b(xd(y)) = (bx)d(y) = 0 (respectively, (d(y)z)b = d(y)(xb) = 0). By the
above, b = 0 and therefore x is regular in the ring R. O

Lemma 1.2. Let d be a nonzero derivation of R that satisfies the condition (x).
If L is a nonzero left ideal of R, then its image d(L) # 0 is nonzero.

Proof. Suppose that L # R is a proper left ideal of R. Assume, by contrary, that
d(L) =0. If 0 # a € L, then, by Lemma 1.1, we can conclude that a is regular
in R. Since ra € L for every r € R, we deduce that 0 = d(ra) = d(r)a. The
regularity of a € R gives that d(r) = 0, and so d = 0. This contradiction shows
that d(L) # 0. O

The torsion part of a ring R is the set

F(R) = {r € R|r has a finite order in the additive group R" of R}.
If p is a prime, then the p-component of R is the set
F,(R) = {r € F(R) | r is of order p¥, where k is a non-negative integer}.

Lemma 1.3. If R is a ring satisfying the condition (x), then the characteristic
char R = p for some prime p or F(R) = 0 (and therefore the additive group R
is torsion-free).

Proof. Assume that F(R) # 0. Then the additive group F(R)" has the nonzero
p-component F,(R) for some prime p. Let € F,(R) be an element of order p*.
Suppose that k& > 2. Then pFd(z) = d(p*z) = 0, and therefore (pd(z))* = 0. If
pd(xz) # 0, then pd(x) = d(pzx) is a zero divisor in R, a contradiction with the
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condition (x). Therefore d(px) = 0 and, by Lemma 1.1, px is a regular element
in R (and we obtain a contradiction) or pxr = 0. Hence k = 1.

Assume that the p-component Fj(R) is proper in F(R). Then there exists a
prime ¢ such that ¢ # p and F,(R) is nonzero. By Lemma 1.2, d(F,(R)) # 0 and
d(Fp(R)) # 0. As a consequence d(Fy(R))d(F,(R)) = 0, a contradiction with (x).
Thus F(R) = F,(R).

If F,(R) is proper in R, then pR is nonzero and F,,(R)-pR = 0, a contradiction
in view of (*) and Lemma 1.2. Hence F,(R) = R. O

A ring without nonzero nilpotent elements is called reduced.

Corollary 1.4. Let d be a nonzero derivation of a ring R satisfying the condition
(¥) and e = € € R. If R is reduced (respectively commutative), then each

idempotent e is trivial (that is e € {0,1}).

Proof. 1t is clear that R contains two trivial idempotents 0, 1. Assume, by con-
trary, that in R there is an idempotent e € {0,1}. Then e(1 —e) =0 = (1 — e)e,
and therefore e is a zero divisor. Since d(e) = d(e?) = d(e)e + ed(e) and
d(e)e = d(e)e + ed(e)e, we have ed(e)e = 0 and (d(e)e)?> = 0. But R is re-
duced (respectively commutative) and so ed(e) = 0 = d(e)e. By Lemma 1.1,
d(e) # 0 and, by the condition (x), an element d(e) is regular. As a consequence,
e = 0, a contradiction. O

By P(R) we denote the prime radical of a ring R that is the intersection of all
prime ideals in R.

Lemma 1.5. If a ring R satisfies the condition (x), then:

(i) P(R)* =0,
(#1) if RT is torsion-free (respectively char R > 2), then P(R) = 0 (and conse-
quently the ring R is semiprime).

Proof. (i) If P(R)? # 0, then 0 # d(P(R)?) by Lemma 1.2. But d(P(R)?) C P(R)
and we obtain a contradiction.

(74) By Proposition 1.3 of [10] (respectively Theorem 8.16 of [2]), we have
that d(P(R)) € P(R). Then, in view of (%) and Lemma 1.1, we conclude that
P(R) = 0. O

Lemma 1.6. A semiprime ring R with the condition (x) is prime.

Proof. Assume that A, B are nonzero ideals of R such that AB = 0. Then BA =10
and there exist nonzero elements a € A and b € B such that ab = 0 = ba, d(b) # 0
by Lemma 1.2 and B 3 d(a)b = —ad(b) € A, B > d(b)a = —bd(a) € A. Since
AN B =0, we conclude that ad(b) = 0 = d(b)a and this leads to a contradiction
with (x). Thus R is a prime ring. O
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Corollary 1.7. Let R be a commutative ring with the condition (x). If the torsion
part F(R) = 0 is zero (respectively R is of characteristic n > 0 and the greatest
common divisor GCD(n,2) = 1 is trivial), then R is reduced (and consequently
prime).

Proof. Assume that x? = 0 for some element € R. Then 0 = d(2?) = 2zd(x)
and therefore xzd(x) = 0. By the condition (), d(z) = 0 and, by Lemma 1.1,
x = 0. Hence the ring R is reduced. O

In a commutative ring R, for a set of all its regular elements S, there exist the
ring of quotients Q(R) = RS (see [1]).
Proof of Proposition. If the ring R is prime (and consequently a domain),
then Q(R) is a field. Therefore we assume that R is not a domain. By Lemma
1.5, P(R)? = 0 and char R = 2. Let d be a nonzero derivation of R satisfying the
property (*). Then we can extended d to a derivation D of Q(R) (see [17]). Thus,
by Theorem 1 of [4], Q(R) = T[X]/(X?), where the characteristic charT = 2,
d(T) =0 and d(X) =1+ aX for some a € Z(T). O

2. Rings that have a ¢-derivation with regular values

Lemma 2.1. Let R be a ring with a non-identity automorphism ¢ satisfying the
condition (xx). If p(z) = = for some x € R, then x = 0 or x is regular in R.

Proof. Since ¢(r) —r # 0 for some r € R, z(o(r) —r) = p(zr) —zr # 0 and
o(r) —r)x = ¢(rz) —rez # 0. Hence x is regular. O

Corollary 2.2. Let R be a ring with a non-identity automorphism ¢ satisfying
the condition (xx). Then:

(a) P(R) =0 (and so R is semiprime),

(b) the additive group R™ is torsion-free or pR = 0 for some prime p.

Proof. (a) If 0 # x € P(R), then, by Lemma 2.1 and the condition (kx),
0 £ plx) -z € B(R)

is a regular element of R, a contradiction.

(b) Suppose that there exists a nonzero element 0 # x € F,(R) of order p*,
where k is some positive integer. Then x—p(z) € Fy(R) and (p*-1)(z—p(z)) = 0.
Lemma 2.1 and the condition (xx) imply that £ = 1 and pR = 0. O]

If R is a semiprime right Goldie ring, then there exist its classical right ring
of quotients @ = Q(R) [11, Theorems 7.2.1-7.2.3]. Every regular element of R is
invertible in Q.

Proof of Theorem. Assume that ¢ € Aut R satisfies (x*) and ® € Aut Q is its
extension on the classical right ring of quotients @ of R. By Corollary 2.2, @) is
semiprime. Preliminary we need to prove some properties.
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(1°) If I is a proper left ideal of Q, then IN®(I) =0. If INP(I) # 0, then
I =@, and we obtain a contradiction.

(2°) Bwvery left ideal I # 0 of @ is minimal. Indeed, for a nonzero proper left
ideal I < @, the sum M =1+ ®([) is also a left ideal in @ and 0 # ®(I) < M.
Therefore M = @ and Q = I & P([]) is a direct sum of left ideals. If S is a nonzero
left ideal of @ and S < I, then, by the same reasons, @ = S @ ®(S) is a direct
sum of left ideals. Therefore, for every 0 # | € I, we have | = n + ®(m) with
some elements n,m € S. Hence ®(m) =1 —n € I N®(I), and this implies that
l=n€S m=0and I =5 is a minimal left ideal of Q.

(3°) If Q is not simple, then Q = I ® I is a direct sum of ideals Iy, I such
that Iy = ®(I1) is a division ring. If I is a nonzero proper ideal of @, then, by
(2°), Q@ = 1@ ®(I) is a direct sum of ideals. Moreover I is a minimal left ideal of
Q. Therefore I = ®(I) is a division ring.

(4°) If Q is a simple ring, then Q is a division ring or Q = My(T) is a ring
of 2 X 2 matrices over a division ring T. If we suppose that ) is not a division
ring, then, in view of (2°), @ is simple Artinian. It easily hold that @ = My(T)
over a division ring 7.

The rest follows from the Theorem of [6]. O
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