
Ìàòåìàòè÷íèé Âiñíèê Mathematical Bulletin

Íàóêîâîãî Òîâàðèñòâà of Taras Shevchenko

iì. Òàðàñà Øåâ÷åíêà Scienti�c Society

2014. � Ò.11 2014. � V.11

ON DERIVATIONS WITH REGULAR VALUES IN RINGS

Maria P. Lukashenko

Faculty of Mathematics and Informatics, PreCarpathian National University

of Vasyl Stefanyk, Shevchenko St 57, Ivano-Frankivsk 76025 UKRAINE

Maria P. Lukashenko, On derivations with regular values in rings, Math. Bull. T. Shev-
chenko Sci. Soc. 11 (2014), 5–11.

If a commutative ring R has a nonzero derivation d such that d(x) = 0 or d(x)
is regular for every x ∈ R, then the classical ring of quotients Q is a field or Q =
T [X]/(X2), where the characteristic charT = 2, d(T ) = 0 and d(X) = 1 + aX for some
a ∈ Z(T ). We also prove that if a right Goldie ring has a non-identity automorphism
ϕ such that x− ϕ(x) is zero or regular for any x ∈ R, then it is a semiprime ring with
the classical right ring of quotients Q which is either

(1) a division ring T , or

(2) the ring direct sum T ⊕ T , or

(3) the ring M2(T ) of 2× 2 matrices over a division ring T .

Ëóêàøåíêî Ìàðiÿ. Ïðî äèôåðåíöiþâàííÿ ç ðåãóëÿðíèìè çíà÷åííÿìè â êiëüöÿõ //
Ìàò. âiñí. Íàóê. òîâ. iì. Ò. Øåâ÷åíêà. � 2014. � Ò.11. � C. 5�11.

ßêùî êîìóòàòèâíå êiëüöå R ìà¹ íåíóëüîâå äèôåðåíöiþâàííÿ d òàêå, ùî d(x) = 0
àáî d(x) ðåãóëÿðíèé äëÿ áóäü-ÿêîãî x ∈ R, òîäi êëàñè÷íå êiëüöå äðîáiâ Q ¹ ïîëåì
àáî Q = T [X]/(X2), äå õàðàêòåðèñòèêà charT = 2, d(T ) = 0 i d(X) = 1 + aX äëÿ
äåÿêîãî a ∈ Z(T ). Òàêîæ äîâåäåíî, ùî ÿêùî ïðàâå êiëüöå Ãîëäi ìà¹ íåîäèíè÷íèé
àâòîìîðôiçì ϕ òàêèé, ùî x−ϕ(x) ¹ íóëüîâèì àáî ðåãóëÿðíèì äëÿ áóäü-ÿêîãî x ∈ R,
òî R � íàïiâïåðâèííå êiëüöå ç êëàñè÷íèì ïðàâèì êiëüöåì äðîáiâ Q, ùî ¹

(1) òiëîì T , àáî

(2) êiëüöåâîþ ïðÿìîþ ñóìîþ T ⊕ T , àáî
(3) êiëüöåì ìàòðèöü M2(T ) ðîçìiðó 2× 2 íàä òiëîì T .
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Introduction

Henceforth, R will be an associative ring with the identity element 1. J. Bergen,
I. Herstein and C. Lanski [4] have proved that if R has a nonzero derivation d
such that d(x) = 0 or d(x) is invertible for any x ∈ R, then either R is a division
ring or a ring of 2 × 2 matrices over a division ring T or R = T [X]/(X2) is a
quotient ring of a polynomial ring T [X] by the ideal (X2) over a division ring
T of characteristic 2, d(T ) = 0 and d(X) = aX + 1 for some a ∈ Z(T ). Some
time ago J. Bergen and L. Carini [5] have obtained similar results in the case of
invertible values on a Lie ideal. Results of these studies are summarized in [14],
[9], [8], [12] and [15]. J. Bergen [7] has examined semiprime rings R possessing
a nonzero derivation d such that d(x) is nilpotent or invertible for all x ∈ R.
Recently I. Kaygorodov and Y. Popov [13] have investigated alternative algebras
with a derivation that takes invertible values.

If ϕ is an automorphism of R, then 1−ϕ is its ϕ-derivation (in the sense of [3,
� 1.1]). J. Bergen and I. Herstein [6] have characterized rings R in which x = ϕ(x)
or x−ϕ(x) is invertible for every x ∈ R. In this paper we obtain some extensions
of results from [4] and [6]. For this, recall that an element x ∈ R is called left

regular (respectively right regular) in R if, for every r ∈ R, the implication

rx = 0 (respectively xr = 0)⇒ r = 0

is true. If x ∈ R is both left and right regular in R, then it is regular . We say
that R satis�es the condition (∗) if there is a nonzero derivation d : R → R such
that, for every element x ∈ R, d(x) = 0 or d(x) is a regular element in R.

We prove the following

Proposition. Let R be a commutative ring. Then R has a nonzero derivation d
satisfying the condition (∗) if and only if the classical ring of quotients Q(R) is

a �eld or Q(R) = T [X]/(X2), where the characteristic charT = 2, d(T ) = 0 and

d(X) = 1 + aX for some a ∈ Z(T ).

A ring R is called a right Goldie ring if it contains no in�nite direct sum of right
ideals and satis�es the a.c.c. on right annihilators. We say that an automorphism
ϕ of a ring R satis�es the condition (∗∗) if, for the ϕ-derivation 1−ϕ, the property
(∗) is true. We obtain an extension of Theorem from [6].

Theorem. Let R be a right Goldie ring. If R has a non-identity automorphism

ϕ such that x− ϕ(x) is zero or regular for any x ∈ R, then it is a semiprime ring

with the classical right ring of quotients Q which is either

(1) a division ring T , or

(2) is the ring direct sum T ⊕ T , or
(3) the ring M2(T ) of 2× 2 matrices over a division ring T .

By [6], any automorphism Φ : Q→ Q extending an automorphism ϕ : R→ R
with the property (∗∗) has the following propeties:
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(i) an automorphism Φ is non-inner if and only if T has a non-inner automor-
phism ψ such that ψ2(x) = u−1xu for every x ∈ T , where ψ(u) = u and
u 6= yψ(u) for any y ∈ T ,

(ii) an automorphism Φ is inner if and only if T does not contains all quadratic
extensions of Z(T ).

Any unexplained terminology is standard and follows [11] and [16].

1. Derivation with regular values

Lemma 1.1. Let R be a ring satisfying the condition (∗) and x ∈ R. If d(x) = 0,
then x = 0 or x is a regular element in R.

Proof. Suppose that x 6= 0. Since d is nonzero, we have d(y) 6= 0 for some element
y ∈ R. By the condition (∗), d(y) is a regular element. Then

d(xy) = xd(y) 6= 0 and d(yx) = d(y)x 6= 0,

and hence xd(y) and d(y)x are regular. If b ∈ R and bx = 0 (respectively xb = 0),
then b(xd(y)) = (bx)d(y) = 0 (respectively, (d(y)x)b = d(y)(xb) = 0). By the
above, b = 0 and therefore x is regular in the ring R.

Lemma 1.2. Let d be a nonzero derivation of R that satis�es the condition (∗).
If L is a nonzero left ideal of R, then its image d(L) 6= 0 is nonzero.

Proof. Suppose that L 6= R is a proper left ideal of R. Assume, by contrary, that
d(L) = 0. If 0 6= a ∈ L, then, by Lemma 1.1, we can conclude that a is regular
in R. Since ra ∈ L for every r ∈ R, we deduce that 0 = d(ra) = d(r)a. The
regularity of a ∈ R gives that d(r) = 0, and so d = 0. This contradiction shows
that d(L) 6= 0.

The torsion part of a ring R is the set

F (R) = {r ∈ R | r has a �nite order in the additive group R+ of R}.

If p is a prime, then the p-component of R is the set

Fp(R) = {r ∈ F (R) | r is of order pk,where k is a non-negative integer}.

Lemma 1.3. If R is a ring satisfying the condition (∗), then the characteristic

charR = p for some prime p or F (R) = 0 (and therefore the additive group R+

is torsion-free).

Proof. Assume that F (R) 6= 0. Then the additive group F (R)+ has the nonzero
p-component Fp(R) for some prime p. Let x ∈ Fp(R) be an element of order pk.
Suppose that k ≥ 2. Then pkd(x) = d(pkx) = 0, and therefore (pd(x))k = 0. If
pd(x) 6= 0, then pd(x) = d(px) is a zero divisor in R, a contradiction with the
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condition (∗). Therefore d(px) = 0 and, by Lemma 1.1, px is a regular element
in R (and we obtain a contradiction) or px = 0. Hence k = 1.

Assume that the p-component Fp(R) is proper in F (R). Then there exists a
prime q such that q 6= p and Fq(R) is nonzero. By Lemma 1.2, d(Fq(R)) 6= 0 and
d(Fp(R)) 6= 0. As a consequence d(Fq(R))d(Fp(R)) = 0, a contradiction with (∗).
Thus F (R) = Fp(R).

If Fp(R) is proper in R, then pR is nonzero and Fp(R)·pR = 0, a contradiction
in view of (∗) and Lemma 1.2. Hence Fp(R) = R.

A ring without nonzero nilpotent elements is called reduced.

Corollary 1.4. Let d be a nonzero derivation of a ring R satisfying the condition

(∗) and e = e2 ∈ R. If R is reduced (respectively commutative), then each

idempotent e is trivial (that is e ∈ {0, 1}).

Proof. It is clear that R contains two trivial idempotents 0, 1. Assume, by con-
trary, that in R there is an idempotent e 6∈ {0, 1}. Then e(1− e) = 0 = (1− e)e,
and therefore e is a zero divisor. Since d(e) = d(e2) = d(e)e + ed(e) and
d(e)e = d(e)e + ed(e)e, we have ed(e)e = 0 and (d(e)e)2 = 0. But R is re-
duced (respectively commutative) and so ed(e) = 0 = d(e)e. By Lemma 1.1,
d(e) 6= 0 and, by the condition (∗), an element d(e) is regular. As a consequence,
e = 0, a contradiction.

By P(R) we denote the prime radical of a ring R that is the intersection of all
prime ideals in R.

Lemma 1.5. If a ring R satis�es the condition (∗), then:

(i) P(R)2 = 0,

(ii) if R+ is torsion-free (respectively charR > 2), then P(R) = 0 (and conse-

quently the ring R is semiprime).

Proof. (i) If P(R)2 6= 0, then 0 6= d(P(R)2) by Lemma 1.2. But d(P(R)2) ⊆ P(R)
and we obtain a contradiction.

(ii) By Proposition 1.3 of [10] (respectively Theorem 8.16 of [2]), we have
that d(P(R)) ⊆ P(R). Then, in view of (∗) and Lemma 1.1, we conclude that
P(R) = 0.

Lemma 1.6. A semiprime ring R with the condition (∗) is prime.

Proof. Assume that A,B are nonzero ideals of R such that AB = 0. Then BA = 0
and there exist nonzero elements a ∈ A and b ∈ B such that ab = 0 = ba, d(b) 6= 0
by Lemma 1.2 and B 3 d(a)b = −ad(b) ∈ A, B 3 d(b)a = −bd(a) ∈ A. Since
A ∩B = 0, we conclude that ad(b) = 0 = d(b)a and this leads to a contradiction
with (∗). Thus R is a prime ring.
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Corollary 1.7. Let R be a commutative ring with the condition (∗). If the torsion
part F (R) = 0 is zero (respectively R is of characteristic n > 0 and the greatest

common divisor GCD(n, 2) = 1 is trivial), then R is reduced (and consequently

prime).

Proof. Assume that x2 = 0 for some element x ∈ R. Then 0 = d(x2) = 2xd(x)
and therefore xd(x) = 0. By the condition (∗), d(x) = 0 and, by Lemma 1.1,
x = 0. Hence the ring R is reduced.

In a commutative ring R, for a set of all its regular elements S, there exist the
ring of quotients Q(R) = RS−1 (see [1]).

Proof of Proposition. If the ring R is prime (and consequently a domain),
then Q(R) is a �eld. Therefore we assume that R is not a domain. By Lemma
1.5, P(R)2 = 0 and charR = 2. Let d be a nonzero derivation of R satisfying the
property (∗). Then we can extended d to a derivation D of Q(R) (see [17]). Thus,
by Theorem 1 of [4], Q(R) = T [X]/(X2), where the characteristic charT = 2,
d(T ) = 0 and d(X) = 1 + aX for some a ∈ Z(T ). 2

2. Rings that have a ϕ-derivation with regular values

Lemma 2.1. Let R be a ring with a non-identity automorphism ϕ satisfying the

condition (∗∗). If ϕ(x) = x for some x ∈ R, then x = 0 or x is regular in R.

Proof. Since ϕ(r) − r 6= 0 for some r ∈ R, x(ϕ(r) − r) = ϕ(xr) − xr 6= 0 and
ϕ(r)− r)x = ϕ(rx)− rx 6= 0. Hence x is regular.

Corollary 2.2. Let R be a ring with a non-identity automorphism ϕ satisfying

the condition (∗∗). Then:
(a) P(R) = 0 (and so R is semiprime),

(b) the additive group R+ is torsion-free or pR = 0 for some prime p.

Proof. (a) If 0 6= x ∈ P(R), then, by Lemma 2.1 and the condition (∗∗),

0 6= ϕ(x)− x ∈ P(R)

is a regular element of R, a contradiction.

(b) Suppose that there exists a nonzero element 0 6= x ∈ Fp(R) of order pk,
where k is some positive integer. Then x−ϕ(x) ∈ Fp(R) and (pk ·1)(x−ϕ(x)) = 0.
Lemma 2.1 and the condition (∗∗) imply that k = 1 and pR = 0.

If R is a semiprime right Goldie ring, then there exist its classical right ring
of quotients Q = Q(R) [11, Theorems 7.2.1�7.2.3]. Every regular element of R is
invertible in Q.

Proof of Theorem. Assume that ϕ ∈ AutR satis�es (∗∗) and Φ ∈ AutQ is its
extension on the classical right ring of quotients Q of R. By Corollary 2.2, Q is
semiprime. Preliminary we need to prove some properties.
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(1◦) If I is a proper left ideal of Q, then I ∩ Φ(I) = 0. If I ∩ Φ(I) 6= 0, then
I = Q, and we obtain a contradiction.

(2◦) Every left ideal I 6= 0 of Q is minimal. Indeed, for a nonzero proper left
ideal I < Q, the sum M = I + Φ(I) is also a left ideal in Q and 0 6= Φ(I) ≤ M .
ThereforeM = Q and Q = I⊕Φ(I) is a direct sum of left ideals. If S is a nonzero
left ideal of Q and S ≤ I, then, by the same reasons, Q = S ⊕ Φ(S) is a direct
sum of left ideals. Therefore, for every 0 6= l ∈ I, we have l = n + Φ(m) with
some elements n,m ∈ S. Hence Φ(m) = l − n ∈ I ∩ Φ(I), and this implies that
l = n ∈ S, m = 0 and I = S is a minimal left ideal of Q.

(3◦) If Q is not simple, then Q = I1 ⊕ I2 is a direct sum of ideals I1, I2 such

that I2 = Φ(I1) is a division ring. If I is a nonzero proper ideal of Q, then, by
(2◦), Q = I ⊕Φ(I) is a direct sum of ideals. Moreover I is a minimal left ideal of
Q. Therefore I ∼= Φ(I) is a division ring.

(4◦) If Q is a simple ring, then Q is a division ring or Q = M2(T ) is a ring

of 2 × 2 matrices over a division ring T . If we suppose that Q is not a division
ring, then, in view of (2◦), Q is simple Artinian. It easily hold that Q = M2(T )
over a division ring T .

The rest follows from the Theorem of [6]. 2
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