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The Cartan—-Monge geometric approach to the characteristic me-
thod for nonlinear partial differential equations of first and higher
orders is analyzed within the modern differential-geometric methods.
The structure of characteristic vector fields, related with with classical
and generalized solutions of nonlinear Hamilton—Jacobi type partial
differential equations is studied, some interesting examples are presen-
ted.

1. THE GEOMETRIC CARTAN-MONGE APPROACH
TO CLASSICAL CHARACTERISTICS METHOD

1.1. Introduction

The characteristic method [2,8,14,27| proposed in XIX century by A.Cauchy
was very nontrivially developed by G.Monge, having introduced the geomet-
ric notion of characteristic surface, related with partial differential equations
of first order. The latter, being augmented with a very important notion of
characteristic vector fields, appeared to be fundamental [13,15,23,27] for
the characteristic method, whose main essence consists in bringing about
the problem of studying solutions to our partial differential equation to an
equivalent one of studying some set of ordinary differential equations. This
way of reasoning succeeded later in development of the Hamilton—Jacobi
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theory, making it possible to describe a wide class of solutions to partial
differential equations of first order of the form

H(z;u,u,) =0, (1)

where H € C?*(R""! x R™;R), |H,| # 0, | - | is the standard norm in R", is
called a Hamiltonian function and u € C%(R™; R) is unknown function under
search. The equation (1) is endowed still with a boundary value condition

u’r‘w = Uup, (2)

with ug € C 1(l“sp; R), defined on some smooth almost everywhere hypersur-
face

Iyp={z eR": po(z) =0, |[leall # 0}, (3)

where ¢ € C1(R™;R) is some smooth function on R”.
Following to the Monge’s ideas, let us introduce the characteristic surface
Sy C R x R as

Su = {(w;u,p) € R™ x R™ : H(w;u,p) = 0}, ()

where we put, by definition, p := u; € R" for all x € R™. The characteristic
surface (4) was effectively described by Monge within his geometric approach
by means of the so called Monge cones K C T(R"™!) and their duals K* C
T*(R*H1) [12,20,23,27].

The corresponding differential-geometric analysis of this Monge scenario
was later done by E.Cartan, who reformulated [5,6,12,27] the geometric
picture, drown by Monge, by means of the related compatibility conditions
for dual Monge cones and the notion of integral submanifold ¥y C Sp,
naturally assigned to special vector fields on the characteristic surface Sg.
In particular, E.Cartan had introduced on Sy the differential 1-form

oV = du— < p,dx >, (5)

where < -, - > is the usual scalar product in R, and demanded its vanishing
along the dual Monge cones K* C T*(R"*!), concerning the corresponding
integral submanifold imbedding mapping

m: Xy :— Sy. (6)
This means that the 1-form

W*agl) =du— <p,dx>|n, =0 (7)
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for all points (x;u,p) € Xy of a solution surface Xy, defined in such a way
that K* = T%(Xg). The obvious corollary from condition (7) is the second
Cartan condition

dﬂ*a(ll) = 7T*d04(11) =<dp,Ndz > g, = 0. (8)

These two Cartan’s conditions (7) and (8) should be still augmented with
the characteristic surface Sy invariance condition for the differential 1-form
agl) € A(Sy) as

oV = dH|g, = 0. (9)

The conditions (7), (8) and (9), when imposed on the characteristic surface
Sg C R™1x R" make it possible to construct the proper characteristic
vector fields on Sy, whose suitable characteristic strips [20,23,27| generate
the searched solution surface .

The reasonings above can be naturally embedded into the classical Cartan
theory of integrable ideals in the Grassmann algebra on differentiable ma-
nifolds. Within this theory the solution surface Xy C Sp is exactly the
maximal integral submanifold of the integrable ideal I(S;;) C A(SH), genera-

ted by the corresponding by one-forms (5), (9) and two-forms dagl) € A(Su).
By construction, this ideal is closed, that is dI(Sy) C I(Sy), being a criterion
[1-3,6,12| of its Cartan-Frobenius integrability.

Thereby, having solved the corresponding Cauchy problem related with
the boundary value conditions (2) and (3) for these characteristic vector
fields, considered as ordinary differential equations on Sy, one can construct
a solution to our partial differential equation (1). And what is interesting,
this solution in many cases can be represented [8,21] in exact functional-
analytic Hopf—Lax type form. The latter is a natural consequence from the
related Hamilton—Jacobi theory, whose main ingredient consists in proving
the fact that the solution to our equation (1) is exactly the extremal value
of some Lagrangian functional, naturally associated [1,2,20,23] with a given
Hamiltonian function.

Below we will construct the proper characteristic vector fields for partial
differential equations of first order (1) on the characteristic surface Sp,
generating the solution surface X as suitable characteristic strips related
with the boundary conditions (2) and (3), and next generalize the Cartan—
Monge geometric approach for partial differential equations of second and
higher orders.
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1.2. The characteristic vector fields method: differential-geometric
aspects

Consider on the surface Sy € R*1 x R™ a characteristic vector field Ky :
S — T(Sy) in the form

dr/dr = ap(x;u,p)
dp/dr = by (x;u,p) » = Ku(z;u,p), (10)
du/dt = cg(x;u,p)

where 7 € R is a suitable evolution parameter and (x;u,p) € Sg. Since,
owing to the Cartan-Monge geometric approach, there hold conditions (7),
(8) and (9) along the solution surface X7, we can satisfy them, applying the
interior differentiation ix,, : A(Sy) — A(SH) [1,12,19] to the corresponding
(1)
1

differential forms o5’ and dagl) :

i) =0, ig,dol? =0, (11)
As a result of simple calculations one finds that

CH =<Dp,ag >,

BY =< by, dx > — < ag,dp > |s, =0 (12)

for all points (z;u,p) € Sy. The obtained 1-form 3 € A'(Sy) must be,
evidently, compatible with the defining invariance condition (9) on Sg. This
means that there exists a scalar function u € C!'(Sy;R), such that the
condition

pos) = g0 (13)
holds on Sg. This gives rise to such final relationships:
ag = woOH/0p, by = —p(0H/0x + pdH /Ou), (14)

which together with the first equality of (12) complete the search for the
structure of the characteristic vector fields Ky : Sy — T(SH) :

Ky = (n0H/0p; < p,pdH /dp >, —p(0H 0z + poH [Ou))T.  (15)

Now we can pose a suitable Cauchy problem for the equivalent set of ordinary
differential equations (10) on Sy as follows:

dx/dr = poH/0p : z|r=o Z ro(z) €Ty,  T|r—pz) = € R"M\T'y;

du/dr =< p,pdH/0p > :ulr=0 = uo(wo()), Ulr—t() L u(z), (16)
dp/dT = —p(0H /9 + pOH [Ou) : p|r—0 = Ouo(xo(x))/00,
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point of the corresponding vector field orbit, starting at a fixed point = €
R™\I'y,, with the boundary hypersurface I'y; C R™ at the moment of ,time*
7 = t(x) € R. As a result of solving the corresponding ,inverse“ Cauchy
problem (16) one finds the following exact functional-analytic expression for
a solution u € C?(R™; R) to the boundary value problem (2) and (3):

t(x) _
u(z) = up(xo(x)) —l—/o L(x;u,p)dr, (17)

where, by definition,

L(z;u,p:=<p,pndH/Op > (18)

for all (z;u,p) € Sy. If the Hamiltonian function H : R™! x R® — R is
nondegenerate, that is Hess H := det(0?>H /0pdp) # 0 for all (z;u,p) € Sy,
then the first equation of (16) can be solved with respect to the variables
p=(x, &;u) (19)
for all (z,2) € T( R"), where ¢ : T( R") x R — R" is some smooth
mapping. By means of the following classical Lagrangian function expression
‘C(l'a i'; U) = E(l‘v u7p)‘p:w(x,a':;u) (20)
solution (17) takes the form

t(x)
u(z) = up(zo(x)) + ; L(z,&;u)dr, (21)

which can be rewritten [6,7,21] equivalently as
t(z)
u(z) = inf {uo(xo) + L(r;2(7530),2(750 );u(T320))dT}, (22)
xo n 0

The functional-analytic form (22) has the standard inf-type Hopf-Lax repre-
sentation, being important for finding so called generalized solutions [7,8,13]
to the Hamilton-Jacobi equation (1).

1.3. The characteristic vector fields method: application to second
order partial differential equations

Assume we are given a second order partial differential equation

H(x;u,ug, Ugzy) =0, (23)
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where solution u € C?(R™;R) and the generalized ,Hamiltonian“ function
H € C?(R™! xR x (R ® R™); R). Putting p(!) := uy, p@ := uyy, z € R,
one can construct within the Cartan-Monge generalized geometric approach
the characteristic surface

Sy = {(w;u,p(l),p@)) c R"! x R™ x (R" @R™): H(Q’J;U,p(l)ap@)) =0}

(24)
and a suitable Cartan’s set of differential one- and two-forms:
ozgl) = du— < pWM, da > s, =0,
1 ._ (1)
d)oz1 =< dz,Ndp\") > |5, =0, (25)

= dpV— < p@ dx > |z, =0,
dol) :=< da, Adp® > |5, = 0,

(1
Qo

vanishing upon the corresponding solution submanifold ¥y C Sg. The set
of differential forms (25) should be augmented with the characteristic surface
Sy invariance differential 1-form

oV = dH|g, =0, (26)

vanishing, respectively, upon the characteristic surface Sg. The solution
space Xy C Sy is [5,6, 12, 16,19, 20] the maximal integral submanifold
of the suitably constructed integrable ideal I(S;) C A(SH), generated by
the one-forms agl),aél) € A(Sy) and two-forms dagl) € A(Sy). This ideal
is, by construction, closed, and, thereby, integrable owing to the Cartan
criterion [5,6,12,23].

Let the characteristic vector field Ky : Sy — T'(Sg) on Sy is given by
expressions

dz/dr = ap(z;u, pY,p?)
du/dr = cp(x;u,p, p?)
dp) fdr = by (a;u, pM), p@)
dp® Jdr = b3 (a; u, pV), p@)

= KH(J?;U,p(l),p(Q)), (27)

for all (z; u,p(l),p@)) € Sp. To find the vector field (27) it is necessary to
satisfy the Cartan compatibility conditions in the following geometric form:

ingaVls, =0, i dalV]s, =0 (modI(S,))

. . (28)
iy ol s, =0, ig,dadV]s, =0, (mod I(Sy))
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where, as above, ix, : A(Sg) — A(Sq) is the internal derivative of differen-
tial forms along the vector field Ky : Sy — T'(Spr). As a result of conditions
(28) one finds that relationships

e =<pW,apy >, by =<p@, ay >,
Y =< ag,dp® > — < bW da > |g, =0, (29)
BN =< ay,dp® > — < bg),da: > |5, = 0,

are satisfied upon Sy identically. Having solved implications (29), we can find
a suitable vector field Ky : Sy — T'(Sg) and, thereby, construct functional-
analytic solutions to our partial differential equation of second order (23)
via solving the equivalent Cauchy problem for the set of ordinary differential
equations (27) on the characteristic surface Spg.

1.4. The characteristic vector fields method: application to partial
differential equations of higher orders

Consider a general nonlinear partial differential equation of higher order
meE Zy as
H(x§u7ux7uxx7---7umx) =0, (30)

where there is assumed that H € C?(R™! x (R™)®™m+1)/2.R), Within
the generalized Cartan-Monge geometric characteristic method we need to
construct the related characteristic surface Sy as

= . O H2  pm) Rt R™\®@m(m+1)/2 .

SH {(.’L‘,U/,p 7p 7(1) 7%)2) ) E (m) X ( ) (31)
H(:E,u,p » P yees D ):O}a

where we put p) := u, € R?, p@ =y, e R*@Q R, ..., pi™ ¢ (R™)®m

for x € R™. The corresponding solution manifold Xy C Sp is naturally

defined as the maximal integral submanifold of the suitable integrable ideal

I(Sy;) € A(SH), generated by the following set of one- and two-forms on
Sy :
agl) = du— < pW, dz > Iv, =0,
do\V :=< da, Adp®D) > |5, = 0,
agl) = dpM— < p@ dz > s, =0,

daf) =< da, Adp® > |5, =0, (32)

ol = dpm=Y_ < pm dp > |5 =0,
doll) =< dz, Adp™ > |5, = 0,
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vanishing, by definition, upon Xp. The set of differential forms (32) is aug-
mented with the determining characteristic surface Sy invariance condition

oM = dH|g, = 0. (33)

Proceed now to constructing the characteristic vector field Ky : Sy —
T'(Sm) on the hypersurface Sy within the developed above generalized chara-
cteristic method. Take the expressions

dz/dr = ag(x;u,pM,p@, ... pm)

du/dr = cp(z;u,pM, p@, ... pm)
dpW) Jdr = b(hl,) (z;u, p, p3, ... plm)
dp? Jdr = bg) (z;u,pM), p@, . pm),

= Kp(z;u,pM, p?), (34)

for (z;u,p™M,p®, ... p(™) € Sy and satisfy the corresponding Cartan com-
patibility conditions in the following geometric form:

iKHagl)bH =0, iKHdagl)bH =0 (mOd ](SH))>
iy o8 |g, =0, ig,dalV|s, =0 (modI(Sy)), (35)

As a result of suitable calculations in (35) one gets the following expressions:

cp =<pW,ag >, b =<p® ay >,

AW =< ag,dp® > — < bW dx > |g, = 0,
B =< ag,dp® > — < b dx > |g, =0, (36)

B =< g, dp™ > — < bg_}”),dx > |sy =0,

being identically satisfied upon Sg.

It is now easy to see that all of tensor-valued 1-forms ﬁj(-l) € AY(Sy) ®
(R")®J, j = 1,m — 1 are vanishing identically upon Sy owing to the relati-
onships (32). As a result, we obtain the only relationship

57(71) =< ay,dp™ > — < bgn),dx > s, =0, (37)

which should be compatibly combined with that of (33). Having found from
(33), (35) and (37) the suitable vector field Ky : Sy — T(Sg), we reduce
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the problem of solving our partial differential equation (30) to solving the set
of characteristic equations (34). In many important cases this can be done
in a feasible functional-analytic form useful for analyzing its properties.

The resulting set (34) of ordinary differential equations on Sy makes it
possible to construct exact solutions to our partial differential equation (30)
in a suitable functional-analytic form, being often very useful for analyzing
its properties important for applications. On these and related questions we
plan to stop in detail elsewhere later.

2. The generalized solutions to a canonical Hamilton—Jacobi
equation and their Hopf-Lax type representation

The review article |7] devoted to viscosity solutions of first and second order

nonlinear partial differential equations, contains the following Lax formula:

) = int {o) + 5510 - o} 39

for the solution to the following canonical Hamilton—Jacobi partial differen-
tial equation:

ou 1 9

— 4+ —|Vu :07 Ult=g = V, 39

SVl o=t (3)
where Cauchy data v : R® — R are properly convex and semicontinuous
from below functions | - | :=< -,- > the standard norm in R", n € Z,,

and t € R, is a positive evolution parameter. They noted also that there is
no exact proof of the Lax formula (38) based on general properties of the
Hamilton—Jacobi equation (39). Below we give such an exact proof of the
Lax formula (38) and present further some other results about solutions to
the canonical Hamilton—Jacobi equation both constrained to live on sphere
S™ and perturbed by nonlinear oscillatory terms.

2.1. Hamiltonian dynamics analysis

Consider the following canonical Hamiltonian system, which are naturally

associated [2,3,8,14,27| with (39)
d OH d OH
de _OH - dp_ _0H (a0
dr op dr ox

with inverse“ Cauchy data

?
l‘|7-:0 = X0, Tlr=t = T, p‘T:O = pO(xU)a
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for an arbitrary but fixed point (z,t) € R™ x R, where the Hamiltonian
function Hy € C?(T( R™);R) reads as

H()(Hf,p) - 1/2’]7‘2; (41)

and (z,p) € T*(R™) is any canonical phase space point. The solution to (40)
with Cauchy data at (zo,po) € T*(R"™) is given for all 7 € Ry as follows:

x = xo + poT, P = Do- (42)

Introduce now the ,action function* u € C*(R";R) which could be defined
locally as
du = —Hy(x,p)dT+ < p,dz >, (43)

where in virtue of (42), p = (v — x0)/t and u|;—g+ = v(z), x € R™. From
(1.4) one obtains immediately that

Ou/0T = —Hy(x,p), Ou/dx =p (44)

for all points (z,p) € T*(R"™) and 7 € R. Substituting (44) into (41), one
obtains the following lemma.

Lemma 1. The action function u € CY(R"1;R) satisfies exactly the
Hamilton—Jacobi equation (41).

Now we proceed to computing an expression for the function u € C1(R™ x
R4;R), defined by (43):

t
ule, 1) = / A7 (A A7) o= 0 + 0(20) ema pot =
" 0 P=Ppo
= / dT(< b, dl‘/d’T > *HO(:E;p)”w:;g;goT + U(x0)|93=:60+p0t = (45)
i .

1
S CL ) [

Since owing to (44) du/dx|i—o = po € R™, from (42) and (45) one arrives at
such a formula:

t
u(w,t) = v(w — pot) + 3ol (16)

giving an entangled solution to the Hamilton—Jacobi equation (39). The
expression (46) one can transform easily into such a useful for further form:

u(z,t) = o(€) + o le — €, (47)
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where, by definition
£(x,t) == —pot, po = po(x) = Ou/0x|—g+. (48)

For expression (47) to be interpreted more exactly it is useful to remind
that Hamiltonian equations (40) are completely equivalent to the following
shortened Lagrange minimal action principle:

t
du(xo; z,t)|ppern = 0, U(xo;x,t) := / drLo(z, &) + v(xo), (49)
0
where, by definition, the Lagrange function

EO(I‘>1.‘) =< pai‘ > _HO(xap”d::@H(w,p)/ap' (50)

Based on (43) and (50), one infers easily that the extremum Hopf-Lax type
representation

w(z,t) := inf {v(xo) + l\x — xO\Q} = v(€) + }]m — & (51)

zoER™ 2 2
holds if there assumed that the infimum in the parenthesis {...} exists and
is attained at some unique point zg = £(z,t) € R for fixed (x,t) € R" x
R4. For the above motivation to be validated we shall study in detail the
properties of the solution € = &(z,t) to the extremal problem (51) targeting
to prove that £ = € = z — pot, po(x) = Ou/dx|—g+ for all z € R™, t € Ry,
as it was found before in (48).

2.2. Extremality analysis

Let us consider the problem (51) in case when a function v : R” — R is
convex and semi-continuous from below. Then the following Lemma is true.

Lemma 2. There exists the unique solution xo = &(x,t) € R" to the
extremum problem (51) characterized by the following inequality

~—

<&-a,E—y><u(y) —v() (52)

~+ | =

forall z,y €e R" and t € R,.

Now we shall be interested in properties of the solution é($,t) € R”
by means of which we shall prove the main equality é = ¢ assuring that
the extremum function % : R® x Ry — R coincides with the solution w :
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R™ x Ry — R to the problem (39). The following Lemma being simply
stemmed from the inequality (38), is almost obvious.

Lemma 3. The mappings P, :R" - R" and (1 — P,) : R® — R™, where
by definition, Pix := £(x,t) for any t € Ry, x € R™, are Lipschitzian, that
s for any x,y € R”

[P = Pyl <o —yl, (1= P)z— (1 Pyl <|r—yl (53)

Consider now the minimizing function @ € C'(R™ xR ;R) of the problem
(51) which is realized at the unique element & = P,z € R”, t € Ry. One can
formulate then the following useful Lemma.

Lema 4. The mapping 4 : R™ — R defined as u(x) = u(x,t) for any
z € R" and t € Ry being fized, is convexr and differentiable with respect to
x € R™, that is

- 1 ~
Vi (x) = ;(:E — P(x). (54)
Moreover, as t — 0T, for any x € R" there exist limits

t£%1+ u(z) = v(z), tlir(])%r Pi(z) = x. (55)
As a simple consequence of the expressions (54) and (51) one obtains the

following identity:

< Vu(@) - f(x—§).6{ >=0, (56)

valid for all ¢ € Ry and arbitrary bounded variation 66 € R™. The latter
equality, in virtue of the relationship

Vu(€) = 5 (@ = &(x,1)) = Va(z, ), (57)

holds for all ¢ € Ry. This leads to a natural identification with relationships
(48), making use of the expression

%(x — &(x, 1)) = fo() = Ou/0|_o+, (58)

valid for all t € Ry and 2 € R", what proves exactly that at zo = £(z,t) e R?
and po(z) = po(x) one has {(z,t) = &(x,t) for all z € R", t € Ry. Thereby,
the following theorem is stated.

Theorem 1. The solution to the extremum problem (51) being achieved

at a point f = g(x,t) e R t € Ry, gives rise to the conver semi-continuous
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from below function @ € CY(R™ x Ry;R), which coincides with the action
function u € C1(R™ x Ry ;R) (47) defined implicitly by means of the expres-
sion (48).

As a result of the above Lemmas and Theorem 1, one can formulate
the following theorem, characterizing suitable generalized solutions to the
Hamilton-Jacobi equation (39).

Theorem 2. The extremum Laz expression (38) does solve the Hamilton—
Jacobi equation (39) with the Cauchy data, being chosen in the class of convex
semi-continuous from below functions from R™ to R.

3. THE CANONICAL HAMILTON-JACOBI EQUATION
ON SPHERE S§" AND ITS GENERALIZED SOLUTIONS

The approach devised above is generalized here for treating a Hamilton—
Jacobi equation constrained to live on the sphere S™. It is based in part
on the theory of completely integrable K.Neumann type dynamical systems
studied before in detail in [12,15,21]. The following theorem holds.

Theorem 3. The canonical Hamilton—Jacobi equation (39) constrained
to live on the sphere S™ possesses generalized solutions in the Hopf-Lax type
extremality form

1
u(z,t) = yieann{v(y) + % arccos® < y,x >} (59)

for semi-continuous from below Cauchy data v € BSC(S™).

3.1. Constrained Hamiltonian analysis

As is well known that the Hamilton-Jacobi equation (39) constrained to live
on the sphere S” is closely tied [12,15,19] within the characteristics method
with the finite dimensional Hamiltonian system

dzx/dr = 0H (x,p)/0p,  dp/dT = —0H(x,p)/0x, (60)

where H(z,p) = 1/2|p|?|z|?, (z,p) € T*(R"*1), 7 € Ry, with such constra-
ints: (z,p) € T*(S") = {x € R*" : |22 -1 = 0, < 2,p >= 0}. From
equations (60) one finds that for 7 € (0,] on T*(R"*!)

dx/dr =plz|*,  dp/dr = —|p|*=. (61)

Having taken Cauchy data x|,—g+ =y € S", z|;= = z € §", from (61) one
easily obtains that for all ¢ € Ry the expression



388 N.Prykarpatska, E.Wachnicki

Ip| = ¢ arccos (y, z) (62)

being independent of 7 € (0, t]. Consider now the following infimum expres-
sion for the Hamilton—Jacobi equation (39) extended naturally on the whole
space R+ .

u(x,t) = inf v(y)+
(1) {m(r)@”zwhogiyesn,{ )
T|r=¢t=x€S"
t {ves™) (63)
. t
+ [ ar(< pdujt > ~(e. )} = inf {00) + glplta. ) ).

where we denoted x = z(1;z,tly), p = p(r;x,tly) for 7 € (0,t], z,y €
S™, and made use of the equality d|p|/dr = 0, following from equations
(61). On the other hand for the quantity |p| € R™"! one has the expression
(62), giving rise together with (63) to the following inf-type Hopf-Lax type
representation:

~ 1
u(z,t) = yiensfn{v(y) + % arccos® < y,r >}, (64)

which we suggest as a candidate solution to the Hamilton—Jacobi equation
(39) constrained on the sphere S” with Cauchy data v : S® — R. The main
wanted equality u(x,t) = u(z,t) for almost all x € S™ and t € R will follow
from an analysis similar to that of [20,21,23,24], giving rise to equality (59).
Here we shall stop only on the case, when the Cauchy data v € BSC(S")
are semi-continuous from below functions.

3.2. Extremality problem analysis

Here we shall prove the equality u(z,t) = u(x,t) all z € S™ and t € Ry,
using the functional properties of Cauchy data for (61) and the exact inf-type
expression (64). It is easy to state [4,21] that there exists a point &(z,t) € S™
such that

Uz, t) = v(€(z, b)) + % arccos® < &(z,t),x > (65)
for any z € S™ and fixed ¢t € Ri. At the same time one can show that
the exact solution w : S™ x Ry — R satisfies the following differential form
expression:

du(z,t) =< p(z,t),dz > —1/2|p(z, t)|dt, (66)
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equivalent completely to the Hamilton—Jacobi equation (39), where p : S™ x
R, — R*! fulfills (61). Thus, based on (61) and (66) one obtains readily
that

t
e t) = o(¢(e, 1) + [ (du(a(ria,ty).0)/dr)dr
0
t
= olew ) +1/2 [ drlptriz )l
being equivalent for all z € S™ and fixed ¢t € Ry to the expression

u(x,t) =v(&(z,t)) + 2ltarccos2 <&(z,t),x > . (67)

Here £ : S" x Ry — S™ is a mapping defined as follows:
(x — € < 2,6 >< &(x, 1), >= tpo(€)((1— < z,& >)1/2,

where a function pg : S* — R"satisfies the expression following from (66):

V(& t)|i=o+ = po(§), (68)

strongly depending only on the Cauchy data v € BSC(S™). Therefore, it is
now sufficient to prove the above equality for all z €S™ and ¢t € R, entailing,
respectively, the wanted equality u(x,t) = u(x,t). It is an easy task to state
the validity of the following lemma.

Lemma 5. The expression (65) is differentiable for the expression (65)
is differentiable for each t € Ry and the following equality holds:

V(€ D=0+ = Po(€), (69)
where the relationship
(x— € <a,&><E(x,t),2 >=tpo(€)((1— < a,€ >)/?, (70)

is fulfilled for any x € S™ and t € R..

As a result of expressions (70) and (68) one infers that at po(x) = po(z)
for any = € S™ the equality {(z,t) = £(x,t) holds for all t € Ry. The latter
obviously means, if to take into account (65) and (66), that the inf-type
Hopf-Lax expression (64) does solve the Hamilton—Jacobi equation (39),
constrained to live on the sphere S™. This proves our Theorem 3 formulated
above.
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4. A NONUNIFORM HAMILTON-JACOBI EQUATION AND
ITS CLASSICAL AND GENERALIZED SOLUTIONS

It is a very interesting problem of describing a wider class of Hamilton—Jacobi
equations generalizing (39), for which one could deliver similar to (38) exact
Hopf-Lax type solutions based on the characteristics method considerations.
For instance, it is an important for applications problem [12,15,27] to analyze
suitable classical and generalized solutions to the following non-canonical
Hamilton—Jacobi equation

1 1
0u/8t+§(|ux\2+ﬁu\x|2)+§ < Qr,x >=0 (71)

with Cauchy data
u‘t:OJF =, (72)

where t € Ry, § € R is arbitrary constant, v : R® — R is some mapping and
Q:R"™ — R" is a positive definite diagonal matrix. If the parameter § = 0
and the matrix Q = 0, the equation (71) reduces, obviously, to that analyzed
in Sections above. In what to follow we study the classical and generalized
solutions to problem (71) and (72), when Cauchy data v : R"—R are twice
absolutely differentiable functions in R™.

4.1. The Cauchy problem

Consider the Cauchy problem for the following nonuniform Hamilton-Jacobi
equation

1
du/dt + 5(|u9012 +Bulz]?) =0, w—o=uv, (73)
where v € H?(R™;R) is a given function, 2 € R™ and 8 € R is some fixed
parameter. Within the characteristic method equation (73) can be treated as

one on the characteristic surface Sy C R?"*1, governed by the characteristic
Hamilton equations

da  OH dp oH OH du do
- & (== il — = — > —H 4
dr 9p’ dr (8a P ou ) ar P T (74)

where the Hamiltonian function

H = H(o;u,p) = 3 (ol + Bulaf?) (75)
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is defined for all («;u,p) € Sy. Thus, the set of equations

. da . dp B 2.
&= ——=p, p:—:—(ua+—p|a! O[),
dr dt 2 (76)
1= 2 = (] ~ fulof)
U:=—== —
dr 2 ’
when equipped with the related ,inverse Cauchy data
Qr=0 = y(l‘,t), Or=t = T, Ur=0 = U(y(l’)), (77)

for any reachable point (z,t) € R**1 N Sy, give rise [21] to the following
exact analytical solution to equation (73):

1 . p 1 .
(@, t) =v(y) = 5 <y,d>|_g— (ol =) + 5 <za>| . (78)

Here the mapping y : R"™! — R” is defined through the solution of the
snverse” Cauchy problem (76) and (77). This means, in particular, that the
solution « : R — R” to the system of nonlinear second order ordinary
differential equations

6= flua+ 5o @), it = 3 (|af ~ fulf’) (79)

with the inverse* Cauchy data (77) on the interval [0,¢] C Ry is solvable
for all reachable points (z,t) € R"*1 N Sy.

4.2. Solution set analysis

Consider the system of equations as that, defined in the Sobolev space Fy :=
H?(0,t;R") @ H'(0,t;RY), being rewritten as

a(a,u) = fa(o,u), (80)

where for any (o, u) € E; the operator a : Ey — FEs acts onto the Hilbert
space Fy := H(0,t;R") & H(0,t;R) as

alo,u) = (—a, ), (81)

and the nonlinear mapping f : £1 — FE3 is naturally defined as

folau) = (ua+ 5 o &, L (16 ~ fulaf). (52
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The corresponding solution set NV (a, f) C Ej of nonlinear equation (80) one
can study by means of a generalized version [18] of the well-known Leray-
Schauder fixed point theorem [9]. Namely, the following theorem holds.

Theorem 4. Let a linear operator a : E1 — Fa from a Banach space
(Ex,|||ly) into a Banach space (Ea,||-||y) be closed and surjective. If a non-
linear mapping fz : E1 — Eo is a-compact |10, 18], its domain D(f) =
D(a) N S-(0), where S, (0) C Ey is the ball of radius r > 0 centered at zero
of E1, and moreover, the positive value ky > k(a), where

~ 1
k= sup =~ fa(a,u)l,,
I(ew)lly=rT (83)
k(a) := | Sﬁlp 1inf{H(cw)lll sa(o,u) = w,
w|g=

then there exists the non-empty set N'(a, fg) C E1 of solutions (o, u) € Sy(0)
to the non-linear equation (80), whose topological dimension [10]

dim N (a, fg) > dim Kera — 1.

It is easy to check now that the linear operator a : £y — Es is, by
construction, closed and surjective, and the mapping f3 : 1 — E is a-
compact, being polynomial on Ej, owing to the well know compactness [17,
25,26,28| of the embedding i : Ey — Es. Thereby, if a parameter 8 € R is
chosen in such a way that for some r > 0 the quantity

<k Y(a), (84)

ﬁ 2 . 1 212 2
(w5 o 14l — Gula)]|

sup
ll[(ew)lly=r

then equation (80) is solvable and its solution set N(a, fg) is evidently,
nonempty, being continuously parameterized by arbitrary three constant
vectors a, b € R"and ¢ € R. Really,

Ker a = {(ar +b,¢)} C Ey (85)

for any three constant vectors @, b € R™ and ¢ € R, and the functional
dimension dim Kera = 3.

As we are interested in solutions to the Cauchy problem (77), it is
necessary to find the corresponding vectors a := a(x,t) € R", b:= b(z,t) €
R™ and ¢ := ¢(x,t) € R for all (z,t) € R"" N Sy, satisfying the following
constraints: the first one as

a(0;a,b,¢) = y(z,t), a(t;a,b,c) =z, uw(0;a,b,¢) =v(y(xz,t)), (86)
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where we put, by definition,
a(r) :== a(r;a,b,e), u(r) :=u(r;a,b,c) (87)
for all 7 € [0,¢], (a,b,¢) € R*"*! and the second one as
(e, w)lly =7 = r(a,b, ). (88)

Note also that, owing to the construction from [10, 11, 18], the solution
(87) depends smoothly on constant parameters a,b € R and ¢ € R. It
is important now to mention that the mapping (80) satisfies the scaling
symmetry condition (84):

0: By xR?3 (w057, B) — (4,87, 0) € By x R, (89)
where, by definition,
G:=r"tu, a:=r"ta, T:=rr, f:=r0 (90)

for any r € R;. The symmetry (90) gives rise to the next form of condition
(84) :
sup | f3(a,a)| | < F (@),
_ l@al= > (91)
k(a) := sup inf{|(a,q)|, :a(a,a) =w},
[[wll;=1
which one can always satisfy choosing, respectively, the value of parameter
3 € R small enough. Since the found solution (&, %) € E; satisfies additio-
nally the constraint ||(&,a)|; = 1, one gets easily that it is well determined
for only small enough values of the evolution parameter 7 € [0,r5t] C Ry
and the spacial variable zrg € R3, where rg = (5/5)1/3. Whence, if the
solution (&, ) € E; satisfies the conditions

R
ala_g = rﬂ_ly(x), d\%:mt = r/glx, Ulrg = r;lv(y(w)), (92)
for some suitable (z,t) € R™ x Ry N Sy, then, vice versa the constraint
||(&,@)||; = 1 naturally defines some value rg > 0, for which condition (91)
is satisfied a priori. Note also that the obtained above solution (87) is also
smooth with respect to the evolution parameter 7 € [0,t] C R, owing to the
form of mapping (83), that is (o, u) € E1 N C*(0,¢; R™ x R). This property
will be important for the Cauchy data analysis below.
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4.3. The Cauchy data description

The solution («,u) € E; obtained above, depends via its construction on
arbitrary vector parameters @, b € R" and ¢ € R, which should be determined
from the Cauchy data, imposed on system (85). To do this more effectively,
rewrite the solution (87) in the following equivalent form:

a=a(ry,nn), u=u(riy,n1), (93)
where, by definition, there are imposed the Cauchy data
? .
Oé|7_:0 =Y a|T=t =z, a|T=O = 77/7 u’TZO =1, (94)
for any y, 7 € R™” and n € R and a fixed vector z € R at 7 = t € R,.
Moreover, the constraint ||(a,u)||; = rg < 0o holds, owing to the existence

Theorem 4, formulated above.
Take now into account that the following representations

a(rsy,nn') =y +n'T+ /0 (7= )£ (o, u)ds,
u(r;y,m,m') = 17+/0 £ (e, u)ds,

where we denoted fz := (féo‘),f/é“)), hold for all 7 € [0,¢] C Ry. Thus, we
get at 7 = ¢ the expressions

t
r= y+n’7+/ (t — s)féa)(a,u)ds,
0

t (96)
u=n-+ /0 féu) (v, w)ds,
/ B 1 ! «
o= =1 [ = ar s (97)
and .
n=ute.t) = [ 0 99)

for all (z,t) € R™ x Ry N Sy, where the mapping v : R” x Ry — R,
constructed above, solves the Hamilton—Jacobi equation (73) under appro-
priate Cauchy data. To describe them in more detail, we need to relate with
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each other two quantities (97) and (88), which, by construction, depend only
on the vector y € R™. From (97) one gets easily that

n=v(y), (99)

where y € R” and u(x,t)|,_q+ = v(z), * € R", is a suitable Cauchy data
for equation (73). Moreover, mapping 1’ : R” — R can be obtained similarly
from (95) as

/ . . .
= lim &(7) = lim ———~~
) = Jim ar) = lim ZEGET

, (100)

holding for all y € R™. Observe now that the right-hand side of expression
(98) is differentiable with respect to the variable x € R", that is the left-hand
side should be differentiable too, in particular at t = 07 :

li%1+877(y)/8x = 0n(x)/0r = Ou/Ox|,_y+ (101)
t—
for all z € R". Comparing now expressions (100) and (101), derive that for
all x € R™ there holds the equality n'(z) = dn(x)/0z, or, taking into account
(99),

i () = Bo(y) /0a. (102)

As a result of the reasoning above one can formulate the following theorem.

Theorem 5. Let Cauchy data v : R® — R for the Hamilton—Jacobi
equation (73) be twice continuously differentiable, that is v € C?*(R™;R).
Then there exists it a continuously differentiable classical solution u : R™ x
Ry — R (in general, nonunique), which can be represented in the following
analytic form:

(e, t) = vly) + 5 <7~ 3,00(y)/Dy > +

| (103)

+

[\)

t
u 1
< [ £ @ wds >+ (it~ la),
0

holding for all (x,t) € R™ x Ry NSy, where the mapping y : R x Ry — R™
is a compatible smoothly differentiable solution to equations (97), (99) and
(102).

If to assume that we are interested in generalized solution to the Ha-
milton-Jacobi equation (73), satisfying it almost everywhere, it is enough
to consider, that equality (98) is differentiable only almost everywhere too.
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From this condition, taking into account derived before equalities (99) and
(102), one gets easily that the Cauchy data v : R® — R can be chosen
such that its derivative is an absolutely continuous function. Thereby, the
following theorem holds.

Theorem 6. If the Cauchy data for the Hamilton—Jacobi equation (73)
s chosen to be twice-absolutely differentiable, then this equation possesses an
almost everywhere differentiable solution, u : R™ xRy — R (in general, non-
unique), which can be representable by means of expression (103), where the
compatible mapping y : R" xR — R™ is an almost everywhere differentiable
function.

The analysis of the solution set to the Hamilton-Jacobi equation (73)
undertaken above shows that both classical and generalized its solutions can
be constructed by means of the modified characteristics method [20,22-24]
and appropriate version of the Leray-Schauder type fixed point theory [9,
18]. Moreover, in many cases, when the so called Hopf-Lax type functional
kernels are constructed explicitly, the corresponding both classical and ge-
neralized solutions can be effectively enough represented by means of the
inf-type extremal problem, which is widely used, for instance, in related
optimal control considerations and other applications.
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METO/J XAPAKTEPUCTUK TA MOB’I3AHUN 3 HUM
AHAJII3 3AJAYI ITPO HEPYXOMY TOYKY JAJIdAd
PIBHAHHZA TUITY TAMIJIBTOHA-AKOBI

Hamanis IIPUKAPIIATCHKA 2, €seeniyw BAXHII[bKHUH 3

U Axanemisa Dipaunrea Ta Meranyprii, Kpaxkis, 31059, [loabma
2 Mizxnaposauit Ienrp Teopermanoi @izuxu im. A6xyca Casama,
Tpiecr, ITamia
3 Tlegaroriuna Axamemis, Kpakis 30062, TTonbima

Jano amasiz reomerpwaHoro miaxoay Kaprama—Momka 10 METOTy Xa-
PAKTEPUCTUK JJId HEeJIHIHUX PIBHAHD 13 YaCTUHHUMHU TIOXITHUMU TEPIIOTO
Ta BUIUX TOPAAKiB. JIOCTIPKEHO CTPYKTYPY XaPAKTePUCTUIHNX BEKTOPHUX
OB, MOB’sI3aHUX 3 KJIACUYHUME Ta y3arajbHEHUMU PO3B’s3KaMy HeJIiHil-
HUX PIBHSAHB i3 YacTHHHUMU rnoxignuvmu tuny aminbrona—kobi. Haseneno
JTesTKi TiKaBl TPUKJIaTH.





