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A generalization of the classical Leray—Schauder fixed point theo-
rem, based on the infinite-dimensional Borsuk—Ulam type antipode
construction, is proposed. Two completely different proofs based on
the projection operator approach and on a weak version of the well
known Krein—Milman theorem are presented.

1. INTRODUCTION

The classical Leray-Schauder fixed point theorem and its diverse versions
[1,2,5,8,11,13,15,18] in infinite-dimensional both Banach and Frechet spaces,
being nontrivial generalizations of the well known finite-dimensional Brouwer
fixed point theorem, have many very important applications [2,5,8,10-12]
in modern applied analysis. In particular, there exist many problems in
theories of differential and operator equations |2, 10,12, 15,17, 18|, which
can be uniformly formulated as

azx= f(x), (1)

where a : F1 — FE»s is some closed surjective linear operator from Banach
space E; into Banach space Esg, defined on a domain D(a) C Ej, and f :
Ey — FE» is some, in general, nonlinear continuous mapping, whose domain
D(f) € D(a) N Sy(0), with S.(0) C Ej being the sphere of radius r € Ry
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centered at zero. Concerning the mapping f : By — Ea we will assume that
it is a-compact. This means that the induced mapping fg, : Dgr(a@) — Eo,
where Dg.(a) C E1 @ E» is the extended graph domain endowed with the
graph-norm, Lipschitz-projected onto the space Ey via j : Dg,(a) — Eq, and
the following equality fg.(Z) = f(j(Z)) holds for any € Dg,(a). It is easy
to observe also 9] that the mapping f : E1 — Es is a-compact if and only if
it is continuous and for any bounded set Ao C Fy and arbitrary bounded set
Ay C D(f) the set f(A1 Na~'(Asg)) is relatively compact in Es. The empty
set &, by definition, is considered to be compact too.

2. PRELIMINARY CONSTRUCTIONS

Assume that a continuous mapping f : E1 — E5 satisfies the following con-
ditions:

1) the domain D(f) = D(a) N S, (0);

2) the mapping f : D(f) — Es is a-compact;

3) there holds a bounded constant £y > 0, such that

@l _

sup o

y€S-(0) r

where a linear operator a : E1 — FEs is taken closed and surjective with the
domain D(a) C Ej. The domain D(a), in general, can not be dense in Ej.

Let now El .= Ej/Kera and p; : B — El be the corresponding
projection. The induced mapping a : E, — FE, with the domain D(a) =
p1(D(a)) is defined as usual, that is for any € D(a), a(Z) := a(p1(2)). It
is a well know fact [1,13,18] that the mapping @ : Ey — Ej is invertible and
its norm is calculated as

la=!l == sup [la~'(y) = sup inf {Hxlll a(r) =y}, (2
llyll2=1 lyll2=1 z€D(a
where we denoted by || - ||1 and || - ||2 the corresponding norms in spaces E;

and Es. The following standard lemma [13,18] holds.

Lemma 2.1. The mapping a : Ey — E, is invertible and the norm
la=t|| == k(a) < oo.

Proof. We have, by definition (2), that the norm ||a~!|| equals

la= ()l g,
up ———— = inf {|lz]l:a(z) =y} (3)
ek, |lll2 yeis, Y2 2€D(@)

k(@) = lla="|| =
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Since the linear mapping a : By — Es is surjective, the mapping a~! : Fy —
El is defined on the whole space Fo. Moreover, as the mapping a : B4 — E»
is a closed operator, the induced inverse operator a~' : By — E, is closed
[13,17,18] too. Thereby, making use of the classical closed graph theorem
[1,12,13], we conclude that the inverse operator a~' : Ey — E) is bounded,
that is norm

&= == k(@) < ox, (4)

finishing the proof.

The next lemma characterizes the multi-valued mapping a=! : By — E
by means of the constant k(a) < oo, defined by (4).

Lemma 2.2. The multi-valued inverse mapping a : Ey — FEy is Lipschi-
tzian with the Lipschitz constant k(a) < oo, that is

(@ (y1), " (y2)) < k(@)lly1 — w22 ()

for any y1,y2 € Ea, where p, : El X E’l — Ry s the standard Hausdorf
metrics |1,13,18] in the space Ej.

Proof. The statement is a simple corollary from formula (3) and the
Hausdorf metrics definition.

To describe the solution set of equation (1) we need to know a more
deeper structure of the mapping @ : E1 — FE» and its multi-valued inverse
a~!: Ey — Ep. Namely, we are interested in finding a suitable, in general,
nonlinear continuous selection s : Ey — FEj [1,12,14,15| of the multi-valued
mapping 4! : By — Ej, satisfying some additional properties.

The following theorem is crucial for proving the main result obtained
below.

Lemma 2.3. For any constant ks > k(a) there exists a continuous odd
mapping s : Eo — E1, satisfying the following conditions: i) a(s(y)) =y for
any y € Ey; it) [|s(y)|1 < ksllyll2, y € Ea.

Proof. Since the multi-valued mapping a=' : By — Ej is defined on the
whole Banach space Es, one can write down that

aly=1,0Kera (6)

for any y € Ey and some specified elements z, € E;\Kera, labelled by
elements y € Es. If the composition (6) is already specified, we can define a
selection s : By — F4 as follows:

() 1= Ty~ T4 ® (e — ), ©
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where the elements ¢, € Kera, y € Es, are chosen arbitrary, but fixed. It is
now easy to check that

s(—y) = —s(y) (8)
and - " B
y —T—y) @ 5(6y —Cy)) =

=307y — 50Ty =3y —3(-y) =y

for all y € Es, thereby the mapping (7) satisfies the main conditions i) and
i1) above. To state the continuity of the mapping (7), we will consider below
expression (3) for the norm ||a~'|| = k(a) of the linear mapping a~' : Ey —
E. We can easily write down the following inequality

Istll = (0 - 7@ 56~ e

(9)

1, _
= §||(xy ® ey)—

1

~@Eyoeh < 5@ ea)h+IEy o)y 10

1 1
< Shsllyllz + Sksllyllz = Esllyll2,

giving rise to the continuity of mapping (7), where we have assumed that
there exists such a constant ks > 0, that

1(Zy @ &)l < ksllyll2, (11)

for all y € Ey. This constant ks > k(a) strongly depends on the choice of
elements ¢, € Ker a, y € E», what one can observe from definition (3).
Really, owing to the definition of infimum, for any € > 0 and all y € E5 there
exist elements :E?(f) S 6755) € E1, such that

EREERN

k(a) <
lyll2

< k(@) + € = ks. (12)
Now making now use of formula (7), we can construct a selection s; :
FEy — E as follows:

L ¢ e

sely) == = (& Do =@ - ), (13)

2y -y

satisfying, owing to inequalities (12), the searched for conditions 7) and ii):

ase(y) =y, llse®)lls <ksllyll2 (14)

forally € Fy and ks := k(a)+e , & > 0. Moreover, the mapping s. : Ey — E;
is, by construction, continuous [6,9,14] and odd that finishes the proof.
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3. AN INFINITE-DIMENSIONAL BORSUK-ULAM TYPE
GENERALIZATION OF THE LERAY-SCHAUDER
FIXED POINT THEOREM

Consider now the equation (1), where mappings @ : F1 — Eg and f : E; —
E5 satisfy the conditions described above. Moreover, we will assume that
the selection s : Fy — Ej, constructed above, and the mapping f : D(f) C
E) — FEj satisty additionally the following inequalities:

k(a) < ks < ky, (15)
where, by definition,
sup I/()l = k;l < 0. (16)
z€S-(0) r

Then the following main theorem holds.

Theorem 3.1. Assume that the dimension dim Ker a > 1, then equation
(1) possesses on the sphere S.(0) C Ey the nonempty solution set N'(a, f) C
E1, whose topological dimension dim N (a, f) > dim Ker a — 1.

Proof. Suppose that dim Kera > 1 and state first that the set NV (a, f)
is nonempty. Consider a reduced mapping f, : D(a) C E; — Ej, where

el () o
fe=d o I\ ) O

0, if 2=0

(17)

and observe that this mapping is d-compact too, if the mapping f : D(f) C
E1 — FE5 was taken a-compact. Really, for any bounded sets As C Ey and
A C BR(O) N D(d) the set fT(Al N &71(142)) -

c{tye By:te[0,R/r],y € f(S:(0)Na(A)} = F, (18)

is relatively compact owing to the a-compactness of the mapping f : D(f) C
E1 — E,, where Br(0) is a ball of radius R > 0. Thereby, the closed set

F, C E5 is compact, or the mapping (17) is a-compact.

Assume now that a mapping s : E» — Fj satisfies all of the conditions
formulated in Theorem 2.3. Take a nonzero element ¢ € Kera, define the
Banach space Eéﬂ := E5 & R and consider a set of mappings go,(f) : Egﬂ
FEs, where

—

A1) = g Fr(ts(y) +£0) (19)
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for all (y,t) € E;r), small enough ¢ € R\ {0} and some fixed nontrivial
element ¢ € Kera. It is also evident that

P\ (y,0) := 0, (20)

being well definite for all ¢ € R\ {0} and y € F», owing to condition 3)
imposed above on the mapping f : D(f) C E1 — FEs. The set of mappings
(19) is, evidently, odd, that is

) (y,t) = o\ (—y, —t) (21)

for all (y,t) € E(+) e € R\ {0} and moreover, it is compact. Really, for any
bounded set A(+) =AsPAC E( ), where A C R is an arbitrary bounded
interval, the set By := U Bé , B(t) {s(y) + tc € Es}, is bounded too,

and By C a~1(Ay). meg to the a—compactness of mapping (17), one gets
that the set

A = U g F0BY) (22)
teA

is relatively compact, since all of the sets fr(th)) C FEs are relatively
compact for any ¢ € A and, owing to the condition 3) mentioned above,

the set (pgf) (Aé”) is bounded for any € € R\ {0} . Thereby, the closed set

(pﬁe)(Ang)) C FEj for any ¢ € R\ {0}, meaning that the mapping (19) is
compact.
Take now the unit sphere Siﬂ (0) C E§+) and consider the equation

e (y,t) =y (23)
for (y,t) € S{7(0) and ¢ € R\ {0} that is
lyll3 + % = 1. (24)

We assert that equation (23) possesses for any € € R\ {0} a solution (y.,t.) €
Siﬂ (0), such that ¢. # 0 and

t —
ﬁ Frltes(ye) +120) = e, (25)

where the vector t.s(y.) +12¢ € E5 is nontrivial (i.e. it is not equal to zero!).
This is guaranteed by conditions imposed on the mapping f : S, (0) C B} —
FE) and the following Borsuk—Ulam type theorem, generalizing the well known
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Borsuk-Ulam [1, 8,15, 18] antipode theorem, proved in [9] and formulated
below in a convenient for us form.

Theorem 3.2. Let Eéﬂ and FEo be Banach spaces, b: E§+) — FE5 be a
(

linear continuous surjective operator, Sﬁﬂ (0) C E2+) be a sphere of radius

r > 0 centered at zero of Eéﬂ and @ : Sﬁ)(O) — E be a compact, in general
nonlinear, odd mapping. Then if dim Kerb > 1, the equation

bz = p(z2), (26)
)

z € S,§+)(O), possesses the nonempty solution set N(b, ) C E§+ , whose

topological dimension dim N (b, p) > dim Kerb — 1.

Proof. To state that our equation (23) is solvable, it is enough to define

a suitable linear, bounded and surjective operator b: E§+) — Fs and apply
Theorem 3.2. Put, by definition,

bz =y, (27)

where z := (y,t) € Eéﬂ, y € Ey, t € R. The operator (27) is evidently linear

bounded with the norm ||b]| = 1 and surjective with Range b = Ej. Take
now the mapping ¢ := 4,07(:5) : Eéﬂ — E, for e € R\{0} and apply Theorem
3.1. Since dim Kerb =1, we get that equation (23), written in the form

p(z) = i) (2) = bz (28)

for all z € E§+), possesses a nonempty solution set A(b, cpﬁf)) C E§+), whose

topological dimension dim N (b, @5«6)) > 0 for all € € R\ {0}. Assume now,
for a moment, that the value t. # 0. Then, based on expression (25), one
can easily get that the well-defined vector

rte(s(ye) + teC)

= = 29
* T Tl TsCe) + e 2
satisfies the following equation:
flae) = t22(t2 + e¥)a = (30)
Really, from (25) we obtain that
te 2 telte] - lIs(y:) +tecln
el (U R =T 3

><f < rts(s(ys) +t56) > o t€|ts| : ||5(y5) +t£EH1

= ) — 1.
‘t€|||5(y€) + tgé”l T(t? + 52) f( a) Ye
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Whence, recalling the identity a(s(ye)) = ye for any y. € Eo, we find that

_ (@ +ehrals(ue)) _ (2+e) rs(ye)te _
1) = s v e~ 2 (tsr-us<ye>+teeul>‘
_ (2t ( ter(s(ye) + te0) > (t2+¢) .

- = azre, (32
] Ts(ye) + ol gz 0re (32)

£

where we took into account the linearity of the operator a : Eh1 — Fo and
the fact that the vector ¢ € Ker a. Thereby, the constructed vector z. € Fq
satisfies for ¢ € R\ {0} the equation (30). The considerations above hold
since we assumed that t. # 0 for all ¢ € R\ {0}. To show this is the case,
assume the inverse that is t. = 0 for some € € R\{0}. We then get from (25)
and condition 2) imposed before on the mapping f : D(f) C Ey — Ej right
away that simultaneously there should be fulfilled the equality |ly:|2 = 0,
contradicting to the condition (24). Thus, for all £ € R\ {0} the value t. # 0.
If to state more accurate estimations, mainly, that the following inequalities

1> lim|/t]?>1—0af >0 (33)

e—0

hold for some positive value ap > 0, then one can try to calculate the limit:

lim f(ze,) = f(zo) = lim (122(62, +ep) axe,) = a o (34)

n—oo
for some subsequence €, — 0 as n — oo. Here we have assumed that there

exists lim x., = xg, that is
n—oo

i te,7(5(Ye,) + te,C) _
im ~— =y
n—oo|te, [[lls(ve,) + te,elln

(35)

depending on the chosen before nontrivial vector ¢ € Ker a.

Owing to the a-compactness of the mapping f : D(f) C E; — E3 and
the continuity of the operators al: By — El and s : Fs — FEj, for the
limit (35) to exist it is enough only to state that there holds inequality (33).
Really, since owing to relationship (24) for all € > 0 the following condition

1% + llyell3 = 1 (36)
holds, the limit (35) will exist, if to state equivalently that

Jim g, l2 < a0 < 1. 1)
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To show inequality (37), consider expression (25) and make the following
estimations:

Tim g, 2 = lim ( el 1t <yen>+t§na>||2) <

t2 + & 2
< tim < leal?®_l1(0es) + 2l f< rie, (3(se,) + e, ) )) <
n—0oo (tsn+€n) r HtEnHH ( )+t5nCH1
Lo (38)

n—oo
ket (lim [[s(ye, )]l + (1 — lim Hyan%)mHEHl) <
n—oo n—oo
<kt (ks im flye, [l2 + [1 = Tim g, 13]"/2]1]).
n—oo n—oo

Thus, we obtain from (38) that the value ag := lim ||y., |l2 € Ry satisfies
n—oo
the following inequalities:

0 < ag <k (ksao + (1 — af)?|lell) < 1 (39)

where, in general, ag € [0,1]. For inequalities (39) to hold true, we need to
consider two possibilities:

aksky' > 1 bksk;' <1, (40)
For the case a) of (40) we can easily state that
ks _ _
< min {51} < 00 <7 2+ el (a1)

For the case b) of (41) one gets similarly that
gl
Vel + ks — kg

Since we are interested in any value of ap < 1, the only inequality (42) fits
to the searched for exact inequality

0<ag< (42)

lella

O < (7)) <
VIIE? + (s — k)2

<1, (43)

guaranteeing the existence of a nontrivial (not zero!) solution to equation
(34). Thereby, the nontrivial vector g € D(f) constructed above satisfies,
following from (34), the equality
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Moreover, since the vector xg € D(f), owing to representation (35), depends
nontrivially on the chosen vector ¢ € Kera, we deduce that the correspon-
ding to (44) solution set N (a, f) C Ej is nonempty, if dim Kera > 1, and
the topological dimension dim N (@, f) > dim Ker a — 1. The latter finishes
the proof of the theorem.

4. COROLLARIES

The classical Leray-Schauder fixed point theorem, as is well known [1,2,13,
15,18], reads as follows.

Theorem 4.1. Let a compact mapping f : B — B in a Banach space B
1s such that there exists a closed conver and bounded set M C B, for which

f(M) C M. Then there exists a fized point T € M, such that
@) == (45)

Proof. One can present two completely different approaches to the proof
of this classical Leray-Schauder theorem, using the main Theorem 3.1. The
first one is based on simple geometrical considerations, and the second one,
requires some topological backgrounds.

Proof. Approach 1. Put, by definition, that £, := BER, Es := B and
My := Conv f(M) C M is the convex and compact convex hull of the image
f(M) C M. For any point € B one can define the set-valued projection
mapping

B>z — Py,(x) C My C B, (46)

where
inf — = - P .
yleanHx yH Hl‘ Mf(fU)H (47)

The set-valued mapping (46) is well defined and upper semi-continuous [3,4]
owing to the closedness, boundedness and convexity of the set M; C B.
Now take the unit sphere S;(0) C E; and construct a mapping f : S1(0)
C Ej1 — FE5, where, by definition, for any (z,7) € S1(0)

f(z,7) == f(Px,(z)) — Py, (z) + b, (48)

Py, : B — My C B is a suitable continuous selection [14] for the mapping

(46) and b:B — Bis an arbitrary compact and surjective mapping. Con-
cerning the corresponding mapping a : £y — E», we put, by definition,

a(z,7):=bx (49)
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for all (z,7) € E1 = B @ R. It is now easy to observe that the following
lemma holds.

Lemma 4.1. The mapping f : S1(0) C Ey — Es, defined by (48), is
continuous and a—compact.

Proof. Really, for any = € B the element PMf (x) € My and f(PMf(x)) €
My, owing to the invariance f(M) C M. From the compactness of the
mappings f : M — M and b: B — B one easily gets the a-compactness of
the constructed mapping f : £1 — FEs that proves the lemma.

Now taking into account Lemma 4.1 and the fact that operator a : F4 —
Es, defined by (49), is closed and surjective, owing to the assumptions done
above, we can apply to the equation

a(x,7) = f(x,1), (50)

where (z,7) € S1(0) C E1, the main Theorem 3.1 and, thereby, state that the
corresponding solution set N'(a, f) C E; is nonempty, since dim Kera > 1.
In particular, from (50) one gets that

F(Pagy (7)) = Pagy (2-) (51)

for the vector pr(a:T) € My, where a point z, € B;(0) satisfies the
condition ||z,||? + ||7||?> = 1 for some value |7| < 1.

Thereby, we have stated that the fixed point problem (45) is solvable and
its solution can, in particular, be obtained as the projection Z := PMf(xT)

of some point x> € B1(0) upon the compact, convex and invariant set My C
M C B.

Approach 2. We shall start from the following result [7,16] about the
general structure of compact and convex sets in metrizible locally convex
topological vector spaces, being a weak version of the well known Krein—
Milman theorem.

Lemma 4.2. Let E be a metrizible locally convex topological vector space
over the field R, FF C FE be its dense vector subspace and M C FE be any
convexr and closed compact subset. Then there exists a countable linearly
independent sequence {e, € F :n € Z.}, such that nh_)rgo en =0, a countable

sequence {\p(z) € R:n € Zy}, such that

> @) <1, (52)

TLGZ+
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and every element x € M allows the representation

x = Z An(z)en. (53)

nEZy

Proof. A proof of this lemma can be found, for instance, in |7,16], so we
will not present it here.

As any Banach space B is a metrizible locally convex topological vector
space, representation (53) naturally generates a well-defined surjective and
continuous compact mapping & : l1(Z4;R) — M; C B with the domain
D(¢) = B1(0), where the set B1(0) C [1(Z+;R) is the unit ball centered
at zero in the Banach space l1(Z4;R) and My := Conv f(M) C M is, as
before, the convex and compact convex hull of the image f(M) C M. The
next lemma follows from Lemma 4.2 and |7, 16] and some related results
about the continuous selections from [2,8,12,18|.

Lemma 4.3. There exists such a continuous selection ;11 B D My —
B1(0) C L(ZysR), - &1 = id © My — My, that for any vector x €
My the value &1 (z) € B1(0) determines uniquely this vector by means of
representation (53) as

T = Z (ggl(x))nen (54)

nEZy

Moreover, this selection can be chosen in such a way, that an induced

mapping Fs : 11(Z4;R) D B1(0) — B1(0) C I1(Zy;R), defined as

Fy(N) =& f(eV) (55)
for any X\ € B1(0) C l1(Z+;R), is continuous and also compact.

Proof. Modulo the existence [3,14] of a selection £;' : B D My —
B1(0) C 11(Z4;R), a proof is based both on representations (54) and (55)
and on the compactness of the mapping ¢ : [1(Z4;R) D B1(0) — My C B
and the set My , as well as on the standard fact [13,18] that the continuous
image of a compact set is compact too.

Pose now the fixed point problem for the compact mapping
Fy: 11(Z;R) D B1(0) — B1(0) C I1(Z1;R)

constructed above as follows:

Fy(A) = A (56)
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for some point A € B1(0). The solution of the fixed point equation (56)
is, evidently, completely equivalent to proving Theorem 4.1, since the cor-
responding vector Z = &(\) € My, owing to definition (55), satisfies the
following relationships:

F(@) = fF(EN) = &(Fs(V) = £(\) = 2. (57)

Thereby, the vector Z := £(\) € My solves fixed the point problem (45) for
the compact mapping f : B — B.

To prove the existence of a solution to equation (56), we will construct
the suitable Banach spaces Fj := [1(Z+;R) ® R and Ey := 1;(Z4;R) and
take the unit sphere S1(0) C E1, consisting of points (A, 7) € Eq, for which
|All + 7] = 1. The mapping Fs : B1(0) — B1(0), constructed above, one can
extend upon the sphere S1(0) C Ej, defining a mapping f : E; D S1(0) —
S'l (0) C FEy as

f()‘ﬂ T) = Fs()‘) (58)

for any (A, 7) € S1(0) C E;. A suitable linear, closed and surjective operator
a: F1 — FE5 one can define as

a(\71):=A (59)
for all (A\,7) € Ey. The resulting equation

a(\T)=f(\T) (60)

for (A, 7) € S1(0) C E; exactly fits into the conditions formulated in Theo-
rem 3.1, being simultaneously equivalent to fixed point problem (56) for
the mapping Fy : B1(0) — B1(0). Since dim Kera = 1, there exists the
nonempty solution set N'(a, f) C E; of equation (60). If a point (A, 7) €
N(a, f) € S1(0), where || A+|| +|7| = 1 for some value |7| < 1, then the fixed
point equality

(X)) = A (61)

holds for the value A\, € B1(0) C I;(Z4;R). Having denoted now A, := A €
B1(0), we get, owing to relationships (57), the corresponding solution to the
fixed point problem for the compact mapping f : B — B, thereby finishing
the proof of the Leray—Schauder theorem 45.

There exist, evidently, many other interesting applications of the main
Theorem in particular, proving the existence theorem for diverse types of
differential equations in Banach spaces with both fixed boundary conditions
and inclusions [1,2,8,10,11,15|. These and related research problems we plan
to study in move detail in another paper.
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Y3ATAJIBHEHHZ TUITY BOPCYKA-VJIAMA TEOPEMMNA
JIEPE-IITAVJIEPA IIPO HEPYXOMY TOYKY

Anamoniti IPUKAPITATCbKHI %3

1 [actuTyT npukaagaux TpobieM MeXaHiKu Ta MATEeMATHKN
im. A.C. Ilixcrpuraga HAH Yxpaian,
Bys1. Haykosa, 3-0, JIesis 79060, Ykpaina
2 Axanemia Dipumrsa ta Meranyprii, Kpakis, 31059, ITosbma
3 Mizknapomauit enrp Teopermanoi @isuxu im. AGmyca Casama,
Tpiecr, ITania

3amnporioHoBaHO y3arajgbHeHHs KJjacudHol Teopemu Jlepe-Illayaepa mpo
HEPYXOMY TOYKY, IO TPYHTYETHCHI Ha HECKIHYEHHO-BUMIPHIN KOHCTPYKIII
Bopcyka—Ymama npo anTunoju HesiHiiHUX Bimobparkenb. Kk Hac/iIOK Ha-
BEJIEHO JBa TILJIKOM BiIMIHHI JOBEAE€HHH, IO IPYHTYIOTHCI HA OMEPATOPHO-
MIPOEKIIIMHOMY X0/l Ta Ha caa0Kifl Bepcii BimoMoro teepakeHHs Kpeiina—
MisibMana 11po 300pakeHHs KPAaHiX TOYOK BUIIYK/IMX KOMIIAKTIB.





