ON TRANSCENDENCE OF MODULUS OF JACOBI ELLIPTIC FUNCTIONS

© 2007 Yaroslav KHOLYAVKA

Ivan Franko Lviv National University, 1 Universytetska Str., Lviv 79000, Ukraine

Received July 29, 2007

Let $\operatorname{sn}_1 z, \operatorname{sn}_2 z$ be the Jacobi elliptic functions, \varkappa_1, \varkappa_2 the moduli of these elliptic functions, $0 < \varkappa_1^2 < 1$, $0 < \varkappa_2^2 < 1$, τ_1, τ_2 the values of modular variable, $\theta_3(\tau_1), \theta_3(\tau_2)$ the theta constants. In this paper it is shown that there exists a transcendental number among $\varkappa_1, \varkappa_2, \theta_3(\tau_1), \theta_3(\tau_2)$, if τ_1/τ_2 is irrational.

INTRODUCTION

Let $\operatorname{sn}_1 z$, $\operatorname{sn}_2 z$ be the Jacobi elliptic functions, \varkappa_j the modulus of $\operatorname{sn}_j z$, j = 1, 2. They are determined by the values of modular variable τ_j respectively [7]. We use the notation [7] for the theta functions: $\theta_i(z, \tau_j)$ is the theta function (i = 2, 3, 4, j = 1, 2) of z determined by the values of modular variable τ_j ; $\theta_{i,j}$ are the theta constants, $\theta_{i,j} = \theta_i(0, \tau_j)$.

We refer to [1, 4, 6] for some information on arithmetic properties of numbers related to elliptic functions. In this paper we obtain the following result.

Theorem 1. Let $0 < \varkappa_1^2 < 1$, $0 < \varkappa_2^2 < 1$, and τ_1/τ_2 is irrational. Then at least one of the numbers \varkappa_1 , \varkappa_2 , $\theta_{3.1}$, $\theta_{3.2}$ is transcendental.

An analogous result for the theta functions is obtained in [4].

As for the theta functions Jacobi, the elliptic functions $\operatorname{sn} z, \operatorname{cn} z$ u $\operatorname{dn} z$ are related. In particular, they satisfy the following relations

$$\varkappa_j^2 = \frac{\theta_{3,j}^4}{\theta_{3,j}^4}, \quad \operatorname{sn}_j z = \frac{\theta_{3,j}\theta_1(v,\tau_j)}{\theta_{2,j}\theta_4(v,\tau_j)}, \quad v = \frac{z}{\pi\theta_{3,j}^2}, \quad j = 1, 2, \tag{1}$$

UDC 511.3; MSC 2000: 11J89

354 ______ Ya.Kholyavka

$$|\theta_i(z,\tau)| \leqslant \exp(\gamma|z|^2). \tag{2}$$

Polynomials of \varkappa with integer coefficients are the coefficients of expansions of Jacobi functions into the Taylor series.

Lemma 1. The following conditions take place:

$$\operatorname{sn} z = \sum_{j=0}^{\infty} A_{1,2j+1}(\varkappa) \frac{z^{2j+1}}{(2j+1)!}, \quad \operatorname{cn} z = \sum_{j=0}^{\infty} A_{2,2j}(\varkappa) \frac{z^{2j}}{(2j)!}, \tag{3}$$

$$\operatorname{dn} z = \sum_{j=0}^{\infty} A_{3,2j}(\varkappa) \frac{z^{2j}}{(2j)!},$$

where

$$A_{1,2j+1}(\varkappa) \ll (2j+1)! \varkappa^{2j}, \ A_{2,2j}(\varkappa) \ll (2j)! \varkappa^{2j-2},$$

$$A_{3,2j}(\varkappa) \ll (2j)! \varkappa^{2j}.$$

$$(4)$$

Proof. We proceed by induction on j. For j=0 we have $A_{1,1}(\varkappa)=1$, $A_{2,0}(\varkappa)=1$, $A_{3,0}(\varkappa)=1$; for j=1 we have $A_{1,3}(\varkappa)=-(1+\varkappa^2)$, $A_{2,2}(\varkappa)=-1$, $A_{3,2}(\varkappa)=-\varkappa^2$. Suppose that (4) holds for all coefficients in (3) with $j \leq j_0$. Conditions (1) imply

$$A_{1,2j_0+1}(\varkappa) = \sum_{k=0}^{j_0} \frac{(2j_0)!}{(2k)!(2(j_0-k))!} A_{2,2k}(\varkappa) A_{3,2(j_0-k)}(\varkappa). \tag{5}$$

The required estimate follows from the induction hypothesis.

The proof is complete.

Lemma 2. For all positive integer t_1, t_2 there exist polynomials $B_{r,t_1,t_2} \in \mathbb{Z}[\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}]$ such that

$$\operatorname{sn}_{1}^{t_{1}}(z)\operatorname{sn}_{2}^{t_{2}}(z) = \sum_{r=0}^{\infty} B_{r,t_{1},t_{2}}(\varkappa_{1},\varkappa_{2},\theta_{3,1},\theta_{3,2}) \frac{z^{r}}{r!}$$
 (6)

and

$$B_{r,t_1,t_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2}) \ll \ll r!t_1!t_2!2^{\frac{r+t_1+t_2}{2}} (\varkappa_1 + \varkappa_2 + \theta_{3,1} + \theta_{3,2})^{4r-2t_1-2t_2}.$$
(7)

Proof. If $r < t_1 + t_2$ then let $B_{r,t_1,t_2}(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}) = 0$. Lemma 1 applied to $\operatorname{sn}_1(\theta_{3,1}^2 z)$, $\operatorname{sn}_2(\theta_{3,2}^2 z)$, and (3) imply

$$\sum_{r=0}^{\infty} B_{r,t_1,t_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2}) \frac{z^r}{r!} =$$

$$= \left(\sum_{j=0}^{\infty} A_{1,2j+1}(\varkappa_1) \frac{(\theta_{3,1}^2 z)^{2j+1}}{(2j+1)!} \right)^{t_1} \left(\sum_{j=0}^{\infty} A_{1,2j+1}(\varkappa_2) \frac{(\theta_{3,2}^2 z)^{2j+1}}{(2j+1)!} \right)^{t_2}. \quad (8)$$

For $r \ge t_1 + t_2$ let us compare the coefficients at z^r in the left and right parts of (8):

$$\frac{B_{r,t_{1},t_{2}}(\varkappa_{1},\varkappa_{2},\theta_{3,1},\theta_{3,2})}{r!} = \sum_{1} t_{1}!t_{2}! \prod_{m=0}^{n} \frac{A_{1,2_{m}+1}^{j_{m}}(\varkappa_{1})A_{1,2_{m}+1}^{k_{m}}(\varkappa_{2})(\theta_{3,1})^{2r_{1}}(\theta_{3,2})^{2r_{2}}}{j_{m}!k_{m}!((2m+1)!)^{j_{m}+k_{m}}},$$
(9)

where the sum \sum_1 is taken over all nonnegative integers j_m, k_m such that $n = [r/2], j_0 + \ldots + j_n = t_1, k_0 + \ldots + k_n = t_2, j_0 + 3j_1 + \ldots + (2n+1)j_n = r_1, k_0 + 3k_1 + \ldots + (2n+1)k_n = r_2, r_1 + r_2 = r$. The following estimate can be obtained from (4), (9):

$$B_{r,t_{1},t_{2}}(\varkappa_{1},\varkappa_{2},\theta_{3,1},\theta_{3,2}) \ll$$

$$\ll r!t_{1}!t_{2}!(\varkappa_{1}+\varkappa_{2}+\theta_{3,1}+\theta_{3,2})^{4r-2t_{1}-2t_{2}} \sum_{1} \prod_{m=0}^{n} \frac{1}{j_{m}!k_{m}!} \ll$$

$$\ll r!t_{1}!t_{2}!(\varkappa_{1}+\varkappa_{2}+\theta_{3,1}+\theta_{3,2})^{4r-2t_{1}-2t_{2}} 2^{\frac{r+t_{1}+t_{2}}{2}}.$$
(10)

The proof is complete.

Lemma 3. For every sufficiently large integer N there exist polynomials $C_{k_1,k_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2})$ from $\mathbb{Z}[x_1,x_2,x_3,x_4],\ 0\leqslant k_1,k_2\leqslant K,\ K=[4\sqrt{N}],$ such that the function

$$F(z) = \sum_{k_1, k_2=0}^{K} C_{k_1, k_2}(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}) \operatorname{sn}_1^{k_1}(\theta_{3,1}^2 z) \operatorname{sn}_2^{k_2}(\theta_{3,2}^2 z)$$
(11)

satisfy $F(z) \not\equiv 0$ and

$$\operatorname{ord}_{z=0} F \geqslant N, \operatorname{deg} C_{k_1,k_2} \leqslant N + 2k_1 + 2k_2, \ \ln |C_{k_1,k_2}| \leqslant 2N \ln N. \tag{12}$$

356 ______ Ya.Kholyavka

Proof. From Lemma 2 and the choice of the parameter K it follows that the following estimate is true:

$$|B_{r,k_1,k_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2})| \le N!C_1^N, \quad r \le N.$$
 (13)

Consider the set of polynomials $D_{N,k_1,k_2}(x_1,x_2,x_3,x_4)$ with undefined coefficients $a_{l_1,l_2,l_3,l_4}(k_1,k_2) \in \mathbb{Z}$,

$$D_{N,k_1,k_2}(x_1,x_2,x_3,x_4) = \sum_{2} a_{l_1,l_2,l_3,l_4}(k_1,k_2) x_1^{l_1} x_2^{l_2} x_3^{l_3} x_4^{l_4}, \qquad (14)$$

where the sum \sum_2 is taken over all nonnegative integers l_1, l_2, l_3, l_4 such that $l_1 + l_2 + l_3 + l_4 = N + 2k_1 + 2k_2$.

Choose $a_{l_1, l_2, l_3, l_4}(k_1, k_2) \in \mathbb{Z}$, $a_{l_1, l_2, l_3, l_4}(k_1, k_2) \not\equiv 0$, so that for $0 \leqslant r < N$ the following relations take place:

$$\sum_{k_1,k_2=0}^{K} D_{N,k_1,k_2}(x_1,x_2,x_3,x_4) B_{r,k_1,k_2}(x_1,x_2,x_3,x_4) \equiv 0.$$
 (15)

Applying to system (15) Siegel's Lemma (see, for example, [5]), we obtain that exist there polynomials, not of all equal to zero, $a_{l_1,l_2,l_3,l_4}(k_1,k_2) \in \mathbb{Z}$ such that (15) hold and

$$|a_{l_1,l_2,l_3,l_4}(k_1,k_2)| < N^N C_2^N, \quad a_{l_1,l_2,l_3,l_4}(k_1,k_2) \not\equiv 0.$$
 (16)

Applying the constructed polynomials $D_{N,k_1,k_2}(x_1,x_2,x_3,x_4)$ we find polynomials $C_{k_1,k_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2})$ in (11) such that $C_{k_1,k_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2}) \not\equiv 0$. We denote

$$\mathcal{D}_{s_1, s_2, s_3, s_4} = \frac{1}{s_1! s_2! s_3! s_4!} \frac{\partial^s}{\partial^{s_1} x_1 \partial^{s_2} x_2 \partial^{s_3} x_3 \partial^{s_4} x_4}, \quad s_1 + s_2 + s_3 + s_4 = s. \tag{17}$$

Let s be the minimal integer with $0 \le s < N$ such that there exist $s_1, s_2, s_3, s_4, s_1 + s_2 + s_3 + s_4 = s$ satisfying the conditions

$$\mathcal{D}_{s_1, s_2, s_3, s_4} D_{N, k_1, k_2}(x_1, x_2, x_3, x_4)|_{(x_1, x_2, x_3, x_4) = (\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2})} \neq 0$$
 (18)

for some $D_{N,k_1,k_2}(x_1,x_2,x_3,x_4)$. Let

$$C_{k_1,k_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2}) = = \mathcal{D}_{s_1,s_2,s_3,s_4} D_{N,k_1,k_2}(x_1,x_2,x_3,x_4)|_{(x_1,x_2,x_3,x_4)=(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2})}.$$
(19)

Apply the operator $\mathcal{D}_{s_1,s_2,s_3,s_4}$ to the left part of (15). By the choice of s we see that for all r, $0 \le r < N$, (19) implies

$$E_{r}(\varkappa_{1}, \varkappa_{2}, \theta_{3,1}, \theta_{3,2}) =$$

$$= \sum_{k_{1}, k_{2}=0}^{K} C_{k_{1}, k_{2}}(\varkappa_{1}, \varkappa_{2}, \theta_{3,1}, \theta_{3,2}) B_{r, k_{1}, k_{2}}(\varkappa_{1}, \varkappa_{2}, \theta_{3,1}, \theta_{3,2}) = 0.$$
 (20)

From (6), (11), (19), (20) it follows that

$$F^{(r)}(0) = E_r(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}) = 0, \quad 0 \leqslant r < N.$$
(21)

Conditions of Theorem 1 imply algebraic independence of the functions $\operatorname{sn}_1(\theta_{3,1}^2 z)$, $\operatorname{sn}_2(\theta_{3,2}^2 z)$, therefore $F(z) \not\equiv 0$. Let us estimate the coefficients $C_{k_1,k_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2})$. From (14), (16) we obtain

$$D_{N,k_1,k_2}(x_1, x_2, x_3, x_4) \ll N! C_3^N (x_1 + x_2 + x_3 + x_4)^{N+2k_1+2k_2}.$$
 (22)

It follows from (19), (22) that

$$C_{k_1,k_2}(\varkappa_1,\varkappa_2,\theta_{3,1},\theta_{3,2}) \ll N!C_4^N(\varkappa_1+\varkappa_2+\theta_{3,1}+\theta_{3,2})^{N-s+2k_1+2k_2}.$$
 (23)

The proof is complete.

Let T be minimal integer such that $F^{(T)}(0) \neq 0$. Then $T \geqslant N$.

Lemma 4. There exists a polynomial $R_T \in \mathbb{Z}[x_1, x_2, x_3, x_4]$ such that

$$F^{(T)}(0) = R_T(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}), \tag{24}$$

$$\deg R_T(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}) \leqslant 5T, \quad \ln |R_T(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2})| \leqslant C_5 T \ln T, \quad (25)$$

$$0 < |R_T(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2})| < \exp(-C_6 T \sqrt{T}). \tag{26}$$

Proof. It follows from (6), (11), (21) and the definition of T that

$$F^{(T)}(0) = \sum_{k_1, k_2=0}^{K} C_{k_1, k_2}(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}) B_{T, k_1, k_2}(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}).$$
 (27)

Let

$$R_T(x_1, x_2, x_3, x_4) = \sum_{k_1, k_2=0}^{K} C_{k_1, k_2}(x_1, x_2, x_3, x_4) B_{T, k_1, k_2}(x_1, x_2, x_3, x_4).$$
(28)

358 ______ Ya.Kholyavka

From (7) it follows that Lemma 3 and the choice K imply estimates (25). From the definition of T it follows that $|R_T(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2})| > 0$.

Consider the function

$$G(z) = F(z)\theta_4^K \left(\frac{z}{\pi}, \tau_1\right) \theta_4^K \left(\frac{z}{\pi}, \tau_2\right). \tag{29}$$

From (1), (12), (29) and the properties of $\theta_4(z,\tau)$ it follows that G(z) is an entire periodical function with period 2π and zeros in $2\pi n$. The choice of T implies that the order of zeros is equal to T, therefore the function

$$H(z) = \frac{G(z)}{\prod_{|n| \le M} (z - 2\pi n)^T},$$
(30)

where $M = [C_7 \sqrt{T}]$, is entire. Thus

$$|H(0)| \le \max_{|z|=4\pi M} |H(z)|.$$
 (31)

From (2), (13), (23), (29) and the choice of T, N for $|z| \leq 4\pi M$ it follows that

$$|G(z)| \leqslant \exp(C_8 T \sqrt{T}) \tag{32}$$

For $|z| = 4\pi M$ we have

$$\prod_{|n| \le M} (z - 2\pi n)^T \ge (M!)^{2T} (2\pi)^{2MT}.$$
 (33)

From (12), (29), (30) and the choice of T it follows that

$$|F^{(T)}(0)| = T!(M!)^{2T} (2\pi)^{2MT} (\theta_4(0, \tau_1)\theta_4(0, \tau_2))^{-K} H(0).$$
 (34)

From (30) - (34) it follows that

$$|F^{(T)}(0)| < \exp(-C_9 T \sqrt{T}).$$
 (35)

It follows from (24) and (35) that

$$|R_T(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2})| < \exp(-C_{10}T\sqrt{T}).$$
 (36)

The proof is complete.

Suppose that Theorem 1 is not true and $\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2}$ are algebraic numbers. Then (27) implies that $F^{(T)}(0)$ is the value of a polynomial with algebraic coefficients at the algebraic point $(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2})$. Applying Liouville's Theorem [5], we obtain

$$|R_T(\varkappa_1, \varkappa_2, \theta_{3,1}, \theta_{3,2})| > \exp(-C_{11}T \ln T),$$

which contradicts to (36) and the proof of Theorem 1 is complete.

- [1] Fel'dman N.I., Nesterenko Yu. V. Transcendental Numbers. Springer, 1998.
- [2] Kholyavka Ya.M. On a measure of algebraic independence of values of Jacobi elliptic functions // Fundamental and applied mathematics. -11, No. 6. -P. 209 - 219.
- [3] Masser D. Elliptic functions and transcendence // Lect. Notes Math. 1975., V. 437. - P. 1-143.
- [4] Nesterenko Yu. V. On arithmetic properties of values of theta-constants // Fundamental and applied mathematics. – 11, No. 6. – P. 95–122.
- [5] Shidlovskij A.B. Transcendental Numbers. Walter de Grueter. Berlin-New York, 1987.
- [6] Waldschmidt M. Elliptic functions and transcendence // http://www.math.jussieu.fr/~miw/
- [7] Whittaker E. T., Watson G.N. A Course of Modern Analysis. Cambridge, 1927.

ПРО ТРАНСЦЕНДЕНТНІСТЬ МОДУЛІВ ЕЛІПТИЧНИХ ФУНКЦІЙ ЯКОБІ

Ярослав ХОЛЯВКА

Львівський національний університет імені Івана Франка, вул. Університетська, 1, Львів 79000, Україна

 Нехай $\operatorname{sn}_1 z, \operatorname{sn}_2 z$ — еліптичні функції Якобі,
 \varkappa_1,\varkappa_2 — модулі цих функцій, $0<\varkappa_1^2<1,\ 0<\varkappa_2^2<1,\ au_1, au_2$ — значення модулярної змінної; $\theta_3(\tau_1), \theta_3(\tau_2)$ — тета-константи. Доведено існування трансцендентного числа серед $\varkappa_1, \varkappa_2, \theta_3(\tau_1)$ та $\theta_3(\tau_2)$, якщо τ_1/τ_2 — ірраціональне.