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We give a theorem on the error estimate of approximate solutions
for di�erence functional equations of the Volterra type with an un-
known function of several variables. The error is estimated by a solution
of an initial problem for nonlinear di�erential equation.

We apply this general result to the investigation of the stability of
di�erence schemes generated by initial problems for hyperbolic functio-
nal di�erential equations. We assume nonlinear estimates of the Perron
type with respect to functional variable for given operators. Numerical
examples are presented.

1. INTRODUCTION
For any metric spaces X and Y we denote by C(X,Y ) the class of all
continuous functions from X into Y. We will use vectorial inequalities with
the understanding that the same inequalities hold between their correspon-
ding components. Write

E = [0, a]× Rn, E0 = [−d0, 0]× Rn, D = [−d0, 0]× [−d, d]

where a > 0, d0 ∈ R+, R+ = [0, +∞) and d = (d1, . . . , dn) ∈ Rn
+. For a

function z : E0 ∪ E → R and for a point (t, x) ∈ E we de�ne a function
z(t,x) : D → R as follows: z(t,x)(τ, y) = z(t + τ, x + y), (τ, y) ∈ D. Then z(t,x)

is the restriction of z to the set [t− d0, t]× [x− d, x + d] and this restriction
is shifted to the set D. The maximum norm in the space C(D,R) is denoted
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by ‖ · ‖D. Write Σ = E × C(D,R) × Rn and suppose that f : Σ → R
and ϕ : E0 → R are given functions. We consider the functional di�erential
equation

∂tz(t, x) = f(t, x, z(t,x), ∂xz(t, x)) (1)
with the initial condition

z(t, x) = ϕ(t, x) on E0 (2)

where x = (x1, . . . , xn) and ∂xz = (∂x1z, . . . , ∂xnz). We consider classical
solutions of (1), (2). We are interested in establishing a method of approxi-
mation of solutions to problem (1), (2) by means of solutions of associated
di�erence functional problems and in estimating of the di�erence between
the exact and approximate solutions.

In this time numerous papers were published concerning di�erence me-
thods for initial or initial-boundary value problems related to �rst order
partial di�erential functional equations [1, 4, 6, 10, 11, 14,15]. All these prob-
lems have the following property: the main question in the investigation of
numerical methods is to �nd a di�erence functional equation generated by
the original problem which is stable. The method of di�erence inequalities
or theorems on nonlinear recurrent inequalities are used in the investigation
of the stability of nonlinear di�erence schemes. It is important in these
considerations that solutions of di�erential functional problems and solutions
of corresponding di�erence schemes are de�ned on bounded domains. The
results presented in the above mentioned papers are not applicable to (1),
(2). We prove that there is a class of di�erence methods for (1), (2) which
are convergent. The stability of the methods is investigated by a comparison
technique with nonlinear estimates of the Perron type for given functions
with respect to the functional variable.

Di�erential equations with deviated variables and di�erential integral
equations can be obtained as particular cases of (1) by suitable de�nitions of
the operator f. Existence and uniqueness results for classical or generalized
solutions for (1), (2) are given in [2, 3, 5], [12, Chapter 5].

The paper is organized as follows. In Section 2 we propose a general
method for the investigation of the stability of di�erence schemes generated
by initial problems for nonlinear functional di�erential equations. We prove a
theorem on error estimates of approximate solutions to functional di�erence
equations of the Volterra type with unknown function of several variables.
The error of an approximate solution is estimated by a solution of an initial
problem for a nonlinear di�erential equation. In Section 3 we apply the above
general idea to the investigation of the convergence of di�erence schemes for



Stability of nonlinear di�erence functional equations . . . 331

(1), (2). A generalized Euler method for (1), (2) is presented in Section 4.
Numerical examples are given in the last part of the paper.

We use in the paper general ideas for �nite di�erence equations which
were introduced in [9, 12,13,16].

2. APPROXIMATE SOLUTIONS OF FUNCTIONAL
DIFFERENCE EQUATIONS
For any two sets U and W we denote by F(U,W ) the class of all functions
de�ned on U and taking values in W. If α : U → W and Ω ⊂ U then α |Ω is
the restriction of α to the set Ω. Let N and Z be the sets of natural numbers
and integers respectively. We de�ne a mesh on E0 ∪E in the following way.
Suppose that (h0, h

′) = h, h′ = (h1, . . . , hn), stand for steps of the mesh. For
(r,m) ∈ Z1+n where m = (m1, . . . , mn), we de�ne nodal points as follows:

t(r) = rh0, x(m) = (x(m1)
1 , . . . , x(mn)

n ) = (m1h1, . . . , mnhn).

Let us denote by ∆ the set of all h such that there are K0 ∈ Z and K =
(K1, . . . , Kn) ∈ Zn with the properties: K0h0 = d0 and (K1h1, . . . ,Knhn) =
d. Set

R1+n
h = { (t(r), x(m)) : (r,m) ∈ Z1+n }

and
E0.h = E0 ∩ R1+n

h , Eh = E ∩R1+n
h , Dh = D ∩ R1+n.

Let N0 ∈ N be de�ned by the relations: N0h0 ≤ a < (N0 + 1)h0 and

E′
h = { (t(r), x(m)) ∈ Eh : 0 ≤ r ≤ N0 − 1 }.

Write L = (L1, . . . , Ln) ∈ Nn where Li = max { 1, Li } for 1 ≤ i ≤ n and

Ωh = { (t(r), x(m)) : −K0 ≤ r ≤ 0, −L ≤ m ≤ L }.
Let X be a linear space with the norm ‖ · ‖X . For functions z : E0.h∪Eh → X
and w : Ωh → X we write z(r,m) = z(t(r), x(m)) on E0.h ∪ Eh and w(r,m) =
w(t(r), x(m)) on Ωh. If z : E0.h ∪ Eh → X and (t(r), x(m)) ∈ Eh then the
function z〈r,m〉 : Ωh → X is given by

z〈r,m〉(τ, y) = z(t(r) + τ, x(m) + y), (τ, y) ∈ Ωh.

Suppose that the operator Fh : E′
h × F(Ωh, X) → X is given. For

(t(r), x(m), w) ∈ E′
h×F(Ωh, X) we write Fh[ w ](r,m) = Fh(t(r), x(m), w). Given

ϕh ∈ F(E0.h, X), we consider the functional di�erence equation

z(r+1,m) = Fh[ z〈r,m〉 ](r,m) (3)
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with the initial condition

z(r,m) = ϕ
(r,m)
h on E0.h. (4)

It is clear that there exists exactly one solution zh : E0.h ∪ Eh → X of (3),
(4).

Let Yh ⊂ F(Ωh, X) be a �xed subset. Suppose that the functions vh :
E0.h ∪ Eh → X and α̃, γ̃ : ∆ → R+ satisfy the conditions

‖v(r+1,m)
h − Fh[ (vh)〈r,m〉 ](r,m)‖X ≤ γ̃(h) on E′

h

‖(vh − vh)(r,m)‖X ≤ α̃(h) on E0.h, lim
h→0

α̃(h) = 0, lim
h→0

γ̃(h) = 0,

and
(vh)〈r,m〉 ∈ Yh for (t(r), x(m)) ∈ Eh.

The function vh satisfying the above relations is considered as an approxi-
mate solution of (3), (4).

We look for approximate solutions of (3), (4) such that (vh)〈r,m〉 ∈ Yh

for (t(r), x(m)) ∈ Eh. We give a theorem on the estimate of the di�erence
between the exact and approximate solutions of (3), (4). Write

Ah = { (t(r)x(m)) ∈ Ωh : r = 0, −1 ≤ mi ≤ 1 for 1 ≤ i ≤ n }.

For a function w : Ωh → X we put

‖w|Ah
‖X = max { ‖w(r,m)‖X : (t(r), x(m)) ∈ Ah },

‖w|Dh
‖X = max { ‖w(r,m)‖X : (t(r), x(m)) ∈ Dh }.

For z : E0.h ∪ Eh → X we de�ne

‖z‖h.r = sup { ‖z(i,m)‖X : −K0 ≤ i ≤ r, m ∈ Zm }, 0 ≤ r ≤ N0.

Put Ih = {t(0), t(1), . . . , t(N0)}. For β : Ih → R we write β(r) = β(t(r)) on Ih.
We formulate assumptions on comparison operators corresponding to (3),
(4).

Assumption H[σ]. The function σ : [0, a] × R+ → R+ satis�es the
conditions:

1) σ is continuous and it is nondecreasing with respect to the both
variables,
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2) σ(t, 0) = 0 for t ∈ [0, a] and the function ω̃(t) = 0 for t ∈ [0, a] is the
maximal solution of the Cauchy problem

ω′(t) = σ( t, ω(t)), ω(0) = 0. (5)

Now we formulate the main result of this section.
Theorem 1. Suppose that Fh : E′

h × F(Ωh, X) → X, ϕh : E0.h → R are
given and

1) zh : E0.h ∪ Eh → X is the solution of (3), (4),
2) vh : E0.h ∪ Eh → X and

(i) there are α0, γ : ∆ → R+ such that

‖v(r+1,m)
h − Fh[ (vh)〈r,m〉 ](r,m)‖X ≤ h0γ(h) on E′

h and lim
h→0

γ(h) = 0, (6)

‖(vh − zh)(r,m)‖X ≤ α0(h) on E0.h and lim
h→0

α0(h) = 0, (7)

(ii) (vh)〈r,m〉 ∈ Yh for (t(r), x(m)) ∈ Eh,
3) there exists σ : [0, a]×R+ → R+ such that Assumption H[σ] is satis�ed

and

‖Fh[w ](r,m) − Fh[ w̄ ](r,m)‖X ≤ ‖(w − w̄)|Ah
‖X + h0σ( t(r), ‖(w − w̄)|Dh

‖X )
(8)

where (t(r), x(m), w) ∈ E′
h×F(Ωh, X) and w̄ ∈ Yh. Then there is α : ∆ → R+

such that

‖(zh − vh)(r,m)‖X ≤ α(h) on Eh and lim
h→0

α(h) = 0. (9)

Proof. Let us denote by βh : Ih → R+ the solution of the di�erence
problem

β(r+1) = β(r) + h0σ( t(r), β(r) ) + h0γ(h), 0 ≤ r ≤ N0 − 1, (10)

β(0) = α0(h). (11)
We prove that

‖zh − vh‖h.r ≤ β(r) for 0 ≤ r ≤ N0. (12)
It follows from (7) that estimate (12) holds for r = 0. Assuming (12) to hold
for r, 0 ≤ r ≤ N−1, we will prove it for r + 1. We conclude from (6) and (8)
that for 0 ≤ i ≤ r we have

‖(vh − zh)(i+1,m)‖X ≤ ‖Fh[ (zh)〈i,m〉 ](i,m) − Fh[ (vh)〈i,m〉 ](i,m)‖X+
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+‖v(i+1,m)
h − Fh[ (vh)〈i,m〉 ](i,m)‖X ≤ β(i) + h0σ( t(i), ‖(zh − vh)〈i,m〉|Dh

‖X )+

+h0γ(h) ≤ β
(r)
h + h0σ(t(r), β(r)

h ) + h0γ(h) = β
(r+1)
h

and consequently
‖vh − zh‖h.r+1 ≤ β

(r+1)
h .

Hence the proof of (12) is completed by induction. Consider the Cauchy
problem

ω′(t) = σ( t, ω(t)) + γ(h), ω(0) = α0(h). (13)

It follows from Assumption H[σ] that the maximal solution ω( · , h) of (13)
is de�ned on [0, a] and

lim
h→0

ω(t, h) = 0 uniformly on [0, a].

The function ω( · , h) is convex on [0, a]. Then we have the di�erence inequa-
lity

ω(t(r+1), h) ≥ ω(t(r), h) + h0σ(t(r), ω(t(r), h)) + h0γ(h), r = 0, 1, . . . , N0− 1.

Since βh satis�es (10), (11), the above relations show that β(r) ≤ ω(t(r), h)
for 0 ≤ r ≤ N0. Then condition (9) is satis�ed with α(h) = ω(a, h). This
proves the theorem.

Remark 1. Suppose that σ(t, τ) = L0τ on [0, a]×R+. Then assumption
(8) has the form

‖Fh[ w ](r,m) − Fh[ w̄ ](r,m)‖X ≤ ‖(w − w̄)|Ah
‖X + h0L0‖(w − w̄)|Dh

‖X

where w ∈ F(Ωh, X), w̄ ∈ Yh. Then assertion (9) takes the form

‖(zh − vh)(r,m)‖X ≤ α̃(h) on Eh

where
α̃(h) = α0(h) exp[L0a] + γ(h)

exp[L0a]− 1
L0

if L0 > 0, (14)

α̃(h) = α0(h) + aγ(h) if L0 = 0. (15)

The above example is important in simple applications.
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3. INITIAL PROBLEMS FOR HAMILTON�JACOBI
FUNCTIONAL DIFFERENTIAL EQUATIONS
We will need a discrete version of the operator (t, x) → z(t,x). If z : E0.h ∪
Eh → R and (t(r), x(m)) ∈ Eh then the function z[r,m] : Dh → R is de�ned
by

z[r,m](τ, y) = z(t(r) + τ, x(m) + y), (τ, y) ∈ Dh.

For w ∈ F(Dh,R) we put

‖w‖Dh
= max{|w(τ, y)| : (τ, y) ∈ Dh}.

We consider the following interpolating operator Th : F(Dh,R) → F(D,R).
Set

S+ = { s = (s1, . . . , sn) : si ∈ {0, 1} for 1 ≤ i ≤ n }.
Let w ∈ F(Dh,R) and (t, x) ∈ D. There exists (t(r), x(m)) ∈ Dh such that
(t(r+1), x(m+1)) ∈ Dh where m + 1 = (m1 + 1, . . . , mn + 1) and t(r) ≤ t ≤
t(r+1), x(m) ≤ x ≤ x(m+1). Write

Th[w](t, x) =
(
1− t− t(t)

h0

) ∑

s∈S+

w(r,m+s)
(x− x(m)

h′
)s(

1− x− x(m)

h′
)1−s

+

+
t− t(t)

h0

∑

s∈S+

w(r+1,m+s)
(x− x(m)

h′
)s(

1− x− x(m)

h′
)1−s

where (x− x(m)

h′
)s

=
n∏

i=1

(xi − x
(mi)
i

hi

)si

,

(
1− x− x(m)

h′
)1−s

=
n∏

i=1

(
1− xi − x

(mi)
i

hi

)1−si

and we take 00 = 1 in the above formulas It is easy to see that Th[w] ∈
C(D,R). The above interpolating operator has been �rst considered in [12].

The following Lemmas are important in our considerations.
Lemma 1. If w ∈ F(Dh,R) then

‖Th[w]‖D = ‖w‖Dh
. (16)
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Proof. It is easy to prove by induction with respect to n that

∑

s∈S+

(x− x(m)

h′
)s(

1− x− x(m)

h′
)1−s

= 1 for x(m) ≤ x ≤ x(m+1).

The equality (16) follows from the above relation.
Lemma 2. Suppose that w : D → X is of class C1 and denote by wh the

restriction of w to the set Dh. Let

C̃ = max{ ‖∂tw‖D, ‖∂xiw‖D, i = 1, . . . , n }.

Then
‖Th[wh]− w‖D ≤ C̃‖h‖,

where ‖h‖ = h0 + h1 + . . . + hn.

The above lemma can be proved by a method used in the proof of
Theorem 5.27 in [12].

Lemma 3. Suppose that w : D → X is of class C2 and denote by wh the
restriction of w to the set Dh. Let

C̃ = max{ ‖∂ttw‖D, ‖∂txiw‖D, ‖∂xixjw‖D, i, j = 1, . . . , n }.

Then
‖Th[wh]− w‖D ≤ C̃‖h‖2.

The Lemma 3 is a consequence of Theorem 5.27 in [12].
For x = (x1, . . . , xn) = x ∈ Rn we put ‖x‖ = |x1| + . . . + |xn|. Let

D, E, E0 and Dh, Eh, E0.h, Ωh, Ah be the sets de�ned in Sections 1 and 2.
We formulate a di�erence method for initial problem (1), (2). For 1 ≤ i ≤ n
we de�ne ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 standing on the i−th place.
Let δ0 and (δ1, . . . , δn) = δ be the di�erence operators given by

δ0z
(r,m) =

1
h0

(
z(r+1) − Λ[z](r,m)

)
(17)

where
Λ[z](r,m) =

1
2n

n∑

i=1

[
z(r,m+ei) + z(r,m−ei)

]

and
δjz

(r,m) =
1

2hj

[
z(r,m+ej) − z(r,m−ej)

]
, j = 1, . . . , n. (18)
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In the same way we de�ne the expressions Λ[w](0,θ) and

δw(0,θ) = (δ1w
(0,θ), . . . , δnw(0,θ))

where w ∈ F(Ωh,R) and θ = (0, . . . , 0) ∈ Rn. For a function z : E0.h∪Eh → R
and for a point (t(r), x(m)) ∈ Eh we write Thz[r,m] instead of Th[z[r,m]].

Given ϕh : E0.h → R, we approximate classical solutions of (1), (2) with
solutions of the di�erence functional problem

δ0z
(r,m) = f( t(r), x(m), Thz[r,m], δz

(r,m) ), (19)

z(r,m) = ϕ
(r,m)
h on E0.h. (20)

The above di�erence method is called the Lax scheme for (1), (2). We claim
that di�erence problem (19), (20) is a particular case of (3), (4). Let X = R
and Fh : E′

h × F(Ωh,R) → R be de�ned by

Fh[w](r,m) = Λ[w](0,θ) + h0f( t(r), x(m), Th[w|Dh
], δw(0,θ) ). (21)

It is easily seen that equation (19) is equivalent to (3) with Fh given by (21).
Assumption H[f ]. The function f : Σ → R of the variables (t, x, w, q),

q = (q1, . . . , qn), is continuous and
1) there exists σ : [0, a]×R+ → R+ such that Assumption H[σ] is satis�ed

and
|f(t, x, w, q)− f(t, x, w̄, q)| ≤ σ( t, ‖w − w̄‖D) on Σ, (22)

2) the partial derivatives
(
∂q1f, . . . , ∂qnf

)
= ∂qf exist on Σ, ∂qf ∈

C(Σ,Rn) and the function ∂qf is bounded on Σ.

Theorem 2. Suppose that Assumption H[f ] is satis�ed and
1) the function zh : E0.h ∪ Eh → R is a solution of (19), (20) and there

is α0 : ∆ → R+ such that

|(ϕ− ϕh)(r,m)| ≤ α0(h) on E0.h and lim
h→0

α0(h) = 0, (23)

2) for (t, x, w, q) ∈ Σ we have

1
n
− h0

hi

∣∣ ∂qif(t, x, w, q)
∣∣ ≥ 0, i = 1, . . . , n, (24)

3) v : E0 ∪E → R is a classical solution of (1), (2) and v is of class C2

on E0 ∪ E,
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4) the functions

∂ttv, ∂txiv, ∂xixjv, i, j = 1, . . . , n,

are bounded on E0 ∪ E. Then there is α : ∆ → R+ such that

|(vh − uh)(r,m)| ≤ α(h) on E′
h and lim

h→0
α(h) = 0, (25)

where vh is the restriction of v to the set E0.h ∪ Eh.

Proof. We apply Theorem 1 to prove (25). Put Yh = F(Ωh,R). It follows
that zh satis�es (3) where Fh is de�ned by (21) and there is γ : H → R+ such
that condition (6) is satis�ed. Now we estimate the di�erence Fh[w]−Fh[w̄],
where w, w̄ ∈ F(Ωh,R). It follows from Lemmas 1, 3and from (22), (24) that

∣∣Fh[w](r,m) − Fh[w̄](r,m)
∣∣ ≤ h0

∣∣ f(t(r), x(m), Th[w|Dh
], δw(0,θ)))−

−f(t(r), x(m), Th[w|Dh
], δw̄(0,θ)) + Λ[w − w̄](0,θ)

∣∣+
+h0

∣∣f(t(r), x(m), Th[w|Dh
], δw̄(0,θ))− f(t(r), x(m), Th[w̄|Dh

], δw̄(0,θ)))
∣∣ ≤

≤ 1
2

n∑

j=1

∣∣∣
(
w − w̄

)(0,ej)
[ 1

n
+

h0

hj
∂qjf(P̃ )

] ∣∣∣+

+
1
2

n∑

j=1

∣∣∣
(
w − w̄

)(0,−ej)
[ 1

n
− h0

hj
∂qjf(P̃ )

] ∣∣∣ + h0σ(t(r), ‖(w − w̄)|Dh
‖) ≤

≤ ‖(w − w̄)|Ah
‖+ h0σ(t(r), ‖(w − w̄)|Dh

‖),
where P̃ ∈ Σ is an intermediate point. Then the operator Fh satis�es (8).
Thus we see that all the assumptions of Theorem 1 are satis�ed and the
assertion (25) follows.

Now we formulate a result o the error estimate for the Lax scheme.
Lemma 4. Suppose that
1) all the assumptions of Theorem 2 are satis�ed with σ(t, τ) = L0τ

on [0, a] × R+ where L0 ∈ R+, (then we have assumed that f satis�es the
Lipschitz condition with respect to the functional variable),

2) there are B, M ∈ Rn
+ such that

(|∂q1f(t, x, w, q)|, . . . , |∂qnf(t, x, w, q)|) ≤ B on Σ

and h′ ≤ Mh0,
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3) the constant C̄ is de�ned by the relations

|∂ttv(t, x)|, |∂txiv(t, x)|, |∂xixjv(t, x)| ≤ C̄ on E0 ∪ E for i, j = 1, . . . , n.

Then
|(vh − zh)(r,m)| ≤ α̃(h) on Eh

where α̃ is given by (14), (15) with

γ(h) = Ãh0 + L0C̄‖h‖2

and

Ã =
1
2
C̄(1 + Γ̃) +

1
2
C̄‖M‖ ‖B‖, Γ̃ =

1
n

n∑

i=1

M2
i , (M1, . . . , Mn) = M.

The above Lemma is a consequence of Theorem 2 and Lemmas 1 and 3.
Now we consider functional di�erence problem (19), (20) with δ0 and

δ = (δ1, . . . , δn) de�ned in the following way:

δ0z
(r,m) =

1
h0

[
z(r+1,m) − z(r,m)

]
(26)

and
δiz

(r,m) =
1
hi

[
z(r,m+ei) − z(r,m)

]
for 1 ≤ i ≤ κ, (27)

δiz
(r,m) =

1
hi

[
z(r,m) − z(r,m−ei)

]
for κ + 1 ≤ i ≤ n, (28)

where 0 ≤ κ ≤ n is �xed. If κ = 0 then δz is given by (28), if κ = n then δz
is given by (27). In the same way we de�ne the expressions

δw(0,θ) =
(
δ1w

(0,θ), . . . , δnw(0,θ)
)

where w ∈ F(Ωh,R). Di�erence scheme (19), (20) with δ0 and δ de�ned by
(26)�(28) is called the Euler di�erence method. Let Fh : E′

h×F(Ωh,R) → R
be de�ned by

Fh[w](r,m) = w(0,θ) + h0f
(
t(r), x(m), Th[w|Dh

], δw(0,θ)
)
. (29)

It is easily seen that the Euler di�erence method is equivalent to (3) for
X = R and Fh de�ned by (29).

Theorem 3. Suppose that Assumption H[f ] is satis�ed and
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1) the function zh : E0.h ∪ Eh → R is a solution of (19), (20) with δ0

and δ given by (26)�(28) and there is α : ∆ → R+ such that condition (23)
is satis�ed,

2) for (t, x, w, q) ∈ Σ we have

∂qif(t, x, w, q) ≥ 0 for 1 ≤ i ≤ κ, (30)

∂qif(t, x, w, q) ≤ 0 for κ + 1 ≤ i ≤ n (31)

and

1− h0

n∑

i=1

1
hi
|∂qif(t, x, w, q)| ≥ 0, (32)

3) v : E0 ∪E → R is a solution of (1), (2) and v is of class C2on E0 ∪E
and the functions

∂ttv, ∂txiv, ∂xixjv, i, j = 1, . . . , n,

are bounded on E0 ∪ E. Then there is α : ∆ → R+ such that condition (25)
is satis�ed where vh is the restriction of v to the set E0.h ∪ Eh.

The proof of the above theorem is similar to the proof of Theorem 2.
Details are omitted.

Now we formulate a result on the error estimate for the Euler di�erence
method.

Lemma 5. Suppose that
1) all the assumptions of Theorem 3 are satis�ed with σ(t, τ) = L0τ on

[0, a]× R+ where L0 ∈ R+,

2) the conditions 2), 3) of Lemma 4 are satis�ed.
Then

|(vh − zh)(r,m)| ≤ α̃(h) on Eh

where α̃ is given by (14), (15) with

γ(h) =
1
2
C̄(1 + ‖M‖ ‖B‖)h0 + L0C̄‖h‖2.

We use Lemmas 1, 3, 11 and Theorem 3 in a simple proof of the above
relation.
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4. GENERALIZED EULER METHOD FOR NONLINEAR
DIFFERENTIAL FUNCTIONAL EQUATIONS
We have considered two di�erence method for (1), (2): the Lax scheme
and the Euler di�erence method. Two types of assumptions are needed in
theorems on the convergence of di�erence schemes generated by (1), (2). The
�rst type conditions deal with the regularity of f. They are formulated in
Assumption H[f ] and they the same for the both methods. The assumptions
of the second type are called the Courant�Friedrichs�Levy (CFL) conditi-
ons. The (CFL) condition for (1), (2) and for the Lax di�erence scheme has
the form (24) Assumptions (30)�(32) are the (CFL) conditions for the Euler
di�erence method.

Note that assumptions (24) and (32) are quite similar. Some relations
between h0 an h′ = (h1, . . . , hn) are required in (24) and (32). It follows
from (30), (31) that we need more restrictive assumptions on f for the Euler
di�erence method than for the Lax scheme.

There are initial problems (1), (2) such that both the above di�erence
methods are convergent. It follows from the theory of bicharacteristics for
nonlinear di�erential functional equations that in this case the numerical
results obtained by the Euler di�erence method are better than correspon-
ding results obtained by the Lax scheme. This property of di�erence methods
can be easy illustrated by numerical experiments.

With the above motivation we are interested in proving of convergence
results for the Euler method and for a possibly large class of nonlinear
problems. More precisely, we will show that there are convergent di�erence
methods of the Euler type for which the assumptions (30), (31) are omitted.

We denote by CL(D,R) the class of all linear and continuous operators
de�ned on C(D,R) and taking values in R. The norm in the space CL(D,R)
generated by the maximum norm in the space C(D,R) will be denoted by
‖ · ‖?. Let Mn×n be a class of all n × n matrices with real elements. For
U ∈ Mn×n we write

‖U‖ = max





n∑

j=1

|uij | : 1 ≤ i ≤ n



 where U =

[
uij

]
i,j=1,...,n

.

If U ∈ Mn×n then UT denotes the transpose matrix.

Assumption H[f, ϕ]. The functions f : Σ → R and ϕ : E0 → R are
continuous and

1) the partial derivatives ∂xf , ∂qf exist on Σ and ∂xf, ∂qf ∈ C(Σ,Rn),
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2) there exists the Fr�echet derivative ∂wf(P ) and ∂wf(P ) ∈ CL(D,R)
for P ∈ Σ,

3) ϕ : E0 → R is of class C2.
Now we formulate a new class of di�erence methods corresponding to

(1), (2). Let (z, u), u = (u1, . . . , un), be unknown functions of the variables
(t(r), x(m)) ∈ E0.h ∪ Eh. Write

P (r,m)[z, u] =
(
t(r), x(m), Thz[r,m], u

(r,m)
)
.

We consider the system of di�erence functional equations

δ0z
(r,m) = f( P (r,m)[z, u] ) +

n∑

i=1

∂qif( P (r,m)[z, u] )
(
δiz

(r,m) − u
(r,m)
i

)
, (33)

δ0u
(r,m) = ∂xf( P (r,m)[z, u] )+ (34)

+∂wf(P (r,m)[z, u] ) Thu[r,m] + ∂qf( P (r,m)[z, u] )
[
δu(r,m)

]T

with the initial conditions

z(r,m) = ϕ
(r,m)
h , u(r,m) = ψ

(r,m)
h on E0.h (35)

where ϕh : E0.h → R and ψh : E0.h → Rn are given functions and

∂wf( P (r,m)[z, u] ) Thu[r,m] =

=
(
∂wf( P (r,m)[z, u] )Th(u1)[r,m], . . . , ∂wf(P (r,m)[z, u] )Th(un)[r,m]

)
,

and
δu =

[
δjui

]
i,j=1,...n

.

The di�erence operator δ0 is de�ned by

δ0z
(r,m) =

1
h0

[
z(r+1,m) − z(r,m)

]
, δ0u

(r,m) =
1
h0

[
u(r+1,m) − u(r,m)

]
. (36)

The di�erence operators (δ1, . . . , δn) are de�ned in the following way. Suppo-
se that the functions (z, u) are known on the set

(
E0.h ∪Eh

)∩ (
[−d0, t

(r)]×
Rn

)
, 0 ≤ r < N0. We put

if ∂qjf( P (r,m)[z, u] ) ≥ 0 (37)

then

δjz
(r,m) =

1
hj

[
z(r,m+ej) − z(r,m)

]
, δju

(r,m) =
1
hj

[
u(r,m+ej) − u(r,m)

]
. (38)
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Moreover we put
if ∂qjf( P (r,m)[z, u] ) < 0 (39)

then

δjz
(r,m) =

1
hj

[
z(r,m) − z(r,m−ej)

]
, δju

(r,m) =
1
hj

[
u(r,m) − u(r,m−ej)

]
. (40)

We take j = 1, . . . , n in (37)�(40). The above di�erence functional problem
is called a generalized Euler method for (1), (2). It is clear that there exists
exactly one solution (zh, uh) : E0.h ∪ Eh → R1+n, uh = (uh.1, . . . , uh.n), of
(33)�(35) with δ0 and δ de�ned by (36)�(40).

The generalized Euler method is obtained in the following way. Suppose
that Assumption H[f, ϕ] is satis�ed. The method of quasilinearization for
nonlinear equations consists in replacing problem (1), (2) with the following
one. Let (z, u), u = (u1, . . . , un), be unknown functions of the variables
(t, x) ∈ E0 ∪E. First we introduce an additional unknown function u = ∂xz
in (1). Then we consider the following linearization of (1) with respect to u:

∂tz(t, x) = f(t, x, z(t,x), u(t, x))+ (41)

+
n∑

i=1

∂qif(t, x, z(t,x), u(t, x))
(
∂xiz(t, x)− ui(t, x)

)
.

We get di�erential functional equations for u by di�erentiating equation (1),
resulting is the following:

∂tu(t, x) = ∂xf(t, x, z(t,x), u(t, x))+ (42)

+∂wf(t, x, z(t,x), u(t, x))u(t,x) + ∂qf(t, x, z(t,x), u(t, x))
[
∂xu(t, x)

]T

where u(t,x) = ((u1)(t,x), . . . , (un)(t,x)). We consider the following initial con-
dition for (41), (42):

z(t, x) = ϕ(t, x), u(t, x) = ∂xϕ(t, x) on E0. (43)

Under natural assumptions on given functions the above problem has the
following properties:

(i) if (z̃, ũ) is a classical solution of (41)�(43) then ∂xz̃ = ũ and z̃ is a
solution of (1), (2);

(ii) if ṽ is a solution of (1), (2) and ṽ is of class C2 then (ṽ, ∂xṽ) satis�es
(41)�(43).

Di�erence problem (33)�(35) is a discretization of (41)�(43).
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The above method of quasilinearization was �rst proposed in a nonfunc-
tional setting by S. Cinquini and S. Cinquini Cibraio [7, 8]. It was extended
in [4, 12] on nonlinear functional di�erential problems.

We claim that the generalized Euler method for (1), (2) is a particular
case of (3), (4). Put X = R1+n. The norm ‖ · ‖X where X = R1+n is
denoted by ‖ · ‖1+n. For p ∈ R1+n where p = (p0, p

′), p′ ∈ Rn we put
‖p‖1+n = |p0| + ‖p′‖. For w ∈ F(Ωh,R1+n), w = (ζ, η), η = (η1, . . . , ηn) we
write

Q(r,m)[w] = (t(r), x(m), Th[ζ|Dh
], η(0,θ))

and
‖ζ|Ah

‖ = max {|ζ(r,m)| : (t(r), x(m)) ∈ Ah },
‖η|Ah

‖ = max {‖η(r,m)‖ : (t(r), x(m)) ∈ Ah }.
Consider the operator Fh = (Fh.0, Fh.I) de�ned by

Fh.0[w](r,m) = ζ(0,θ) + h0f( Q(r,m)[w] )+ (44)

+h0

n∑

i=1

∂qif( Q(r,m)[w] )
(
δiζ

(0,θ) − η
(0,θ)
i )

and
Fh.I [w](r,m) = η(0,θ) + h0∂xf( Q(r,m)[w] )+ (45)

+h0∂wf( Q(r,m)[w] ) Th[η|Dh
] + h0∂qf( Q(r,m)[w] )

[
δη(0,θ)

]T
,

where
∂wf( Q(r,m)[w] ) Th[η|Dh

] =

=
(
∂wf( Q(r,m)[w] ) Th[η1|Dh

], . . . , ∂wf(Q(r,m)[w] )Th[ηn|Dh
]
)
.

The di�erence expressions

(δ1ζ
(0,θ), . . . , δnζ(0,θ)) and δη(0,θ) =

[
δjη

(0,θ)
i

]
i,j=1,...,n

are de�ned by (37)�(40) with ζ|Dh
and η(0,θ) instead of z[r,m] and u(r,m).

Write Z = (z, u), Ψh = (ϕh, ψh), Z〈r,m〉 = (z〈r,m〉, u〈r,m〉). Then problem
(33)�(35) is equivalent to the functional di�erence equation

Z(r+1,m) = Fh[Z〈r,m〉](r,m) (46)

with the initial condition

Z(r,m) = Ψ(r,m)
h on E0.h. (47)
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Assumption H̃[σ]. The function σ : [0, a] × R+ → R+ satis�es the
conditions

1) σ is continuous and it is nondecreasing with respect to the both variab-
les,

2) σ(t, 0) = 0 for t ∈ [0, a] and for each b ∈ R+, and c ≥ 1 the maximal
solution of the Cauchy problem

ω′(t) = b ω(t) + c σ(t, ω(t)), ω(0) = 0,

is ω̃(t) = 0 for t ∈ [0, a].
Assumption H̃[f, ϕ]. The functions f and ϕ satisfy Assumption H[f, ϕ]

and
1) there is A ∈ R+ such that

‖∂xf(P )‖, ‖∂qf(P )‖, ‖∂wf(P )‖? ≤ A

where P ∈ Σ,
2) there exists σ : [0, a]×R+ → R+ such that Assumption H̃[σ] is satis�ed

and the terms

‖∂xf(t, x, w, q)− ∂xf(t, x, w̄, q̄)‖, ‖∂qf(t, x, w, q)− ∂qf(t, x, w̄, q̄)‖,

‖∂wf(t, x, w, q)− ∂wf(t, x, w̄, q̄)‖?,

are bounded from above by σ(t, ‖w − w̄‖D + ‖q − q̄‖) on Σ.

Theorem 4. Suppose that Assumption H̃[f, ϕ] is satis�ed and
1) h ∈ H and condition (32) holds,
2) (zh, uh) : E0.h ∪ Eh → R1+n is the solution of (33)�(35) with δ0 and

δ de�ned by (36)�40 and there is α0 : H → R+ such that

|ϕ(r,m) − ϕ
(r,m)
h |+ ‖∂xϕ(r,m) − ψ

(r,m)
h ‖ ≤ α0(h) on E0.h

and limh→0 α0(h) = 0,
3) v : E0 ∪ E → R is a solution of (1), (2) and v is of class C2 and the

functions
∂tv, ∂xiv, ∂ttv, ∂txiv, ∂xixjv, i, j = 1, . . . , n,

are bounded on E0 ∪ E. Then there is α : H → R+ such that

|z(r,m)
h − v

(r,m)
h |+ ‖u(r,m)

h − (∂xv)(r,m)
h ‖ ≤ α(h) on Eh and lim

h→0
α(h) = 0

(48)
where vh and (∂xv)h are the restrictions of v and ∂xv to the set E0.h ∪ Eh.
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Proof. We apply Theorem 1 to prove (48). Suppose that X = R1+n and
Fh = (Fh.0, Fh.I) is given by (44), (45). Then Zh = (zh, uh) satis�es (46),
(47). Write Vh = (vh, (∂xv)h). Then the initial estimate

‖V (r,m)
h −Ψ(r,m)

h ‖1+n ≤ α0(h) on E0.h

is satis�ed. It follows from Lemma 2 that there is γ : H → R+ such that

‖V
(r+1,m)
h = Fh[(Vh)〈r,m〉](r,m)‖1+n ≤ γ(h) on E′

h and lim
h→0

γ(h) = 0.

Let c̃ ∈ R+ be de�ned by the relations

‖∂xv(t, x)‖ ≤ c̃, ‖∂xxv(t, x)‖ ≤ c̃ on E0 ∪ E.

Write Yh = {w = (ζ, η) ∈ F(Ωh,R1+n) : ‖δζ(0,θ)‖ ≤ c̃, ‖δη(0,θ)‖ ≤ c̃}. Then
we have

(Vh)〈r,m〉 =
(
(vh)〈r,m〉, ( (∂xv)h )〈r,m〉 ∈ Yh, 0 ≤ r ≤ N0, m ∈ Zn.

Now we construct an estimate for the function

Fh[w]− Fh[w̄] =
(
Fh.0[w]− Fh.0[w̄], Fh.I [w]− Fh.I [w̄]

)

where w ∈ F(Ωh,R1+n), w̄ ∈ Yh and w = (ζ, η), w̄ = (ζ̄, η̄). It follows from
(36)�(40) and from condition 2) of Assumption H̃[f, ϕ] that

∣∣Fh.0[w]− Fh.0[w̄]
∣∣ ≤

≤ ‖(ζ − ζ̄)|Ah
‖+ 2h0A‖(w − w)|Dh

‖1+n + 2h0c̃σ(t(r), ‖(w − w̄)|Dh
‖1+n)

and ∣∣Fh.I [w]− Fh.I [w̄]
∣∣ ≤

≤ ‖(η− η̄)|Ah
‖+h0A‖(w−w)|Dh

‖1+n +(1+2c̃)h0c̃σ(t(r), ‖(w− w̄)|Dh
‖1+n).

Adding the above inequalities we obtain the following �nal inequality

‖Fh[w]r,m) − Fh[w̄](r,m)‖ ≤ ‖(w − w̄)|Ah
‖1+n+

+h0(1 + 4c̃)σ(t(r), ‖(w − w̄)|Dh
‖1+n) + 3Ah0‖(w − w̄)|Dh

‖1+n.

Thus we see that all the assumptions of Theorem 1 are satis�ed and assertion
(48) follows. This completes the proof.
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Remark 2. Suppose that: 1) all the assumptions of Theorem 4 are
satis�ed with σ(t, τ) = L0τ on [0, a]×R+ where L0 ∈ R+; 2) the conditions
2), 3) of Lemma 4 are satis�ed. Then there are C0, C1 ∈ R+ such that

|(vh − zh)(r,m)|+ ‖u(r,m)
h − (∂xv)(r,m)

h ‖ ≤ C0α0(h) + C0h0 on Eh.

The proof of the above property of the generalized Euler method is similar
to the proof of Lemma 4.

Remark 3. In the results on error estimates we need estimates for the
derivatives of the solution of problem (1), (2). One may obtain them by
the method of di�erential inequalities. The results given in [3, 12] for initial
problems on the Haar pyramid can be easily extended to initial problems
with solutions given on unbounded domains.

5. NUMERICAL EXAMPLES
Put h = (h0, h1, h2) and t(r) = rh0, (x(m1), y(m2)) = (m1h1,m2h2) where
r ∈ N, (N1, N2) ∈ Z2. Write

Ωh = {(t(r), x(m1), y(m2)) : 0 ≤ r ≤ N0,

(−N1 + r,−N2 + r) ≤ (m1,m2) ≤ (N1 − r,N2 − r)}
where N0h0 = a, (N1h1, N2h2) = (b1, b2) and N1 > N0, N2 > N0.

Example 1. Put n = 2. Consider the di�erential equation with deviated
variables

∂tz(t, x, y) = cos
[
∂xz(t, x, y) + ∂yz(t, x, y)

]
+ (49)

+(x− y)z(t, x, y) + z(0.5t, x, y)− z(t, 0.5x, 0.5y)− 1

and the initial condition

z(0, x, y) = 1 for (x, y) ∈ R2. (50)

The function v(t, x, y) = exp[t(x − y)] is the solution of (49), (50). Let zh :
Ωh → R denote the function which is obtained by using the Lax di�erence
scheme for (49), (50). Write

M(r) =
1

[2(N1 − r) + 1][2(N2 − r) + 1]

and

ε
(r)
h =

1
M(r)

N1−r∑

ν=−N1+r

N2−r∑

µ=−N2+r

∣∣(zh − vh)(r,ν,µ)
∣∣, 0 ≤ r ≤ N0, (51)



348 Z.Kamont

where vh is the restriction of v to the set Ωh. The numbers ε
(r)
h are the

arithmetical means of the errors with �xed t(r).

In the table 1 we give experimental values of the function εh for the
following parameters.

I. a = 0.15, b1 = b2 = 3, h0 = 10−4, h1 = h2 = 10−3. The corresponding
errors are denoted by ε̃h.

II. a = 0.4, b1 = b1 = 1, h0 = 10−3, h1 = h2 = 2.5 · 10−3. The
corresponding errors are denoted by ε̄h.

Table 1 of errors

t(r)

0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140

ε̃
(r)
k

3.09 · 10−5

3.24 · 10−5

3.41 · 10−5

3.59 · 10−5

3.78 · 10−5

3.99 · 10−5

4.19 · 10−5

4.40 · 10−5

4.60 · 10−5

4.80 · 10−5

t(r)

0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38

ε̄
(r)
h

1.54 · 10−4

1.70 · 10−4

2.11 · 10−4

2.87 · 10−4

4.00 · 10−4

5.35 · 10−4

6.85 · 10−4

8.51 · 10−4

1.03 · 10−3

1.23 · 10−3

The results shown in the table are consistent with our mathematical analysis.
Example 2. Consider the di�erential integral equation

∂tz(t, x, y) = −
∫ t

0
z(τ, x, y)dτ + cosx cos y+ (52)

+arctan
[
2∂xz(t, x, y) + 2∂yz(t, x, y)−

∫ x

−x
z(t, s, y)ds−

∫ y

−y
z(t, x, s)ds

]

and the initial condition

z(0, x, y) = 0 for (x, y) ∈ R2. (53)

The solution of the above problem is known, it is v(t, x, y) = sin t cosx cos y.
Let zh : Ωh → R denote the function which is obtained by using the Lax
di�erence scheme for (52), (53). We consider the errors εh de�ned by (51)
for the above problem.
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In the table 2 we give experimental values of the function εh for the
following parameters.

I. a = 0.5, b1 = b2 = 2, h0 = 10−3, h1 = h2 = 4 ·10−3. The corresponding
errors are denoted by ε̃h.

II. a = 0.25, b1 = b1 = 1, h0 = 5 · 10−4, h1 = h2 = 2 · 10−3. The
corresponding errors are denoted by ε̄h.

Table 2 of errors

t(r)

0.18
0.21
0.24
0.27
0.30
0.33
0.36
0.39
0.42
0.45

ε̃h

1.43 · 10−4

2.00 · 10−4

2.67 · 10−4

3.47 · 10−4

4.38 · 10−4

5.41 · 10−4

6.58 · 10−4

7.88 · 10−4

9.33 · 10−4

1.09 · 10−3

t(r)

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20

ε̄h

1.64 · 10−4

2.11 · 10−4

2.66 · 10−4

3.31 · 10−4

4.05 · 10−4

4.90 · 10−4

5.86 · 10−4

6.95 · 10−4

8.16 · 10−4

9.51 · 10−4

The results shown in the table are consistent with our mathematical analysis.
Example 3. Consider the di�erential integral equation

∂tz(t, x) = sin
[
∂xz(t, x)− 1

2

∫ x

−x
z(t, s)ds

]
+ cos x−

∫ t

0
z(τ, x)dτ, (54)

and the initial condition

z(0, x) = 0 for x ∈ R. (55)

The function v(t, x) = sin t cosx is the solution of the above problem.
Put h = (h0, h1) and t(r) = rh0, x(m) = mh1, where r ∈ N, m ∈ Z. Write

Σh = {(r(r), x(m)) : 0 ≤ r ≤ N0, −N + r ≤ m ≤ N − r}

where N0h0 = a, Nh1 = b and N > N0. Let zh : Σh → R denote the function
which is obtained by using the Lax di�erence scheme for (54), (55). Write

ε
(r)
h =

1
2(N − r) + 1

N−r∑

j=−N+r

|(zh − vh)(r,j)|, 0 ≤ r ≤ N0.
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where vh is the restriction of v to the set Σh.

Consider the generalized Euler method to problem (54), (55) and its
solution (z̃h, ũh) : Σh → R2. Write

ε̃
(r)
h =

1
2(N − r) + 1

N−r∑

j=−N+r

|(z̃h − vh)(r,j)|, 0 ≤ r ≤ N0.

The numbers ε
(r)
h and ε̃

(r)
h are the arithmetical means of errors with �xed

t(r), 0 ≤ r ≤ N0.

We have solved problem (54), (55) for the following sets of parameters:
a = 0.5, b = 6, h0 = 5·10−4, h1 = 5·10−3. In the Table 3 we give experimental
values of the errors εh and ε̃h.

Table 3 of errors

t(r)

0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

ε̃h

3.47 · 10−5

4.29 · 10−5

5.17 · 10−5

6.04 · 10−5

6.85 · 10−5

7.60 · 10−5

8.39 · 10−5

9.29 · 10−5

1.05 · 10−4

1.26 · 10−4

εh

1.32 · 10−2

1.61 · 10−2

1.89 · 10−2

2.14 · 10−2

2.37 · 10−2

2.57 · 10−2

2.75 · 10−2

2.93 · 10−2

3.02 · 10−2

3.09 · 10−2

Note that ε̃h < εh for all the values r. Thus we see that the errors of the
classical Lax di�erence scheme are larger than the errors of the generalized
Euler method. This is due to the fact that approximation of the spatial
derivaives of z in the generalized Euler method is better that the respective
approximation of ∂xz in a classical case.

Remark 4. Results presented in the paper can be extended on weakly
coupled di�erential functional systems.
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Äîâåäåíî òåîðåìó ïðî îöiíêè ïîõèáîê äëÿ íàáëèæåíèõ ðîçâ'ÿçêiâ ðiç-
íèöåâî-ôóíêöiîíàëüíèõ ðiâíÿíü òèïó Âîëüòåððà. Òàêi îöiíêè âèðàæåíî
çà äîïîìîãîþ ðîçâ'ÿçêó ïî÷àòêîâî¨ çàäà÷i äëÿ íåëiíiéíîãî äèôåðåíöi-
àëüíîãî ðiâíÿííÿ.

Îòðèìàíèé ðåçóëüòàò çàñòîñîâàíî äëÿ äîñëiäæåííÿ ñòiéêîñòi ðiçíè-
öåâèõ ñõåì, ïîðîäæåíèõ ïî÷àòêîâèìè çàäà÷àìè äëÿ ãiïåðáîëi÷íèõ äèôå-
ðåíöiàëüíî-ôóíêöiîíàëüíèõ ðiâíÿíü. Íàâåäåíî ïðèêëàäè ÷èñëîâèõ ðîç-
ðàõóíêiâ.




