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We give a theorem on the error estimate of approximate solutions
for difference functional equations of the Volterra type with an un-
known function of several variables. The error is estimated by a solution
of an initial problem for nonlinear differential equation.

We apply this general result to the investigation of the stability of
difference schemes generated by initial problems for hyperbolic functio-
nal differential equations. We assume nonlinear estimates of the Perron
type with respect to functional variable for given operators. Numerical
examples are presented.

1. INTRODUCTION

For any metric spaces X and Y we denote by C(X,Y) the class of all
continuous functions from X into Y. We will use vectorial inequalities with
the understanding that the same inequalities hold between their correspon-
ding components. Write

E=1[0,a] xR", Eo=[—do,0] xR", D= ]|—do,0]x [~d,d|

where a > 0, dy € Ry, Ry = [0,400) and d = (dy,...,d,) € R%.. For a
function z : Eg U E — R and for a point (t,x) € E we define a function
2(t,2) - D — Roas follows: 24 5)(7,y) = 2(t + 7,2+ y), (1,9) € D. Then 2 4
is the restriction of z to the set [t — do, t] X [z — d, x + d] and this restriction
is shifted to the set D. The maximum norm in the space C(D,R) is denoted
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by || - ||p. Write ¥ = E x C(D,R) x R" and suppose that f : ¥ — R
and ¢ : By — R are given functions. We consider the functional differential
equation

Orz(t,x) = f(t, 2, 2 0), 022(t, ) (1)

with the initial condition
z(t,x) = p(t,x) on Ey (2)
where © = (x1,...,2,) and Oz = (Op,2,...,04,2). We consider classical

solutions of (1), (2). We are interested in establishing a method of approxi-
mation of solutions to problem (1), (2) by means of solutions of associated
difference functional problems and in estimating of the difference between
the exact and approximate solutions.

In this time numerous papers were published concerning difference me-
thods for initial or initial-boundary value problems related to first order
partial differential functional equations [1,4,6,10,11,14, 15]. All these prob-
lems have the following property: the main question in the investigation of
numerical methods is to find a difference functional equation generated by
the original problem which is stable. The method of difference inequalities
or theorems on nonlinear recurrent inequalities are used in the investigation
of the stability of nonlinear difference schemes. It is important in these
considerations that solutions of differential functional problems and solutions
of corresponding difference schemes are defined on bounded domains. The
results presented in the above mentioned papers are not applicable to (1),
(2). We prove that there is a class of difference methods for (1), (2) which
are convergent. The stability of the methods is investigated by a comparison
technique with nonlinear estimates of the Perron type for given functions
with respect to the functional variable.

Differential equations with deviated variables and differential integral
equations can be obtained as particular cases of (1) by suitable definitions of
the operator f. Existence and uniqueness results for classical or generalized
solutions for (1), (2) are given in [2,3,5], [12, Chapter 5].

The paper is organized as follows. In Section 2 we propose a general
method for the investigation of the stability of difference schemes generated
by initial problems for nonlinear functional differential equations. We prove a
theorem on error estimates of approximate solutions to functional difference
equations of the Volterra type with unknown function of several variables.
The error of an approximate solution is estimated by a solution of an initial
problem for a nonlinear differential equation. In Section 3 we apply the above
general idea to the investigation of the convergence of difference schemes for
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(1), (2). A generalized Euler method for (1), (2) is presented in Section 4.
Numerical examples are given in the last part of the paper.

We use in the paper general ideas for finite difference equations which
were introduced in [9,12,13,16].

2. APPROXIMATE SOLUTIONS OF FUNCTIONAL
DIFFERENCE EQUATIONS

For any two sets U and W we denote by F(U, W) the class of all functions
defined on U and taking values in W. If « : U — W and 2 C U then « |q is
the restriction of « to the set €. Let N and Z be the sets of natural numbers
and integers respectively. We define a mesh on Fy U E in the following way.
Suppose that (hg,h') = h, k' = (h, ..., hy), stand for steps of the mesh. For
(r,m) € Z"" where m = (my,...,m,), we define nodal points as follows:

t0) = rhy, 2™ = (xgml), calm™)y = (mahy, . mphy).

Let us denote by A the set of all h such that there are Ko € Z and K =
(Ki,...,K,) € Z" with the properties: Kohg = dp and (K1hy,...,Kyhy) =
d. Set

Ryt = {(t"),zt™) 1 (r,m) e 2}

and
Eop=EyNR;™ Ey=ENR*'™, Dy=DNRiy,.

Let Ny € N be defined by the relations: Nohg < a < (No + 1)hg and
By ={(@t" 2"y e E,: 0<r<Ny—1}.
Write L = (L1,...,L,) € N® where L; =max {1, L; } for 1 <i<n and
Q= {7, 2™y —Koy<r<0, —-L<m<L}.

Let X be alinear space with the norm || - || x. For functions z : Ey ,UE, — X
and w : Q, — X we write 2™ = 2(t(), (™) on Ey;, U Ep, and w™™ =
w(t(”),x(m)) on Q. If 2z : Eyp UE, — X and (t(r),x(m)) € E), then the
function 2., : p — X is given by

Z(r,m) (7_7 y) = Z(t(r) + T>x(m) + y)7 (Ta y) € Qp.

Suppose that the operator Fj, : E; x F(Q,,X) — X is given. For
t) 2 w) e Bl xF(Q, X) we write Fj[w ] = B, (#7), 20 w). Given
h
on € F(Egp, X), we consider the functional difference equation

2TH1m) = By, ] (3)
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with the initial condition
2(mm) — (Pg«,m) on Eqyyp. 4)

It is clear that there exists exactly one solution zj, : Fgp U Ep — X of (3),

(4).
Let Y, C F(Qp, X) be a fixed subset. Suppose that the functions vy, :
FEopUPFEL — X and @, 7 : A — R satisfy the conditions

o™ ™ — Bl (o) trmy 1™ [ < A(R) on B,
l(on = vn) "™ |lx < é(h) on Eop, lima(h) =0, lim5(h) =0,
and
(V) (rm) € Yp for M 2™ e Ey.

The function v, satisfying the above relations is considered as an approxi-
mate solution of (3), (4).

We look for approximate solutions of (3), (4) such that (va)(my € Ya
for (t0),2(™) € Ej,. We give a theorem on the estimate of the difference
between the exact and approximate solutions of (3), (4). Write

Ah:{(t(T)m(m))EQh: r=0, —1<m; <1 for 1<i<n}.
For a function w : 2, — X we put
lw]a, ||l x = max { [[w™™]|x : ("), 2™) € A},

lwlp, [lx = max { [w"™||x = (¢7),2) € Dy }.

For z : Egp U Ep, — X we define
Izllnr =sup{20™]|x : —Ko<i<r, meZ™}, 0<r <N

Put I, = {t©, M .t} For §: I, — R we write 3 = 3(¢t(")) on I,.
We formulate assumptions on comparison operators corresponding to (3),
(4).

Assumption Hlo]. The function o : [0,a] x Ry — Ry satisfies the
conditions:

1) o is continuous and it is nondecreasing with respect to the both
variables,
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2) 0(t,0) = 0 for t € [0,a] and the function @(t) = 0 for ¢ € [0, a] is the
maximal solution of the Cauchy problem

W(t) =o(t,w(t), w(0)=0. (5)

Now we formulate the main result of this section.

Theorem 1. Suppose that F}, : B} x F(Q, X) — X, ¢, : By — R are
given and
1) zp : By, U Ep, — X is the solution of (3), (4),
2) vy EgpUER, — X and
(i) there are o, v : A — Ry such that

o™ = Ful (08) gy 7™ x < hoy(R) on B}, and lim y(h) =0, (6)

I(wn = 2) "™ x < @0(h) on Bo, and. lim ao(h) =0, (7)

(1) (vh)<r,m> €Yy for (t(T), a:(m)) € by,
3) there exists o : [0,a] xR — Ry such that Assumption H[o] is satisfied
and

13 [w]®™ — Byl @] "™ x < [|(w = @)|a, | x + hoo (7, ||(w — @) |, 1 x )

(8)
where (1), 2™ w) € E) xF(Q,, X) and @ € Yy,. Then there is o : A — Ry
such that

|z — vp) ™| x < a(h) on Ep and }llirr(l] a(h) =0. (9)

Proof. Let us denote by 8y, : I, — Ry the solution of the difference
problem

B = B0 4 oo (¢, 30) + hoy(h), 0 < r < Ny — 1, (10)

B = ag(h). (11)

We prove that
Iz, — vnllhr < ﬂ(r) for 0 <7 < Njy. (12)

It follows from (7) that estimate (12) holds for » = 0. Assuming (12) to hold
for r, 0 <r < N_1, we will prove it for r + 1. We conclude from (6) and (8)
that for 0 <7 < r we have

[(on = 20) ™ | x < NFLL(20) imy 1™ = Fil (vR) i.my 1™ | x +
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oS = Fy (o) imy 19 1 x < BD + hoo (£D, ]| (zh — va) im0 | )+

+hoy(h) < B + hoo (¢, 87) + hoy(h) = B+

and consequently

1)
lon — 2nllhrs1 < By, (r1),

Hence the proof of (12) is completed by induction. Consider the Cauchy
problem

W'(t) = o(t,w(t)) +7(h), w(0)=ao(h). (13)

It follows from Assumption H|[o| that the maximal solution w(-,h) of (13)
is defined on [0, a] and

%m%) w(t,h) =0 uniformly on 0, a].

The function w( -, h) is convex on [0, a]. Then we have the difference inequa-
lity

wtT D R) > Wt h) 4+ hoo (tT), (") b)) + hoy(R), r=0,1,...,Ng—1.

Since 3, satisfies (10), (11), the above relations show that 3" < w(t(), h)
for 0 < r < Np. Then condition (9) is satisfied with a(h) = ( ,h). This
proves the theorem.

Remark 1. Suppose that o(t,7) = Lo7 on [0,a] X R4. Then assumption
(8) has the form

13 [w]¢™) = Fy[@]"™||x < |l(w —@)]4, llx + hoLoll(w — @)|p,|lx

where w € F(Qp,, X), @ € Y}. Then assertion (9) takes the form

|(zp, — vh) ”X < a(h) on Ej
where
d(h) = Oéo(h) exp[Loa] + ’y(h)e)q)[lz)s]}_l if Lo >0, (14)
a(h) = ag(h) + ay(h) if Lo =0. (15)

The above example is important in simple applications.
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3. INITIAL PROBLEMS FOR HAMILTON-JACOBI
FUNCTIONAL DIFFERENTIAL EQUATIONS

We will need a discrete version of the operator (¢,z) — 2z 4). If 2 : Egp U
Ej, — R and (t™),2(™) € Ej, then the function Zirm) + D — R is defined
by

2] (T, ) = 2t + 7,20 1), (7,y) € Dy

For w € F(Dp,R) we put
lwl|p;, = max{lw(7,y)|: (1,y) € Da}-

We consider the following interpolating operator Ty, : F(Dp,R) — F(D,R).
Set
S, ={s=(s1,-..,80): 5, €{0,1} for 1 <i<n}.

Let w € F(Dp,R) and (t,x) € D. There exists (t(’"),x(m)) € Dy, such that
(D, zmHDy € Dy where m+1 = (my+1,...,my + 1) and ¢ <t <
(D) p(m) < g < (M) Write

Bl ) = (1= 57) 3w (S (1 ) s

seSy

+t —ht(t) Z L) (x —h;f(m))s (1 oz —hg/g(m))ls

0 sES

where o . .
Sk ek

(m;)

(-5 - fl- =)

=1

and we take 0° = 1 in the above formulas It is easy to see that T}[w] €
C(D,R). The above interpolating operator has been first considered in [12].

The following Lemmas are important in our considerations.

Lemma 1. If w € F(Dp,R) then

1 Th[w]llp = [[wllp,- (16)
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Proof. It is easy to prove by induction with respect to n that

S EZEY (1= T2 for ol < < o),

seSt

The equality (16) follows from the above relation.

Lemma 2. Suppose that w : D — X is of class C' and denote by wy, the
restriction of w to the set Dy,. Let

C = max{ ||0w|p, |0sw|p, i=1,...,n}.
Then )
[T [wn] — wl[p < C|[R]],
where ||h]| =ho+ h1 + ...+ hy.

The above lemma can be proved by a method used in the proof of
Theorem 5.27 in [12].

Lemma 3. Suppose that w : D — X is of class C? and denote by wy, the
restriction of w to the set Dy,. Let

C = max{ ||0yw||p, 0w, w|lD; [|0pz;wllD, 4,5 =1,...,n}.

Then .
1T wn] — wllp < C|[h].

The Lemma 3 is a consequence of Theorem 5.27 in [12].

For © = (x1,...,2,) = € R" we put ||z|| = |z1| + ... + |zn|. Let
D, E, Ey and Dy, By, Eyy,, Qp, Ap, be the sets defined in Sections 1 and 2.
We formulate a difference method for initial problem (1), (2). For 1 <i<mn
we define ¢; = (0,...,0,1,0,...,0) € R" with 1 standing on the i—th place.
Let dp and (d1,...,d,) = 0 be the difference operators given by

5oz rm) — hlo(z@“) A (17)
where .
A[]m) = % ; [mten) | o (rm—en)]
e 5.arm) _ L ante,) _ (rm—e)] i _
z %[z i) — 2 J}, j=1,...,n. (18)
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In the same way we define the expressions A[w](®?) and
sw ) = (51w .. 5w )

where w € F(Qp,,R) and § = (0,...,0) € R™. For a function z : Fy ,UE, — R
and for a point (t0), z(™) € Ej;, we write Th2pm) instead of T (2} ]

Given ¢y, : Ep;, — R, we approximate classical solutions of (1), (2) with
solutions of the difference functional problem

5OZ(r’m) = f( t(r), x(m)vThz[r,m]v §zrm) ) (19)

H(rm) <p§:’m) on Fyp,. (20)

The above difference method is called the Lax scheme for (1), (2). We claim
that difference problem (19), (20) is a particular case of (3), (4). Let X =R
and Fj, : B} x F(Q5,R) — R be defined by

Fy[w]™™ = Afw] @9 + ho f ("), 20 T, [w]p, ], w®? ). (21)

It is easily seen that equation (19) is equivalent to (3) with Fj, given by (21).

Assumption H|[f]. The function f : 3 — R of the variables (t,z,w, q),
q=1(q1,...,qn), is continuous and
1) there exists o : [0,a] xRy — R4 such that Assumption H [o] is satisfied
and
’f(t7x7w7Q) - f(tv T, W, Q)‘ < U(t7 Hw - H_)HD) on %, (22)

2) the partial derivatives (8q1f,...,8qnf) = 0,f exist on X, O,f €
C(3,R") and the function 9, f is bounded on .

Theorem 2. Suppose that Assumption H|[f] is satisfied and
1) the function zy, : Eyp, U Ep, — R is a solution of (19), (20) and there
is g : A — Ry such that

(2 = @n)""™| < ao(h) on By and lim ag(h) = 0, (23)

2) for (t,z,w,q) € ¥ we have

1 hy .
E—E‘aqif(t,ac,w,q)yzo, i=1,...,n, (24)

3)v:EyUE — R is a classical solution of (1), (2) and v is of class C*
on EgUFE,
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4) the functions
8tt1)7 8tmiv7 axixjv) Z?] = 17 s
are bounded on Eg U E. Then there is o : A — Ry such that

|(v, — up)"™| < a(h) on E and }llim a(h) =0, (25)

—0
where vy, 1s the restriction of v to the set Eyp U Ej.

Proof. We apply Theorem 1 to prove (25). Put Y, = F(Qp, R). It follows
that z, satisfies (3) where Fj, is defined by (21) and there is v : H — R such
that condition (6) is satisfied. Now we estimate the difference Fj,[w] — F},[w],
where w, w € F(Q4,R). It follows from Lemmas 1, 3and from (22), (24) that

‘Fh[w](r,M) _ Fh[w](r,m)‘ < hO‘ f(t(r)aJT(m)’Th[wbh], 5w(0,9)))_

—f(t™), 20 T [w|p,], 60 ®9) + Ajw — @)@ |+

+hol F(H), 2™ Ty, [w]p, ], 60 @0) — f(tT), 2™ T[] p, ], 60| <

<3 > f-m)e[ 1y o, f(P)] |+

g S| —a) O [ L0 1B ] [+ hoo (i, (w — @), ) <

- Og;
n hj

< [(w = @)[a, || + hoo (t7), | (w — @)|p, ),

where P € ¥ is an intermediate point. Then the operator Fj, satisfies (8).
Thus we see that all the assumptions of Theorem 1 are satisfied and the
assertion (25) follows.

Now we formulate a result o the error estimate for the Lax scheme.

Lemma 4. Suppose that

1) all the assumptions of Theorem 2 are satisfied with o(t,7) = LoT
on [0,a] x Ry where Lo € Ry, (then we have assumed that f satisfies the
Lipschitz condition with respect to the functional variable),

2) there are B, M € R"} such that

(100 f(t, 2w, q)l, - .10, f(t,2,w,q)[) < B on X

and h' < Mhy,
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3) the constant C is defined by the relations
0w (t, )|, |0, v(t, @), |00t )| < Con EgUE fori,j=1,...,n.

Then
|(vp, — zh)(r’m)\ < a(h) on Ej

where & is given by (14), (15) with
v(h) = Ahg + LoC||h||?
and

_ _ _ 1_ -
A=0A+D)+ S CIM|[IB]l, T'=

S

1 n

5 > M7, (My,..., M) =M.
i=1

The above Lemma, is a consequence of Theorem 2 and Lemmas 1 and 3.

Now we consider functional difference problem (19), (20) with dp and
0 = (01,...,06,) defined in the following way:

1

rm) __ r+1,m T,m
8oz = h—o[z( Fhm) _ 4 )] (26)
and i
§izmm = 7w [z(r’m+ei) - z(r’m)} for 1 <i <k, (27)
1
§;2(rm) — - [Z(r,m) _ Z(T,m—ei)] for k+1<i<n, (28)

where 0 < k < n is fixed. If kK = 0 then §z is given by (28), if K = n then §z
is given by (27). In the same way we define the expressions

sw(09) = (51w(0’9), e ,5nw(0’9))

where w € F(Q,,R). Difference scheme (19), (20) with dyp and 0 defined by
(26)—(28) is called the Euler difference method. Let F}, : E; x F(Q;,R) — R
be defined by

F[w]™™ = w00 4o f (¢ 20 T, [w| p, ], 5w ®9). (29)

It is easily seen that the Euler difference method is equivalent to (3) for
X =R and Fj, defined by (29).

Theorem 3. Suppose that Assumption H|[f] is satisfied and
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1) the function zp : Eop U ER — R is a solution of (19), (20) with do
and 0 given by (26)—(28) and there is a: A — Ry such that condition (23)
1s satisfied,

2) for (t,z,w,q) € ¥ we have

Opft,z,w,q) >0 for 1<i<k, (30)
O ft,z,w,q) <0 for k+1<i<n (31)
and
"1
1_hOZE‘aqif(ta$)w>Q)‘ 205 (32)
i=1 "

8)v: EyUE — R is a solution of (1), (2) and v is of class C?on EgUE
and the functions

attvv at:tivv axﬂ:jvv Z,] = 17° -, N,

are bounded on EgU E. Then there is a: A — Ry such that condition (25)
is satisfied where vy, is the restriction of v to the set Egp U Ey,.

The proof of the above theorem is similar to the proof of Theorem 2.
Details are omitted.

Now we formulate a result on the error estimate for the Euler difference
method.

Lemma 5. Suppose that

1) all the assumptions of Theorem & are satisfied with o(t,7) = LoT on
[0,a] x Ry where Ly € Ry,

2) the conditions 2), 3) of Lemma 4 are satisfied.

Then

|(vp, — 2) ™| < &(h) on Ej,

where & is giwven by (14), (15) with

C(+ [ MI[IB])ho + LoCllh|*.

N —

v(h) =

We use Lemmas 1, 3, 11 and Theorem 3 in a simple proof of the above
relation.
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4. GENERALIZED EULER METHOD FOR NONLINEAR
DIFFERENTIAL FUNCTIONAL EQUATIONS

We have considered two difference method for (1), (2): the Lax scheme
and the Euler difference method. Two types of assumptions are needed in
theorems on the convergence of difference schemes generated by (1), (2). The
first type conditions deal with the regularity of f. They are formulated in
Assumption H[f] and they the same for the both methods. The assumptions
of the second type are called the Courant—Friedrichs—Levy (CFL) conditi-
ons. The (CFL) condition for (1), (2) and for the Lax difference scheme has
the form (24) Assumptions (30)—(32) are the (CFL) conditions for the Euler
difference method.

Note that assumptions (24) and (32) are quite similar. Some relations
between hg an b’ = (hq,...,h,) are required in (24) and (32). It follows
from (30), (31) that we need more restrictive assumptions on f for the Fuler
difference method than for the Lax scheme.

There are initial problems (1), (2) such that both the above difference
methods are convergent. It follows from the theory of bicharacteristics for
nonlinear differential functional equations that in this case the numerical
results obtained by the Euler difference method are better than correspon-
ding results obtained by the Lax scheme. This property of difference methods
can be easy illustrated by numerical experiments.

With the above motivation we are interested in proving of convergence
results for the Euler method and for a possibly large class of nonlinear
problems. More precisely, we will show that there are convergent difference
methods of the Euler type for which the assumptions (30), (31) are omitted.

We denote by CL(D,R) the class of all linear and continuous operators
defined on C'(D,R) and taking values in R. The norm in the space CL(D,R)
generated by the maximum norm in the space C(D,R) will be denoted by
Il - ||x. Let Myxn be a class of all n x n matrices with real elements. For
U € M,,x, we write

n
U|| = max wiil: 1 <i<np where U= |uy;
J J

j=1

ij=1,..n'

If U € M,x, then UT denotes the transpose matrix.

Assumption H|[f,¢|. The functions f : ¥ — R and ¢ : Ey — R are
continuous and
1) the partial derivatives 0, f, O, f exist on ¥ and 0, f, 9,f € C(X,R"),
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2) there exists the Fréchet derivative 0, f(P) and 0, f(P) € CL(D,R)
for Pe X,

3) ¢ : By — Ris of class C.

Now we formulate a new class of difference methods corresponding to
(1), (2). Let (z,u), u = (u1,...,uy), be unknown functions of the variables
(t(r),l'(m)) € Eyp U Ep. Write

Pz u) = ( £ (M) T 2jrm) um) ).

We consider the system of difference functional equations

0z = F(PO )+ 370, f(P [z u]) (8,207 ™), (3)
i=1
gu™) = 0, f( Pz ) )+ (34
40 (PU™u]) Thttg g + 00 f (PO 2,0 (50 T

with the initial conditions
2rm) = Q) ) — g m)on -y, (35)
where oy : Egp, — R and ¢y, @ Eyp — R™ are given functions and

811)f( P(ﬁm) [Za u} )Thu[r,m] =

- (awf( P(ﬁm) [Zv u] )Th(ul)[r,m}a s 76wf< P(nm) [Z, u] )Th<un)[r,m] )7

and
ou = [ (5juz- ]

ij=1,.n"

The difference operator dg is defined by

5oz(r,m) _ i [Z(r+1,m) - Z(r,m)], 50u(r,m) _ i [u(r+1,m) - u(r,m)] ) (36)

0 0

The difference operators (41, ..., dy) are defined in the following way. Suppo-
se that the functions (z,u) are known on the set (Eo.h U Eh) N ([—dg, t(r)] X
R"), 0 <r < Ny. We put

if O, f(P™[z,u]) >0 (37)
then

5jz(r,m) _ [z(r,m+ej) _ Z(r,m)] 5ju(r,m) _

1 1 T, Mm—T+e; T,m
F s hf[u(’ +J)—U(7 )} (38)
J J
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Moreover we put
if 0y, f(P"™[z,u]) <0 (39)

then

1 1
5jz(r,m) _ hf] [Z(T,m) - Z(r,m—ej)]’ 5ju(r,m) _ }T] [u(r,m) o u(r,m—ej)] ) (40)
We take j = 1,...,n in (37)-(40). The above difference functional problem
is called a generalized Euler method for (1), (2). It is clear that there exists
exactly one solution (zp,up) : Eop U Ep — RY? up = (up1,..., upn), of
(33)—(35) with dp and § defined by (36)—(40).

The generalized Fuler method is obtained in the following way. Suppose
that Assumption H|[f, ] is satisfied. The method of quasilinearization for
nonlinear equations consists in replacing problem (1), (2) with the following
one. Let (z,u), u = (u1,...,up), be unknown functions of the variables
(t,z) € Ey U E. First we introduce an additional unknown function u = 9,z
in (1). Then we consider the following linearization of (1) with respect to w:

Orz(t, ) = f(t, 2, 2(4 2, ult, )+ (41)

+ Z 04 [ (t, 7, 21,2, ult, 7)) (ﬁmiz(t, x) — u;(t, x))
i=1

We get differential functional equations for v by differentiating equation (1),
resulting is the following:

Opu(t,r) = Opf(t, , 21 0y, u(t, )+ (42)

+awf(ta Ty Z(t,x) u(tv CL')) U(t,x) + aqf(tv Ty 2(t,x) u(ta I‘)) [aﬂﬁu(t7 x) ]T

where @ oy = ((u1)@t,z)s - - - (Un)(t,2))- We consider the following initial con-
dition for (41), (42):

z(t,x) = p(t,x), u(t,z) = 0yp(t,z) on Ey. (43)

Under natural assumptions on given functions the above problem has the
following properties:

(i) if (2,a) is a classical solution of (41)—(43) then 0,2 = @ and Z is a
solution of (1), (2);

(i) if 9 is a solution of (1), (2) and © is of class C? then (7, 9,7) satisfies
(41)—(43).

Difference problem (33)-(35) is a discretization of (41)-(43).
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The above method of quasilinearization was first proposed in a nonfunc-
tional setting by S. Cinquini and S. Cinquini Cibraio [7,8]. It was extended
in [4,12] on nonlinear functional differential problems.

We claim that the generalized Euler method for (1), (2) is a particular
case of (3), (4). Put X = R The norm || - |[x where X = R" ig
denoted by || - |14n- For p € RY™ where p = (po,p’), P’ € R" we put

||pH1+n = ‘p0| + ||p/H For w € F(Qh7R1+n)7 w = (C’n)7 n= (7713 s 77’71) we
write

Q(T’m) [’U)] = (t(r) ) x(m)’ Th [C|Dh]a 77(0’9))

and
1¢] 4, I = max {|¢™] (¢, 2(M) € 4},

In]a, || = max {[p"™| = (0, 20™) € Ay}
Consider the operator Fy, = (Fp.o, F}.1) defined by

Froluw)™™ = (% 4 ho f(QU™ ] )+ (44)

+ho Z 9q, f ( Q(r’m) [w]) (5i<(0,9) _ ni(o,e))
=1

and
Fiy g [w] ™™ =09 4 hod, f( QU™ [w] )+ (45)

+hoh F(QU™ w] ) Tlnlp,] + hoda f( QU™ [w]) [ 7@ ",

where

O f(QU™(w]) Thlnlp,] =
= (0w QU™ [w]) Thlmlp,), - - - 0w f(QT™w]) Thlnmlp,)).

The difference expressions

(514(0,0)’ o 5nC(O’9)) and 577(0,0) _ [63'771(079)]1',3':1,...@

are defined by (37)-(40) with ¢|p, and n(®?) instead of 2p,m) and ulrm),
Write Z = (2,u), Vi = (¢n,¥n), Zirm) = (Z(r;m)> Wr,m)y)- Then problem
(33)-(35) is equivalent to the functional difference equation

Z(T+17m) — Fh[Z<r,m>:|(r’m) (46)
with the initial condition

AGRIES N (47)
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Assumption H[o]. The function o : [0,a] x Ry — R, satisfies the
conditions

1) o is continuous and it is nondecreasing with respect to the both variab-
les,

2) o(t,0) =0 for t € [0,a] and for each b € R, and ¢ > 1 the maximal
solution of the Cauchy problem

() =bw(t) +co(t,w(t)), w(0)=0,

is w(t) =0 for t € [0,al.

Assumption H|[f, ¢]. The functions f and ¢ satisfy Assumption H|[f, o]
and

1) there is A € Ry such that

10 F (P, (194 (P, 10w f (Pl < A

where P € X, )
2) there exists o : [0, a] xR — Ry such that Assumption H|[o] is satisfied
and the terms

||833f(taxa w, Q) - 8xf(t,£6,w, Q)H’ ||8qf(t7 z,w, Q) - 8qf(tv$’ w, Q)”v

Hawf(twrvwv q) - 8wf(t7x7 wa Q)H*v
are bounded from above by o(t, ||w — @||p + |l¢ — q||) on 2.

Theorem 4. Suppose that Assumption H[f, ] is satisfied and

1) h € H and condition (32) holds,

2) (zn,up) : Eop U Ep — RY™ s the solution of (33)—(35) with &y and
0 defined by (36)-40 and there is ag : H — Ry such that

[P — o™ 4 11000 — ™| < ag(h) on Eo

and hmhﬁo Cto(h) = 0,
3)v:EyUE — R is a solution of (1), (2) and v is of class C* and the
functions
aﬂ}, 81»1-’(1, 8tt1), 8txi1}, (‘Lmjv, Z,] = ]., ey Ny

are bounded on EyU E. Then there is o : H — R such that

2™ = o™ 4 g™ = (@,0) ™ < a(h) on By and Jim a(h) =0

h—0
(48)
where v, and (0v)p, are the restrictions of v and Oyv to the set Eyp U Ej,.
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Proof. We apply Theorem 1 to prove (48). Suppose that X = R*" and
Fy, = (Fy0, Frg) is given by (44), (45). Then Z;, = (zp,up) satisfies (46),
(47). Write Vj, = (vp, (0zv)r). Then the initial estimate

th(r’m) - \I’g7m)Hl+n < ag(h) on Eyy
is satisfied. It follows from Lemma 2 that there is v: H — R such that
[ VA = B[V ) ™™ 1 < A(R) o0 B and lim y(h) = 0.

Let ¢ € Ry be defined by the relations
|0zv(t, 2)|| < &, ||Owv(t,)|| < ¢ on EygUE.

Write Yy, = {w = (,n) € F(Q,, R™*7) : [|6¢OD| < & [|0n©]| < &}. Then

we have
(Vi) rymy = ((vh)(r,m>7 ((0z0)n ) (rmy € Y, 0 <71 < No, me€Z".
Now we construct an estimate for the function
Fpw] — Fplw] = (Fholw] — Fpolw], Fyrlw) — Fj.[w])

where w € F(Qp,, RM*™) @ € Y}, and w = (Cm), w = (¢,n). Tt follows from
(36)—(40) and from condition 2) of Assumption H[f, | that

| Fh.o[w] — Fio[w]| <

< (¢ = Olayl +2ho Al (w = w)|p, 140 + 2hoéo (K7, [|(w — @) D, [l1+n)

and
| Fh.r[w] — F.[w]| <

< [l =m) | apll+PoAll(w = w) D, 140+ (1428 hoéo (17, || (w — @) [ D, |145)-
Adding the above inequalities we obtain the following final inequality

B3 [w]™™ — Fy[@] ™| < |l(w —@)]a, 14+

+ho(L +48)a(t™), || (w — ©)|p, [l14n) + 3Aho || (w — ©)| p, [[14n-

Thus we see that all the assumptions of Theorem 1 are satisfied and assertion
(48) follows. This completes the proof.
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Remark 2. Suppose that: 1) all the assumptions of Theorem 4 are
satisfied with o(t,7) = Lo7 on [0,a] X Ry where Ly € Ry ; 2) the conditions
2), 3) of Lemma 4 are satisfied. Then there are Cp, C € Ry such that

[(on = 20) "]+ [l ™ = (20)7™ || < Coao(h) + Coho on Bp,
The proof of the above property of the generalized Euler method is similar
to the proof of Lemma 4.

Remark 3. In the results on error estimates we need estimates for the
derivatives of the solution of problem (1), (2). One may obtain them by
the method of differential inequalities. The results given in [3,12] for initial
problems on the Haar pyramid can be easily extended to initial problems
with solutions given on unbounded domains.

5. NUMERICAL EXAMPLES
Put h = (ho, hy1,ha) and t7) = rhg, (™), y(m2)) = (m1hy, mahs) where
r € N, (N1, No) € Z2. Write
Q= {(t", 2™,y ") 0 <r < No,
(—Nl—i-’l“,—NQ—i-’l“) (ml,mg) (Nl -, NQ—’I”)}
where Noho =a, (Nlhl,Nth) = (bl,bQ) and Ny > NQ, Ny > No.
Example 1. Put n = 2. Consider the differential equation with deviated

variables
Ohz(t, x,y) = cos[pz(t, z,y) + Oy2(t, x,y) |+ (49)

+(x —y)z(t,z,y) + 2(0.5t, z,y) — 2(¢,0.52,0.5y) — 1
and the initial condition
2(0,z,y) =1 for (z,y) € R? (50)

The function v(t, z,y) = exp[t(z — y)] is the solution of (49), (50). Let zp, :
Qp — R denote the function which is obtained by using the Lax difference
scheme for (49), (50). Write

1
2V =)+ 12(N - ) 1

and
Ni—r No—r

Z Z zh—vh (TV’“)|, OSTSN@, (51)

—Ni1+r p=—No+r
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where vy, is the restriction of v to the set €. The numbers sg) are the

arithmetical means of the errors with fixed ¢(").

In the table 1 we give experimental values of the function e for the
following parameters.

I.a=0.15, b = by = 3, hg = 107, hy = hy = 1073. The corresponding
errors are denoted by &p.

II. a = 04, by = b =1, hg = 1073, hy = hy = 2.5-1073. The
corresponding errors are denoted by &p.

Table 1 of errors

() 5(’") ¢(r) =(r)

k h
0.095  3.09-10"° 0.20 1.54-10%
0.100  3.24-107° 0.22 1.70-1074
0.105  3.41-107° 0.24 2.11-1074
0.110  3.59-107° 0.26 2.87-107%
0.115  3.78-107° 0.28 4.00-10*%
0.120  3.99-10~° 0.30 5.35-10¢%
0.125  4.19-107° 0.32 6.85-10*%
0.130  4.40-107° 0.34 851-10"*
0.135  4.60-10~° 0.36 1.03-1073
0.140  4.80-107° 0.38 1.23-103

The results shown in the table are consistent with our mathematical analysis.

Example 2. Consider the differential integral equation

t
Oz(t,x,y) = —/ z(T,z,y)dT + cos z cos y+ (52)
0

@ y
+arctan |20,z(t, x,y) + 20y2(t, z,y) — / z(t,s,y)ds — / z(t, z, s)ds
— —y

and the initial condition
2(0,z,y) =0 for (z,y) € R? (53)

The solution of the above problem is known, it is v(¢, z,y) = sint cosx cosy.
Let zp : Q5 — R denote the function which is obtained by using the Lax
difference scheme for (52), (53). We consider the errors €, defined by (51)
for the above problem.
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In the table 2 we give experimental values of the function €, for the
following parameters.

I.a=0.5 b =by =2 hy=10"3, hy = hy = 4-1073. The corresponding
errors are denoted by €.

II. a = 0.25, by = by =1, hg = 5-107% hy = hy = 2-1073. The
corresponding errors are denoted by &j.

Table 2 of errors

¢(r) En ¢(r) £,

0.18 1.43-1074 0.11 1.64-10~*
0.21 2.00-1074 012 2.11-107%
024 2.67-1074 0.13  2.66-10%
0.27 347-1074 0.14 3.31-1074
0.30 4.38-1074 0.15  4.05-107%
0.33 5.41-1074 0.16 4.90-10~%
0.36  6.58-1074 0.17 5.86-1074
0.39 7.88-107% 0.18 6.95-107*
0.42 9.33-1074 0.19 8.16-107*
0.45 1.09-1073 020 9.51-107*

The results shown in the table are consistent with our mathematical analysis.

Example 3. Consider the differential integral equation

x

t
Oz(t,x) = sin |0, 2(t, x) — ;/ z(t, s)ds] + cosz — / z(r,x)dr,  (54)
0

—x

and the initial condition
2(0,2) =0 for x € R. (55)

The function v(¢,z) = sintcosx is the solution of the above problem.
Put h = (hg, h1) and t") = rhg, 2™ = mhy, where r € N, m € Z. Write

Sh={(r",z™): 0<r<Noy, —=N+r<m<N—r}

where Nohg = a, Nhy = band N > Ny. Let 2z, : ¥ — R denote the function
which is obtained by using the Lax difference scheme for (54), (55). Write

N-—r

(r) = ; — (T,j) < <
T AN+ 1 j:ZNH [z, —vn) "], 0 < 7 < No.
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where vy, is the restriction of v to the set .

Consider the generalized FEuler method to problem (54), (55) and its
solution (24, @) : B — R2. Write

N—r
~(T‘) — ; s (T‘,j) O < < N
h 2(N—1")—|—1 ) Z |(Zh Uh) |7 ST s V.
j=—N+r
The numbers sgr) and 55;) are the arithmetical means of errors with fixed

t) 0 <r < Np.

We have solved problem (54), (55) for the following sets of parameters:
a=0.5,b=6,hy=>510"% hy = 5-1073. In the Table 3 we give experimental
values of the errors e, and &j,.

Table 3 of errors

#(r) En Ep
0.200 3.47-107° 1.32- 102
0.225 4.29-107° 1.61- 102
0.250 5.17-1075 1.89 - 102
0.275 6.04-107° 2.14-1072
0.300 6.85-107° 2.37-102
0.325 7.60-107° 2.57-1072
0.350 8.39-10° 2.75-102
0.375 9.29-107° 2.93-1072
0.400 1.05-107% 3.02-102
0.425 1.26- 1074 3.09-1072

Note that &, < g5 for all the values r. Thus we see that the errors of the
classical Lax difference scheme are larger than the errors of the generalized
Euler method. This is due to the fact that approximation of the spatial
derivaives of z in the generalized Fuler method is better that the respective
approximation of 9,z in a classical case.

Remark /4. Results presented in the paper can be extended on weakly
coupled differential functional systems.
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CTINKICTHh HEJIIHIMHUX PISHUIIEBUX
OYHKINIOHAJIBHUX PIBHAHD ¥
HEOBMEKEHUNX OBJIACTAX

30icaase KAMOHT

[HCTHTYT MaTemaTnKu, [ TaHCHKUI YHIBEPCUTET,
80-952 I'mancek, Bya. B.Creomr, 57, [Toabia

oBejieHo TeopeMy PO OIHKY TOXUOOK [/ HAOJIM2KEHUX PO3B’ I3KiB Pi3-
HuUIeBO-PYHKIIOHATbHUX PiBHAHD Tuy Bosibreppa. Taxi ominku BuparkeHo
3a JOIIOMOIOI0 PO3B’SI3Ky IIOYATKOBOI 3aJadi [Id HemiHifiHOro mmdepeHii-
AJTBHOTO PIBHAHHSL.

Orpumannii pe3ysbTaT 3aCTOCOBAHO JIJIsT JTOC/IIKEHHST CTIMKOCTI pi3HU-
IIEBUX CXEM, TTOPOIKEHUX TTOYATKOBUMU 3a/a9aMu JJis Tirmepbosiaaux aude-
peHtiaabHO-(PYHKITIOHATBLHUX PIBHAHL. HaBemeHo mpuKIaIu IUCTOBUX PO3-
PaxXyHKiB.





