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We investigate the hyperspace of convex bodies of constant width
in two-dimensional spheres. The main result asserts that the mentioned
hyperspace is a manifold modeled on the Hilbert cube (Q-manifold).

1. INTRODUCTION

The hyperspace of compact convex subsets cc(Rn) in the euclidean space Rn

is endowed with the Hausdor� metric. It is well-known (and is often referred
as the Blaschke completeness theorem) that cc(Rn) is a complete metric
space. The investigation of this space from the point of view of in�nite-
dimensional topology is initiated in [7]. One of the main results of [7] is
that the space cc(Rn), n ≤ 2, is homeomorphic to the punctured Hilbert
cube Q \ {∗}. Similar results are obtained by the author for the hyperspace
cw(Rn) of convex bodies of constant width [2] (see also [3]).

The notion of convex set as well as a convex body of constant width can
be naturally de�ned for every riemannian manifold. The convex bodies of
constant width in the hyperbolic plane were considered in [1]; a close to the
notion of body of constant width that of spherical rotor in [4] and [5].

In this paper we consider the hyperspace of bodies of constant width in
two-dimensional sphere; the main result is a counterpart of the mentioned
result of [7].

Theorem 1. The hyperspace cw(Rn) is a Q-manifold.
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2. PRELIMINARIES
Let either S = S2 ⊂ R3, S2 = {(x1, x2, x3) ∈ R3 | (x1)2 +(x2)2 +(x3)2 = 1},
or S = {(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3− 1)2 = 1}, like in Theorem 4.
We assume that S is endowed with the topology induced from R3.

Every two points a, b ∈ S can be connected with a geodesic. For every
a ∈ S, we denote by a− the antipodal point to a.

By segments we mean the geodesic segments. The segment connection a
and b is denoted by [a, b]. If b = a−, then the notation [a, b] is not determined.

Let U be an open hemisphere and a, b ∈ U . Then [a, b] ⊂ U . We have
[a, b] =

⋂{U | a, b ∈ U, U is a hemisphere}.
We denote by d the geodesic metric on the sphere.
Let K(a, d) denote the circumference of radius d centered at a ∈ S,

i.e. the set K(a, d) = {b ∈ S | d(a, b) = d}. Every circumference K(a, d)
is the intersection of S with some plane and in R3 this is a circumference
of radius sin d. Obviously, d ∈ (0, π

2 ]. If d = π
2 , then we obtain a great

circumference. Similarly, by B(a, d) we denote the circle of radius d centered
at a: B(a, d) = {b ∈ S | d(a, b) ≤ d}.

The angle ∠bac between arbitrary segments [a, b] and [a, c] is evaluated
counterclockwise. The notion of angle is not symmetric: ∠cab = π − ∠bac.

De�nition 1. Suppose that a closed subset A is contained in some open
hemisphere U . The diameter of the set A is the number

diamA = max{d(a, b) | a, b ∈ A}.
De�nition 2. Suppose that a subset A ⊂ does not contain pairs of

antipodal points. A set A is called convex, if, for every two points a, b ∈ A,
we have [a, b] ⊂ A.

De�nition 3. A compact convex subset with nonempty interior is called
a convex body.

It follows from the de�nition of convex body that diam(A) < π, for every
convex A ∈ cc(U).

The boundary BdA of an arbitrary convex body A on S is homeomorphic
to S1 and the body A itself to the disc.

For r ≤ π, the disc B(a, r) is convex; for r > π, this is not the case. The
following simple statements have their counterparts in the space Rn:

Theorem 2. The intersection of an arbitrary family of open sets is open.
Theorem 3. Let {Aα}, α ∈ Λ, be a family of sets linearly ordered by

inclusion, i.e. Aα ⊂ Aβ if and only if α ≤ β. Then A =
⋃

α Aα is a convex
set.
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The following lemma can be proved by elementary arguments.
Lemma 1. Let A be an arbitrary convex body and a ∈ A. Let P1, P2

and P3 be great halfcircumferences connecting a and a− such that the set
S \ (P1∪P2∪P3) does not contain a hemisphere. If the set A contains on all
semi-circumferences Pi points distinct of a, then a is an interior point of A.

Corollary 1. For any convex body A and any a ∈ BdA there exists a
closed hemisphere Cl U such that a ∈ BdU and A ⊂ ClU .

De�nition 4. The boundary K = BdU of the hemisphere U from Corol-
lary 1 will be called the supporting circumference of the convex body
A at a.

De�nition 5. A convex body A is called smooth, if, at any point a ∈
BdA of its boundary, there exists a unique support circumference.

Remark 1. Note that every convex body A is contained in an open
hemisphere.

We keep the following notation till the end of this section. Let U be a
�xed hemisphere formed by K∗ = K(O∗, π/2) and O∗ ∈ U . Choose an initial
point p∗ on the circumference K∗. Let q be a point of the circumference K∗

such that its length from p∗ to q (counterclockwise) is equal to ϕ. By Kϕ

we denote the great circumference through O∗ and q. Then S =
⋃{Kϕ |

ϕ ∈ [0, π)}. The space of convex bodies Kϕ, ϕ ∈ [0, π) passing through O∗

is homeomorphic to S1. The value of parameter ϕ depends on the choice of
initial point p∗. Denote p(ϕ) = K∗ ∩Kϕ and consider the set S of the pairs
(p(ϕ)), p(ϕ)−). This set is homeomorphic to the projective space RP1.

By cc(U) we denote the hyperspace of compact convex subsets in U .
Theorem 4. The hyperspace cc(U) is homeomorphic to the hyperspace

cc(R2).
Proof. Without loss of generality, one may assume that

U = {(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3 − 1)2 = 1, x3 < 1}.
Identify R2 with the plane Π = {(x1, x2, x3) ∈ R3 | x3 = 0}. Let l be any
ray emanating from (0, 0, 1) not parallel to Π. Then l intersects U and Π at
the points a and b respectively. Let F : U → Π denote the map F (a) = b.
Clearly, F is a homeomorphism.

The geodesics on U are exactly great circumferences. It is easy to see
that their images under F are precisely lines in the plane. Conversely, the
lines in the plane Π are mapped onto the great circles on the hemisphere.

Therefore, this map sends the convex sets into convex ones and vice versa.
Therefore, cc(U) ∼= cc(R2).
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De�nition 6. The center of a convex body A ∈ cw(U) is a point c(A) ∈ S
such that dH(A, {c(A)}) = min{d > 0 | B(a, d) ⊃ A, a ∈ S}.

One can easily prove that every convex body A ∈ cw(U) possesses a
unique center c(A) ∈ A (it is easy to construct an example when c(A) ∈
BdA). The map sending A ∈ cw(U) to its center c(A),

cw(U) 7→ U, (1)

is continuous.

3. BODIES OF CONSTANT WIDTH
De�nition 7. A convex body A is called a body of constant width d,
d < π

2 , if for every a ∈ BdA we have d(a, b) ≤ d for all b ∈ A and there is
c ∈ BdA such that d(a, c) = d. The segment [a, c] is then called a diameter
of A.

By cw(U) we denote the hyperspace of all convex bodies of constant
width lying in U .

It is easy to see that every body of constant width lies in the intersection
of discs of radius d.

Remark 2. For every A,B ⊂ U and t ∈ [0, 1], we de�ne the set (1 −
t)A + tB as follows. For every a ∈ A and b ∈ B, de�ne c = (1− t)a + tb as
the unique point of the segment [a, b] which divides it in the ratio (1− t) : t.
Then (1−t)A+tB = {(1−t)a+tb | a ∈ A, b ∈ B}. However, this operation,
in general, does not preserve the class of convex bodies as well as the class
of convex bodies of constant width. Indeed, let A,B ∈ cw(U) be convex
bodies of constant width d1 and d2 respectively. In order to demonstrate
that (1 − t)A + tB is not a body of constant width, it su�ces to consider
small balls K1 and K2 of radius r ¿ π around the poles q and q− (see
Fig. 1). Then the intersection of the body K1+K2

2 with the circumference
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Figure 1:
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that passes through the points q and q− equals r and the intersection with
the circumference K(q, π/2) is larger.

There are counterparts of the Reuleaux triangles on the sphere. Consider
a triangle ABC with d(A,B) = d(B, C) = d(C,A) = d ≤ π. Consider
circumferences of radius d centered at the points A,B, C. The smaller arcs
of these circumferences connect the vertices and form the Reuleaux triangle.
The following statement is obvious.

Proposition 1. For every body A of constant width, any sequence of
diameters tends to a diameter.

Let T (a, b) = B(a, d) ∩ B(b, d). Obviously, if A is a body of constant
width d and D = [a, b] is some of its diameters, then A ⊂ T (a, b).

Lemma 2. Let [a, b] be a segment of length d < π/2 and let [c, e] be
another segment of length d such that [c, e] ⊂ T (a, b). Then also [a, b] ⊂
T (c, e).

The diameter [a, b] decomposes the set T (a, b) into two parts, T1 and T2:
T (a, b) = [a, b] ∪ T1 ∪ T2. The points c and d either lie in di�erent parts Ti,
or one of them coincides with one of the points a and b.

Proposition 2. For every body A of constant width d, every two its
diameters [a, b] and [c, e] intersect each other. If a = c, then the boundary
BdA of A between the points b and e coincides with the arc of the circumfe-
rence K(a, d).

Proposition 3. Every point a of a body A of constant width d belongs
to some diameter. In other words, every body of constant width is the union
of its diameters.

Proof. Assume the contrary, i.e. that there exists a point a ∈ IntA
which does not belong to any diameter. Since the union of diameters is a
closed set, there exists t > 0 such that every disc B(a, t) does not meet any
diameter. Consider a great circle through a and let c and e be the points at
which it intersects the boundary of the body A. Evidently, d(c, e) < d and the
segment [c, e] decomposes the body A into two parts. Consider the diameters
[c, c′] and [e, e′]. By Proposition 2, they necessarily intersect and therefore
are located in the same side with respect to the segment [c, e] outside the
circle K(a, t) (see Fig. 2).

Denote by γ the arc from BdA that connects the points e′ and c′ and
does not contain the points e and c. All the diameters with the endpoints
on the arc γ have their another endpoints on the arc β that connects the
points e and c and does not contain the points e′ and c′, because they meet
the diameters [c, c′] and [e, e′]. They intersect either the segment [a, c] or
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the segment [a, e] (outside K(a, t)). Using Proposition 1 we conclude that
there exists a point b with a diameter [b, b′] intersecting the segment [a, c]
and the diameter [b, b′′] intersecting the segment [a, e]. By Proposition 2,
this means that every arc ^ b′b” consists of the endpoints of some diameters
and the whole sector bb′b′′ is the union of diameters. This contradicts to our
assumption that there is no point of any diameter inside the circumference
K(a, t).

Proposition 4. Let A be a body of constant width d. Then

A =
⋂
{T (c, e) | [c, e] is a diameter of A} =

=
⋃
{[c, e] | [c, e] is a diameter of A}.

(2)

Proposition 5. Let A be a body of constant width d and [c, e] some of
its diameters from c to e. Then for every ϕ ∈ (0, π) there exists a diameter
[f, g] of A that forms with the diameter [c, e] the angle ϕ.

Proof. Assume the contrary. Let ϕ ∈ (0, π) be such that no diameter
of A forms the angle ϕ with the diameter [c, e]. Then, by Proposition 1,
the number ϕ satis�es this property together with its neighborhood on the
interval (0, π). Let (α1, α2) ∈ (0, π), ϕ ∈ (α1, α2) be such a maximal interval,
i.e. no diameter of the body A forms an angle from this interval with the
diameter [c, e] and there exist diameters [f, g] and [h, i], that form with it
the angles α1 and α2 respectively (see Fig. 3).
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By Proposition 2, the given diameters intersect at the point j and no
arc ^ ig and ^ fh of the boundary BdA degenerate (otherwise this is an
arc of a circumference of radius d and the diameters with the endpoints on
this arc intersect with the diameter [c, e] and the angles at the points of
intersection �ll the whole segment (α1, α2)). Let k ∈^ ig be an interior
point of this arc and [k, l] is the corresponding diameter. We are going to
show that l ∈^ fh. Indeed, since the diameter [k, l] meets the diameter
[f, g], we see that l ∈^ fe, and since the diameter [k, l] meets the diameter
[h, i], we see that l ∈^ ch. But then the angle between this diameter and the
diameter [c, e] belongs to the segment (α1, α2). The obtained contradiction
�nishes the proof.

Corollary 2. Let A ⊂ U be a body of constant width d and [c, e] be
its �xed diameter. By Proposition 5, for arbitrary angle ϕ ∈ (0, π) there
exists another diameter [f, g] of A intersecting [c, e] at h under the angle
ϕ (we assume that the endpoints of the diameter [f, g] are denoted so that
ϕ = ∠ehg; if h = e then in order to de�ne the angle we extend the diameter
[f, g] beyond e). Let p(ϕ) = h. For a �xed body of constant width A ⊂ U and
for his �xed diameter [c, e], we therefore de�ned a continuous function

p : (0, π) → [c, e], p(ϕ) = h. (3)
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Fix a counterclockwise direction on the boundary K∗ = BdU of the
hemisphere U . Let p ∈ K∗. Consider the family of great circumferences
through p:

Kϕ(p), ϕ ∈ [0, π], (4)

such that K0(p) = K∗ and the angle between the circumferences Kϕ(p) and
K∗ equals ϕ ∈ [0, π].

Evidently, for every convex body A and every pair (p, p−) ∈ S we have
diam(A, (p, p−)) ≤ diamA.

Proposition 6. For every point p ∈ K∗ and every body of constant width
A ∈ cw(U) there exists a unique diameter [n,m] = [n(p),m(p)] ⊂ A which
lies on the circumference Kϕ(p). Then the map

Φ: cw(U)× S → exp(R), (5)

that sends A ∈ cw(U) and any pair (p, p−) ∈ S to the diameter [n,m] =
[n(p),m(p)] ⊂ A is continuous.

Proof. Fix an arbitrary point p ∈ K∗. Let [c, e] be an arbitrary diameter
of A. If it belongs to some circumference Kϕ(p), then no other diameter
possesses such a property because the circumferences Kϕ(p), ϕ ∈ (0, π), in
the hemisphere S+ do not intersect and the proposition is proved. Indeed,
assume the contrary. Then it intersects the family of circumferences Kϕ(p),
ϕ ∈ [α1, α2] ⊂ (0, π). Let q(x), where x ∈ [c, e], be equal to the angle between
the circumference Kϕ and the diameter [c, e] at the point x. Thus we have
de�ned a function q : [c, e] → [α1, α2]. Being monotone, this function admits
the inverse one. In addition, earlier we have introduced the function (3)
p : (0, π) → [c, e]. It is easy to see that there exists j ∈ (c, e) such that
p(q(j)) = j. Therefore, there exists a diameter [n,m] that passes through
the point j and lies on some circumference Kϕ(p).

Now we are able to provide another, equivalent de�nition of the body of
constant width.

De�nition 8. A convex set A is said to be a body of constant width d
if, for every pair (p, p−) ∈ S and every circumference Kϕ(p) from (4), the
intersection Kϕ(p) ∩ A for all ϕ ∈ [0, π) is either empty or is a segment of
length not exceeding d, and the equality is attained for precisely one of the
values ϕ.

De�nition 9. A convex body A is a body of width at least d if for every
pair (p, p−) ∈ S there exists a circumference Kϕ0(p) from formula (4) such
that Kϕ0(p) ∩A is a segment of length at least d.
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Let

diam(A, (p, p−)) = max{diam(Kϕ(p) ∩A) | ϕ ∈ [0, π)}.

It is easy to see that a convex body A is of width at least d if for every
pair (p, p−) ∈ S we have diam(A, (p, p−)) ≥ d.

Corollary 3. Let [a, b] ∈ Kϕ(p), d(a, b) = d and T (a, b) ⊂ U . Then
diam(A, (p, p−)) = d and for arbitrary another pair (q, q−) ∈ S we have
diam(A, (q, q−)) > d.

Let A cw(U) be an arbitrary convex body. Denote by C(A) the set of
the points a ∈ A that belong to more than one diameter. The following
statement is obvious and we leave the proof for the reader.

Lemma 3. Let A ∈ cw(U) be an arbitrary convex body and ε > 0 be such
that Oε(A) = {b ∈ S | d(A, {b}) ≤ ε} ⊂ U . Then dH(BdA,C(A)) ≥ ε.

Conversely, if dH(BdA,C(A)) = ε > 0, then there exists a convex body
B ∈ cw(U), B = {b ∈ A | dH(C(A), {b}) ≥ ε} such that A = Oε.

We provide a universal method of construction of the convex bodies of
constant width d ∈ (0, π/2] in the hemisphere. The method is a modi�cation
of the method of construction of the bodies of constant width in Rn proposed
in [2].

Fix an arbitrary dense sequence (pk, p
−
k ) of pairs (pk, p

−
k ) ∈ S. By induc-

tion in k, construct a convex body A of constant width d ∈ (0, π/2].
Let k = 1. By [a1, b1] we denote a segment of length d which lies on some

circumference Kϕ(p1) (see (4)) and the set T (a1, b1)∩U is a convex body of
width at least d. Let A1 = T (a1, b1) ∩ U . Clearly, diam(A1, (p1, p

−
1 )) = d.

Let k = 2. We choose a segment [a2, b2] ⊂ Kϕ(p2), ϕ ∈ (0, π), of length
d so that [a2, b2] ⊂ A1. Clearly, then [a1, b1] ⊂ T (a2, b2). Let A2 = A1 ∩
T (a2, b2). The set A2 is a convex body of length at least d and

diam(A2, (pi, p
−
i )) = d

for i = 1, 2. Let us assume that the construction is already performed
for k = 1, 2, . . . , n − 1 and perform it for k = n. We choose a segment
[an, bn] ⊂ Kϕ(pn) of length d from the condition [an, bn] ⊂ An−1. This is
possible, because the convex body An−1 is of width at least d. Let An =
An−1 ∩ T (an, bn). The set An is a convex body of width at least d and
diam(A2, (pi, p

−
i )) = d for i = 1, . . . , n.

Let
A =

∞⋂

i=1

Ai =
∞⋂

i=0

T (ai, bi), where A0 = U.
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The set A is a convex body of constant width d and

A = Cl

( ∞⋃

i=1

[ai, bi]

)
.

It is easy to see that this construction gives all the convex bodies of
constant width. The following are some properties of the construction.

Proposition 7. The construction is uniformly continuous in the follo-
wing sense: for every ε > 0, there exists nε ∈ N such that, for any convex
bodies

A′ = Cl

( ∞⋃

i=1

[a′i, b
′
i]

)
, A′′ = Cl

( ∞⋃

i=1

[a′′i , b
′′
i ]

)

of constant width d, if [a′i, b
′
i] = [a′′i , b

′′
i ] for i = 1, 2, . . . , nε, then

dH(A′, A′′) < εd.

Proposition 8. Let A =
∞⋂

i=1

T (ai, bi) be a convex body of constant width

d such that dH(C(A),BdA) ≥ ε > 0. Then, for every n, there exists θ(ε, n),
θ(ε, n) → 0 as n →∞, such that arbitrary segments of the form [aj , c], [bj , c]
of length d and direction di�ering from that of the segment [aj , bj ] by angle

not exceeding θ(ε, n), belong to the set An =
n⋂

i=1

T (ai, bi).

Proposition 9. Let B be a convex body of constant width at least d. For
every segment [a, b] of length d′ ≤ d, there exists a unique segment [a′, b′] ⊂ B
of the same length and direction as [a, b] and which is the closest to [a, b] with
respect to the Hausdor� metric. The assignment [a, b] 7→ [a′, b′] continuously
depends on B.

In the sequel, the endpoints of the diameters of the same direction are
denoted according to the orientation of the direction: for any diameters [a′, b′]
and [a′′, b′′] of convex bodies A′ and A′′ respectively, we have [a′, a′′]∩[b′, b′′] =
∅.

4. PROOF OF THE MAIN RESULT
The following statements can be proved by using elementary geometric ar-
guments.

Lemma 4. Let A ∈ cc(U) be an arbitrary convex body lying in the hemi-
sphere U . Denote β(A) = min{d(a, k) | a ∈ A, k ∈ K∗} and let δ ∈ (0, β(A)).
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By Oδ(A) = {a ∈ S | dH(a,A) ≤ δ} we denote the closed δ-neighborhood of
the body A. Then Oδ(A) is a smooth convex body.

If A ∈ cw(U) is a body of constant width d, then Oδ(A) is a body of
constant width d + δ.

If δ : cc(U) → (0, π/2), δ(A) < β(A) is a continuous function, then the
map A 7→ Oδ(A) is continuous as well.

Lemma 5. Let [a, b] and [c, e] be two diameters of a convex body A of
constant width d that intersect at an interior point q (see Fig. 4). Let δ =

q k ql

qm

q
n

q

q

q

q
@

@
@

@
@

@
@

@
@

@
@

@@
q

q E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E

\
\

\
\

\
\

\
\

\
\

\
\

\\a

b

c

e

f

g

q q

Figure 4:

d(q, {a, b, c, e}) and let α be the angle between the segments [q, a] and [q, c].
Then, if the boundary BdA of the body A between the points b and e is
replaced by the arc ^ be of the circumference K(f, d), where f is the point
of intersection of the circumferences BdK(e, d) and BdK(b, d) between the
points a and c, and the part of the boundary BdA between the points a and
c is replaced by two arcs, ^ af and ^ fc, of the circumferences BdK(b, d)
and BdK(e, d) respectively, then we obtain a new body A∗ of constant width
d with the boundary BdA∗, with at least two support circumferences at the
point f (i.e. A∗ is not smooth). The Hausdor� distance dH(A,A∗) between
the bodies A and A∗ does not exceed the number σ(δ, α) < δ which tends to



Hyperspace of compact bodies of constant width on sphere 315

0 as α → 0.
By ANR we denote the class of absolute neighborhood retracts for the

class of metric spaces.
We say that a metric space X satis�es the disjoint approximation property

(DAP) if for every continuous function ε : X → (0,∞) there exist continuous
maps f1, f2 : X → X such that d(fi(x), (x)) < ε(x), for every x ∈ X, i = 1, 2,
and f1(X) ∩ f2(X) = ∅.

The following is a characterization theorem for Q-manifolds.
Theorem 5. (Toru�nczyk [8]). A locally compact ANR X is a Q-manifold

if and only if X satis�es the DAP.
Theorem 6. The space cw(U) satis�es the disjoint approximation pro-

perty.
Proof. Let ε∗ be an arbitrary number. De�ne an arbitrary continuous

function ε : cw(U) → (0, π/2), ε(A) = min{ε∗, β(A)/2}, where the function
β(A) is introduced in Lemma 4. We use this statement in order to construct a
map fε : cw(S+) → cw(S+) and put fε = Oε(A)(A). This map is continuous,
its images are the smooth bodies of constant width and

dH(A, fε(A)) < ε(A).

Let us construct another continuous map gε : cw(U) → cw(U) such that
dH(A, gε(A)) < ε(A) and fε(cw(U)) ∩ gε(cw(U)) = ∅.

On the circumference K∗ = BdU , choose a �xed point p and in every
body of constant width gε(A)/2(A) ∈ cw(U) �x a diameter [n(p),m(p)]
lying on a great circumference that passes through p (Proposition 6). From
Lemma 5, determine an angle α(A) such that σ(ε(A)/2, α(A)) < ε(A)/2.
Let [a, b] and [c, e] be the two other diameters of gε/2(A) whose angle of
intersection is ε(A)/2 and that form equal angles (from di�erent sides) with
the diameter [n(p),m(p)]. Apply Lemma 5 and replace gε/2(A) by a non-
smooth body of constant width A∗ such that dH(gε/2(A), A∗) < ε(A)/2. We
put gε(A) = A∗ and thus obtain a required map gε.

Proposition 10. The hyperspace cw(U) is a retract of the space cc(U).
Proof. For every A ∈ cc(U), by [ϕ1(A), ϕ2(A)] ⊂ [0, π] we denote the

set of all ϕ ∈ [ϕ1(A), ϕ2(A)] such that Kϕ(p∗) ∩ A 6= ∅. Evidently, ϕ1(A) 6=
ϕ2(A). We make the following convention: in the segment

[a(A), b(A)] = A ∩K(ϕ1(A)+ϕ2(A))/2,

we have d(p∗, a(A)) < d(p∗, b(A)).
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By V we denote the set of all convex bodies B ∈ cw(U) that lie in the
convex set A and one of their diameters lies on the segment [a(A), b(A)].
Further, let d∗ = max{diamB | B ∈ V} and V∗ = {B ∈ V | diamB = d∗}.

From the set V∗ we are going to choose a unique element B(A) which
continuously depends on A. Denote by V1 ⊂ V∗ the set of all the bodies
whose diameter [a1, b1] which lies on the segment [a(A), b(A)], is closest to
the point p∗ (and therefore to the point a(A)). In other words, the segment
[a1, b1] is a diameter of all the bodies B ∈ V1 of constant width d∗.

By {ϕi}, we denote a dense sequence of angles ϕi ∈ [0, π), ϕ1 = 0, (e.g.
{0, π/2, π/4, 3π/4, π/8, 3π/8, . . . }).

For any angle ϕ2 and any body B ∈ V1, denote by h2(B) the intersection
point under the angle ϕ2 of a diameter of this body (see Proposition 5 and
Corollary 2) with the diameter [a1, b1]. Let h2 be one of these points which
is the nearest to p∗. By V2 ⊂ V1 we denote the set of the bodies whose
diameters that form the angle ϕ2 with the segment [a1, b1] pass through the
point h2 and are closest to it with respect to the Hausdor� metric. In other
words, all the bodies B ∈ V2 have at least two common diameters: [a1, b1]
and the diameter [a2, b2] passing under the angle ϕ2 to [a1, b1] through the
point h2.

We then proceed by induction. We look for a sequence of embedded
V1 ⊃ V2 ⊃ · · · ⊃ V2 ⊃ . . . whose intersection is a singleton (note that a
singleton can be obtained even at a �nite stage of the construction; then the
induction is �nished).

Suppose that a set Vn−1 is obtained. It consists of bodies of constant
width d∗ that have common diameters [ai, bi], i = 1, . . . , n − 1, forming the
angles ϕi with the diameter [a1, b1].

Now we construct the set Vn. For the angle ϕn and any body B ∈ Vn−1,
denote by hn(B) the point of intersection with angle ϕn of a diameter of
this body and the diameter [a1, b1]. Let hn be the closest of these points
to the point p∗. By Vn ⊂ Vn−1 we denote the set of bodies we denote the
set of the bodies whose diameters that form the angle ϕn with the segment
[a1, b1] pass through the point hn and are closest to it with respect to the
Hausdor� metric. This means that all the bodies B ∈ Vn have at least n
common diameters: [a1, b1] and the diameters [ai, bi]passing under the angle
ϕi to [a1, b1] at hi, i = 2, . . . , n. From the construction it follows that the

set V =
∞⋂

n=1

Vn is a singleton: V = {B(A)} and the body of constant width

B(A) ∈ cw(U) continuously depends on the convex body A.
Corollary 4. The hyperspace cw(U) is an absolute retract.



Hyperspace of compact bodies of constant width on sphere 317

Using Toru�nczyk's Characterization Theorem we conclude that the hy-
perspace cwRn is a Q-manifold. This �nishes the proof of Theorem 1.

5. REMARKS AND OPEN QUESTIONS
Note that our methods work only in dimension 2. It is a natural to ask
whether a counterpart of the main result is valid for the spheres of higher
dimension.

Montejano [6] proved that the hyperspace cc(U), where U is an open
subset of Rn, n ≥ 2, is homeomorphic to U ×Q× [0, 1).

Question. Is the hyperspace cw(V ), where V is an open subset of a
hemisphere, homeomorphic to U ×Q× [0, 1)?
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ÃIÏÅÐÏÐÎÑÒIÐ ÊÎÌÏÀÊÒÍÈÕ ÒIË ÑÒÀËÎ� ØÈÐÈÍÈ
ÍÀ ÑÔÅÐI

Ëiäiÿ ÁÀÇÈËÅÂÈ×

Íàöiîíàëüíèé óíiâåðñèòåò ½Ëüâiâñüêà ïîëiòåõíiêà�,
âóë. Ñ.Áàíäåðè, 12, Ëüâiâ 79013, Óêðà¨íà

Äîñëiäæåíî ãiïåðïðîñòið êîìïàêòíèõ òië ñòàëî¨ øèðèíè ó äâîâèìið-
íèõ ñôåðàõ. Äîâåäåíî, ùî öåé ãiïåðïðîñòið ¹ ìíîãîâèäîì, ìîäåëüîâàíèì
íàä ãiëüáåðòîâèì êóáîì (Q-ìíîãîâèäîì).




