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One of the known generalizations of the chaotic representation property (CRP) for a Lévy process

is based on orthogonalization of continuous monomials in the space (L2) of square integrable random

variables. Using this generalization of the CRP, we introduce riggings of (L2) by spaces of test and

(regular and nonregular) generalized functions, construct extended Skorohod stochastic integrals

with respect to a Lévy process as linear continuous operators on the mentioned spaces of generalized

functions, and establish some properties of these integrals.

Ì.Î. Êà÷àíîâñüêèé. Ðîçøèðåíi ñòîõàñòè÷íi iíòåãðàëè çà ïðîöåñîì Ëåâi íà ïðîñòîðàõ óçà-

ãàëüíåíèõ ôóíêöié // Ìàò. âiñíèê ÍÒØ. � 2013. � Ò.10. � C. 169�188.

Îäíå ç âiäîìèõ óçàãàëüíåíü âëàñòèâîñòi õàîòè÷íîãî ðîçêëàäó (ÂÕÐ) äëÿ ïðîöåñó Ëåâi áà-

çó¹òüñÿ íà îðòîãîíàëiçàöi¨ íåïåðåðâíèõ ìîíîìiâ ó ïðîñòîði (L2) êâàäðàòè÷íî iíòåãðîâíèõ âè-

ïàäêîâèõ âåëè÷èí. Âèêîðèñòîâóþ÷è öå óçàãàëüíåííÿ ÂÕÐ, ìè ââîäèìî îñíàùåííÿ (L2) ïðî-

ñòîðàìè îñíîâíèõ òà (ðåãóëÿðíèõ i íåðåãóëÿðíèõ) óçàãàëüíåíèõ ôóíêöié, áóäó¹ìî ðîçøèðåíi

ñòîõàñòè÷íi iíòåãðàëè Ñêîðîõîäà çà ïðîöåñîì Ëåâi ÿê ëiíiéíi íåïåðåðâíi îïåðàòîðè íà çãàäàíèõ

ïðîñòîðàõ óçàãàëüíåíèõ ôóíêöié òà âñòàíîâëþ¹ìî äåÿêi âëàñòèâîñòi öèõ iíòåãðàëiâ.

Introduction

Let L = (Lt)t∈[0,+∞) be a L�evy process, i.e., a random process on [0,+∞) with stationary

independent increments and such that L0 = 0 (see, e.g., [5, 25, 26] for detailed information

on L�evy processes). In particular cases, when L is a Wiener or Poisson process, any square

integrable random variable can be decomposed into a series of repeated stochastic integrals
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of nonrandom functions with respect to L. This property of L is called the chaotic represen-

tation property (CRP), see, e.g., [22] for more information. The CRP plays a very important

role in the stochastic analysis (in particular, it can be used to construct extended stochastic

integrals, see, e.g., [14, 31, 13]), but, unfortunately, for a general L�evy process this property

does not hold (e.g., [29]).

There are di�erent generalizations of the CRP for L�evy processes. In particular, under

It�o's approach [12] one decomposes a L�evy process L into the sum of a Gaussian process

and a stochastic integral with respect to a Poisson random measure, and then uses the CRP

for both terms in order to obtain a generalized CRP for L. Nualart-Schoutens' approach

[23] (see also [27]) consists in decomposition of a square integrable random variable into

a series of repeated stochastic integrals of nonrandom functions with respect to the so-

called orthogonalized centered power jump processes; these processes are constructed using

a c�adl�ag version of L (i.e., a random process which is stochastically equivalent to L and

has right continuous trajectories with �nite left limits). Lytvynov's approach [21] is based

on orthogonalization of continuous monomials in the space of square integrable random

variables.

The interconnection between the above-mentioned generalizations of the CRP is described

in, e.g., [21, 2, 28, 16]; one more example of a generalized CRP is given in [8, 7].

Let from now on L be a L�evy process without Gaussian part and drift (it is comparatively

easy to study such processes from technical point of view). In order to construct an extended

stochastic integral with respect to L, one can take any generalization of the CRP mentioned

above. Namely, in the case of �It�o's CRP� the construction of this integral is analogous to

the corresponding construction in the Poisson case, cf., e.g., [8] and [13]. In the case of

�Nualart�Schoutens' CRP� one can use term by term integration of a Nualart�Schoutens

decomposition of an integrand with respect to a random measure corresponding to L ([16]).

In the case of �Lytvynov's CRP� one can construct the extended stochastic integral using

a �special symmetrization� for kernels from the Lytvynov decomposition of an integrand

[16] (see also [15, 18]), or as the operator adjoint to the Hida stochastic derivative. The

reader can �nd more details on extended stochastic integrals with respect to L�evy processes

in, e.g., [3, 20, 8, 6, 10, 24, 7, 16]; for a general background on stochastic integration on

in�nite-dimensional spaces see, e.g., [1, 9].

In the paper [16] the extended Skorohod stochastic integral with respect to a L�evy process,

and the Hida stochastic derivative, in terms of the Lytvynov's generalization of the CRP,

on the space of square integrable random variables were constructed; some properties of

these operators were established; and it was shown that the extended stochastic integrals

constructed with the use of three above-mentioned generalizations of the CRP coincide. But

when we consider the stochastic integral as an operator on the space of square integrable

random variables, then this operator is unbounded and, moreover, its domain depends on the

interval of integration. This drawback essentially restricts an area of possible applications.

Therefore, an important problem is to modify the de�nition of the extended stochastic

integral in order to get a linear bounded (i.e., continuous) operator. A possible solution

of this problem�to de�ne the stochastic integrals as linear continuous operators acting on

spaces of generalized functions (in the simplest case one can de�ne the integral as an operator
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acting from the space of square integrable random variables to a space of regular generalized

functions, see [17]). So, the aims of the present paper are to introduce riggings of the space of

square integrable random variables by spaces of test and (regular and nonregular) generalized

functions; to de�ne the extended Skorohod stochastic integrals with respect to a L�evy process

in terms of Lytvynov's generalization of the CRP as linear continuous operators on spaces

of these riggings; and to describe some properties of these operators.

The paper is organized in the following manner. In the �rst section we introduce a L�evy

process L and construct a convenient for our considerations probability triplet connected

with L; then, following [16], we describe in detail Lytvynov's generalization of the CRP, the

extended stochastic integral with respect to L, and the Hida stochastic derivative, on the

space of square integrable random variables. In the second section we introduce riggings of

the space of square integrable random variables by spaces of test and (regular and nonregular)

generalized functions, and construct natural orthogonal bases in these spaces (we need these

bases in order to de�ne stochastic integrals). In the third section we introduce and study

extended stochastic integrals on spaces of generalized functions.

1. Preliminaries

1.1. L�evy processes

Denote R+ := [0,+∞). In this paper we deal with a real-valued locally square integrable

L�evy process L = (Lt)t∈R+ (a random process on R+ with stationary independent incre-

ments and such that L0 = 0) without Gaussian part and drift. By the L�evy�Khintchine

formula such a process can be represented in the form (e.g., [8]) Lt =
∫ t
0

∫
R xÑ(du, dx),

where Ñ(du, dx, ·) is the compensated Poisson random measure of L, and the characteristic

function of L is

E[eiuLt ] = exp
[
t

∫
R
(eiux − 1− iux)ν(dx)

]
, (1)

where ν is the L�evy measure of L, which is a measure on (R,B(R)); here and below B denotes

the Borel σ-algebra and E denotes the expectation. We assume that ν is a Radon measure

whose support contains an in�nite number of points, ν({0}) = 0, there exists ε > 0 such that∫
R
x2eε|x|ν(dx) <∞,

and ∫
R
x2ν(dx) = 1. (2)

Let us de�ne a measure of the white noise of L. Let D denote the set of all real-valued

in�nite-di�erentiable functions on R+ with compact supports. As is well known, D can be

endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [4];

see also Subsection 2.2). Let D′ be the set of linear continuous functionals on D. For ω ∈ D′
and ϕ ∈ D denote ω(ϕ) by 〈ω, ϕ〉; note that one can understand 〈·, ·〉 as the dual pairing

generated by the scalar product in the space L2(R+) of (classes of) square integrable with

respect to the Lebesgue measure real-valued functions on R+. The notation 〈·, ·〉 will be
preserved for dual pairings in tensor powers of spaces.
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De�nition 1.1. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical

σ-algebra, with the Fourier transform∫
D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫
R+×R

(eiϕ(u)x − 1− iϕ(u)x)duν(dx)
]
, ϕ ∈ D, (3)

is called the L�evy white noise measure.

The existence of µ follows from the Bochner�Minlos theorem (e.g., [11]). Below we will

assume that the σ-algebra C(D′) is complete with respect to µ, i.e., C(D′) contains all subsets
of all measurable sets O such that µ(O) = 0.

Denote (L2) := L2(D′, C(D′), µ) the space of (classes of) real-valued functions on D′ that
are square integrable with respect to µ; let also H := L2(R+). Substituting in (3) ϕ = tψ,

t ∈ R, ψ ∈ D, and using the Taylor decomposition in t and (2), one can show that∫
D′
〈ω, ψ〉2µ(dω) =

∫
R+

(
ψ(u)

)2
du (4)

(this statement follows also from the results of [21] and [8]). Let f ∈ H and D 3 ϕk → f in

H as k → ∞. It follows from (4) that {〈◦, ϕk〉}k≥1 is a Cauchy sequence in (L2), therefore

one can de�ne 〈◦, f〉 := limk→∞〈◦, ϕk〉 ∈ (L2) (the limit in the topology of (L2)). It is easy

to show (by the method of �mixed sequences�) that 〈◦, f〉 does not depend on the choice of

an approximating sequence for f and therefore is well de�ned in (L2).

Let us consider 〈◦, 1[0,t)〉 ∈ (L2), t ∈ R+ (here and below 1A denotes the indicator of a

set A). It follows from (1) and (3) that
(
〈◦, 1[0,t)〉

)
t∈R+

can be identi�ed with a L�evy process

on the probability space (D′, C(D′), µ), i.e., one can write Lt = 〈◦, 1[0,t)〉 ∈ (L2).

1.2. Lytvynov's generalization of the CRP

Denote by ⊗̂ a symmetric tensor product. Let P ≡ P(D′) be the set of continuous polyno-
mials on D′, i.e., elements of P have the form

f(ω) =

Nf∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, Nf ∈ Z+, f
(n) ∈ D⊗̂n, f (Nf ) 6= 0,

here Nf is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0 := R. Since the

Laplace transform of the L�evy white noise measure µ is holomorphic at zero (this follows

from (3) and properties of the measure ν, see also [21]), P is a dense set in (L2) ([30]).

Denote by Pn the set of continuous polynomials of power ≤ n, by Pn the closure of Pn in

(L2). Let for n ∈ N Pn := Pn 	Pn−1 (the orthogonal complement in (L2)), P0 := P0. It is

clear that

(L2) =
∞⊕
n=0

Pn.

Let f (n) ∈ D⊗̂n, n ∈ Z+. Denote by :〈◦⊗n, f (n)〉 : the orthogonal projection of a monomial

〈◦⊗n, f (n)〉 onto Pn. Let us de�ne the scalar products 〈·, ·〉ext on D⊗̂n, n ∈ Z+, by setting for

f (n), g(n) ∈ D⊗̂n

〈f (n), g(n)〉ext :=
1

n!

∫
D′

:〈ω⊗n, f (n)〉 ::〈ω⊗n, g(n)〉 :µ(dω),
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and let | · |ext be the corresponding norms, i.e., |f (n)|ext =
√
〈f (n), f (n)〉ext. Denote by H(n)

ext,

n ∈ Z+, the closures of D⊗̂n with respect to the norms | · |ext. For f (n) ∈ H(n)
ext de�ne a Wick

monomial :〈◦⊗n, f (n)〉 : def
= (L2) − limk→∞ :〈◦⊗n, f (n)

k 〉 :, where D⊗̂n 3 f
(n)
k → f (n) as k → ∞

in H(n)
ext (well-posedness of this de�nition can be proved by the method of �mixed sequences�).

Since, as is easy to see, for each n ∈ Z+ the set {:〈◦⊗n, f (n)〉 :, f (n) ∈ D⊗̂n} is dense in Pn,

the following statement is ful�lled.

Theorem 1.2. Let F ∈ (L2). Then there exists a unique sequence of kernels f (n) ∈ H(n)
ext,

n ∈ Z+, such that

F =
∞∑
n=0

:〈◦⊗n, f (n)〉 : (5)

and

‖F‖2(L2) =

∫
D′
|F (ω)|2µ(dω) = E|F |2 =

∞∑
n=0

n!|f (n)|2ext. (6)

Vice versa, any series (5) with �nite norm (6) is an element of (L2).

Note that for F,G ∈ (L2) the scalar product has the form

(F,G)(L2) =

∫
D′
F (ω)G(ω)µ(dω) = E[FG] =

∞∑
n=0

n!〈f (n), g(n)〉ext,

where f (n), g(n) ∈ H(n)
ext are the kernels from decompositions (5) for F and G respectively. In

particular, for f (n) ∈ H(n)
ext and g

(m) ∈ H(m)
ext , n,m ∈ Z+,(

:〈◦⊗n, f (n)〉 :, :〈◦⊗m, g(m)〉 :
)
(L2)

=

∫
D′

:〈ω⊗n, f (n)〉 ::〈ω⊗m, g(m)〉 :µ(dω)

= E
[
:〈◦⊗n, f (n)〉 ::〈◦⊗m, g(m)〉 :

]
= δn,mn!〈f (n), g(n)〉ext.

Remark 1.3. It was shown in [21] that in the space (L2) :〈◦⊗0, f (0)〉 : = 〈◦⊗0, f (0)〉 = f (0) and

:〈◦, f (1)〉 : = 〈◦, f (1)〉. But for n > 1 :〈◦⊗n, f (n)〉 : is not a continuous polynomial, generally

speaking. Moreover, in this case the elements :〈◦⊗n, f (n)〉 : are continuous polynomials (and

even generalized Appell polynomials, or Schefer polynomials in another terminology) if and

only if our L�evy process L belongs to the so-called Meixner class of random processes, see

[21] for details.

In order to work with spaces H(n)
ext, it is necessary to know the explicit formulas for the

scalar products 〈·, ·〉ext. Let us write out these formulas. Denote by ‖ · ‖ν the norm in the

space L2(R, ν) of (classes of) real-valued functions on R that are square integrable with

respect to ν. Let

pn(x) := xn + an,n−1x
n−1 + · · ·+ an,1x, an,j ∈ R, j ∈ {1, . . . , n− 1}, n ∈ N, (7)

be polynomials orthogonal in L2(R, ν), i.e., for natural numbers n,m such that n 6= m,∫
R pn(x)pm(x)ν(dx) = 0.
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Proposition 1.4. ([21]) For f (n), g(n) ∈ D⊗̂n, n ∈ N, we have

〈f (n), g(n)〉ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!

s1! · · · sk!

(‖pl1‖ν
l1!

)2s1
· · ·
(‖plk‖ν

lk!

)2sk
×
∫
Rs1+···+sk+

f (n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk , . . . , us1+···+sk︸ ︷︷ ︸
lk

)

×g(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk , . . . , us1+···+sk︸ ︷︷ ︸
lk

)du1 · · · dus1+···+sk .

(8)

In particular, for n = 1 〈f (1), g(1)〉ext = 〈f (1), g(1)〉; if n = 2 then 〈f (2), g(2)〉ext = 〈f (2), g(2)〉+
‖p2‖2ν

2

∫
R+
f (2)(u, u)g(2)(u, u)du, etc.

As is easy to see, formulas (8) hold true for f (n), g(n) ∈ H(n)
ext.

It follows from (8) that H(1)
ext = H ≡ L2(R+): by (7) p1(x) = x and therefore by (2)

‖p1‖ν = 1; and for n ∈ N\{1} one can identify H⊗̂n with the proper subspace of H(n)
ext

that consists of "vanishing on diagonals" elements (i.e., f (n)(u1, . . . , un) = 0 if there exist

k, j ∈ {1, . . . , n} such that k 6= j but uk = uj). In this sense the space H(n)
ext is an extension

of H⊗̂n (this explains why we use the subscript ext in the designations H(n)
ext, 〈·, ·〉ext and

| · |ext).

1.3. An extended stochastic integral on the space of square integrable random

variables

Let F ∈ (L2) ⊗ H. It follows from representation (5) for elements of (L2) that F can be

presented in the form

F (·) =
∞∑
n=0

:〈◦⊗n, f (n)
· 〉 :, f (n)

· ∈ H
(n)
ext ⊗H. (9)

Let us describe the construction of an extended stochastic integral that is based on this

decomposition and is correlated with the structure of the spaces H(n)
ext. Note that in the case

when L is a process of Meixner type (e.g., [21]), such an integral is constructed and studied

in [15].

Let f
(n)
· ∈ H(n)

ext⊗H, n ∈ N. We select a representative (a function) ḟ
(n)
· ∈ f (n)

· such that

ḟ (n)
u (u1, . . . , un) = 0 if for some k ∈ {1, . . . , n}, u = uk. (10)

Accept by default that t1, t2 ∈ [0,+∞], t1 < t2. Let f̃
(n)
[t1,t2)

be the symmetrization of

ḟ
(n)
· 1[t1,t2)(·) by n + 1 variables. De�ne f̂

(n)
[t1,t2)

∈ H(n+1)
ext as the equivalence class in H(n+1)

ext

generated by f̃
(n)
[t1,t2)

. The next statement is a trivial modi�cation of the corresponding result

from [16].

Lemma 1.5. For each f
(n)
· ∈ H(n)

ext ⊗H, n ∈ N, the element f̂
(n)
[t1,t2)

∈ H(n+1)
ext is well de�ned

(in particular, f̂
(n)
[t1,t2)

does not depend on the choice of a representative ḟ
(n)
· ∈ f (n)

· satisfying

(10)) and

|f̂ (n)
[t1,t2)
|ext ≤ |f (n)

· 1[t1,t2)(·)|H(n)
ext⊗H

≤ |f (n)
· |H(n)

ext⊗H
. (11)
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De�nition 1.6. For F ∈ (L2)⊗H, t1, t2 ∈ [0,+∞], t1 < t2, we de�ne an extended stochastic

integral
∫ t2
t1
F (u)d̂Lu ∈ (L2) by setting

∫ t2

t1

F (u)d̂Lu :=
∞∑
n=0

:〈◦⊗n+1, f̂
(n)
[t1,t2)
〉 :, (12)

where f̂
(0)
[t1,t2)

:= f
(0)
· 1[t1,t2)(·) ∈ H = H(1)

ext, and f̂
(n)
[t1,t2)

∈ H(n+1)
ext , n ∈ N, are constructed by the

kernels f
(n)
· ∈ H(n)

ext ⊗H from decomposition (9) for F , if the series in the right hand side of

(12) converges in (L2).

The domain of this integral, i.e., of the operator∫ t2

t1

◦(u)d̂Lu : (L2)⊗H → (L2), (13)

consists of F ∈ (L2)⊗H such that (see (6))

∥∥∥∫ t2

t1

F (u)d̂Lu

∥∥∥2
(L2)

=
∞∑
n=0

(n+ 1)!|f̂ (n)
[t1,t2)
|2ext <∞. (14)

Theorem 1.7. ([16]) Let F ∈ (L2)⊗H be integrable by It�o (i.e., F is adapted with respect

to the �ow of σ-algebras generated by the L�evy process L). Then for any t1, t2 ∈ [0,+∞],

t1 < t2, F is integrable in the extended sense and∫ t2

t1

F (u)d̂Lu =

∫ t2

t1

F (u)dLu,

where
∫ t2
t1
F (u)dLu is the It�o stochastic integral.

1.4. A Hida stochastic derivative and its interconnection with the extended

stochastic integral

In order to de�ne a stochastic derivative on (L2) we need some preparation. Let g(n) ∈ H(n)
ext,

n ∈ N, ġ(n) ∈ g(n) be a representative of g(n). We consider ġ(n)(·), i.e., separate one argument

of g(n), and de�ne g(n)(·) ∈ H(n−1)
ext ⊗H as the equivalence class in H(n−1)

ext ⊗H generated by

ġ(n)(·).

Lemma 1.8. ([16]) For each g(n) ∈ H(n)
ext, n ∈ N, the element g(n)(·) ∈ H(n−1)

ext ⊗ H is well

de�ned (in particular, g(n)(·) does not depend on the choice of a representative ġ(n) ∈ g(n))
and

|g(n)(·)|H(n−1)
ext ⊗H ≤ |g

(n)|ext. (15)

Remark 1.9. Note that, in spite of estimate (15), the space H(n)
ext, n ∈ N\{1}, can not be

considered as a subspace of H(n−1)
ext ⊗ H because di�erent elements of H(n)

ext can coincide as

elements of H(n−1)
ext ⊗H.
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De�nition 1.10. Let t1, t2 ∈ [0,+∞], t1 < t2. For G ∈ (L2) we de�ne a Hida stochastic

derivative 1[t1,t2)(·)∂·G ∈ (L2)⊗H by setting

1[t1,t2)(·)∂·G :=
∞∑
n=0

(n+ 1):〈◦⊗n, g(n+1)(·)1[t1,t2)(·)〉 :, (16)

where g(n+1) ∈ H(n+1)
ext , n ∈ Z+, are the kernels from decomposition (5) for G, considered as

elements of H(n)
ext ⊗H, if the series in the right hand side of (16) converges in (L2)⊗H.

The domain of this derivative, i.e., of the operator

1[t1,t2)(·)∂· : (L2)→ (L2)⊗H, (17)

consists of G ∈ (L2) such that

‖1[t1,t2)(·)∂·G‖2(L2)⊗H =
∞∑
n=0

(n+ 1)!(n+ 1)|g(n+1)(·)1[t1,t2)(·)|2H(n)
ext⊗H

<∞.

Theorem 1.11. ([16]) For arbitrary t1, t2 ∈ [0,+∞], t1 < t2, extended stochastic integral

(13) and Hida stochastic derivative (17) are mutually adjoint:∫ t2

t1

◦(u)d̂Lu = (1[t1,t2)(·)∂·)∗◦, 1[t1,t2)(·)∂· =
(∫ t2

t1

◦d̂L
)∗
·
. (18)

In particular, integral (13) and derivative (17) are closed operators.

Note that equalities (18) can be used as alternative de�nitions of the extended stochastic

integral and the Hida stochastic derivative.

2. Spaces of test and generalized functions

2.1. A regular rigging of (L2)

Denote PW :=
{
f =

∑Nf
n=0 :〈◦⊗n, f (n)〉 :, f (n) ∈ D⊗̂n, Nf ∈ Z+

}
⊂ (L2). Accept by default

that q ∈ Z+, β ∈ [0, 1], and de�ne scalar products (·, ·)q,β on PW by setting for

f =

Nf∑
n=0

:〈◦⊗n, f (n)〉 :, g =
Ng∑
n=0

:〈◦⊗n, g(n)〉 : ∈ PW (19)

(f, g)q,β :=

min(Nf ,Ng)∑
n=0

(n!)1+β2qn〈f (n), g(n)〉ext.

Let ‖ · ‖q,β be the corresponding norms, i.e., ‖f‖q,β =
√
(f, f)q,β.

De�nition 2.1. We de�ne parametrized Kondratiev-type spaces of test functions (L2)βq as

closures of PW with respect to the norms ‖ · ‖q,β; and set (L2)β := pr limq∈Z+
(L2)βq (the

projective limit of spaces).
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As is easy to see, f ∈ (L2)βq if and only if f can be presented in form (5) with f (n) ∈ H(n)
ext

and

‖f‖2q,β := ‖f‖2
(L2)βq

=
∞∑
n=0

(n!)1+β2qn|f (n)|2ext <∞; (20)

and for f, g ∈ (L2)βq

(f, g)(L2)βq
=
∞∑
n=0

(n!)1+β2qn〈f (n), g(n)〉ext,

where f (n), g(n) ∈ H(n)
ext are the kernels from decompositions (5) for f and g correspondingly.

Further, f ∈ (L2)β if and only if f can be presented in form (5) and norm (20) is �nite for

each q ∈ Z+.

Proposition 2.2. For any q ∈ Z+ and β ∈ [0, 1] the space (L2)βq is densely and continuously

embedded into (L2).

Proof. Let q ∈ Z+, β ∈ [0, 1] and f ∈ (L2)βq . It is obvious that ‖f‖q,β ≥ ‖f‖(L2). Further, if

‖f‖q,β 6= 0 then there exists at least one non-zero f (n) ∈ H(n)
ext from decomposition (5) for f ,

therefore ‖f‖(L2) 6= 0. Hence (L2)βq is continuously embedded into (L2). The density of this

embedding follows from the fact that PW is a dense set in (L2).

In view of this proposition, one can consider a chain

(L2)−β ⊃ (L2)−β−q ⊃ (L2) ⊃ (L2)βq ⊃ (L2)β, (21)

where (L2)−β−q , (L
2)−β = ind limq∈Z+(L

2)−β−q (the inductive limit of spaces) are the spaces dual

of (L2)βq , (L
2)β correspondingly with respect to (L2).

De�nition 2.3. The spaces (L2)−β−q , (L
2)−β are called parametrized Kondratiev-type spaces

of regular generalized functions.

The next statement follows from the de�nition of the spaces (L2)−β−q and the general

duality theory.

Proposition 2.4. 1) Any regular generalized function F ∈ (L2)−β−q can be presented as a

formal series

F =
∞∑
m=0

:〈◦⊗m, F (m)〉 :, F (m) ∈ H(m)
ext , (22)

that converges in (L2)−β−q , i.e.,

‖F‖2−q,−β := ‖F‖2
(L2)−β−q

=
∞∑
m=0

(m!)1−β2−qm|F (m)|2ext <∞; (23)

and, vice versa, any formal series (22) with �nite norm (23) is a regular generalized function

from (L2)−β−q ;
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2) for F,G ∈ (L2)−β−q the scalar product has the form

(F,G)(L2)−β−q
=

∞∑
m=0

(m!)1−β2−qm〈F (m), G(m)〉ext,

where F (m), G(m) ∈ H(m)
ext are the kernels from decompositions (22) for F and G respectively;

3) the dual pairing between F ∈ (L2)−β−q and f ∈ (L2)βq that is generated by the scalar

product in (L2), has a form

〈〈F, f〉〉 =
∞∑
n=0

n!〈F (n), f (n)〉ext,

where F (n), f (n) ∈ H(n)
ext are the kernels from decompositions (22) and (5) for F and f

respectively.

Corollary 2.5. F ∈ (L2)−β if and only if F can be presented in form (22) and norm (23) is

�nite for some q ∈ Z+.

Remark 2.6. We use the term "regular generalized functions" for elements of (L2)−β−q and

(L2)−β because the kernels from decompositions (22) of these elements and the kernels from

decompositions (5) of test functions belong to the same spaces.

2.2. A nonregular rigging of (L2)

Denote by T the set of indexes τ = (τ1, τ2), where τ1 ∈ N, τ2 is an in�nite di�erentiable

function on R+ such that for all u ∈ R+ τ2(u) ≥ 1. Let Hτ be the Sobolev space on R+ of

order τ1 weighted by the function τ2, i.e., the scalar product in Hτ is given by the formula

(ϕ, ψ)Hτ =

∫
R+

(
ϕ(u)ψ(u) +

τ1∑
k=1

ϕ(k)(u)ψ(k)(u)
)
τ2(u)du,

here ϕ(k)(·) and ψ(k)(·) are derivatives of order k of functions ϕ and ψ correspondingly.

Denote the norms in Hτ and its tensor powers by | · |τ , i.e., for ϕn ∈ H⊗̂nτ , n ∈ N,
|ϕn|τ =

√
(ϕn, ϕn)H⊗̂nτ

. Note that D = pr limτ∈T Hτ and for each τ ∈ T Hτ is densely

and continuously embedded into H ≡ L2(R+) (cf. [4]), therefore one can consider the rig-

ging

D′ ⊃ H−τ ⊃ H ⊃ Hτ ⊃ D,

where H−τ , τ ∈ T , are the spaces dual of Hτ with respect to H. Denote the norms in H⊗̂n−τ ,
n ∈ N, by | · |−τ .

Accept by default that q ∈ Z+, τ ∈ T , and de�ne scalar products (·, ·)τ,q on PW (see

Subsection 2.1) by setting for f, g ∈ PW of form (19)

(f, g)τ,q :=

min(Nf ,Ng)∑
n=0

(n!)22qn(f (n), g(n))H⊗̂nτ
.

Let ‖ · ‖τ,q be the corresponding norms, i.e., ‖f‖τ,q =
√

(f, f)τ,q.
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De�nition 2.7. We de�ne Kondratiev spaces of test functions (Hτ )q as closures of PW with

respect to the norms ‖ · ‖τ,q; and set (Hτ ) := pr limq∈Z+
(Hτ )q, (D) := pr limq∈Z+,τ∈T (Hτ )q.

As is easy to see, f ∈ (Hτ )q if and only if f can be presented in the form

f =
∞∑
n=0

:〈◦⊗n, f (n)〉 :, f (n) ∈ H⊗̂nτ , (24)

with

‖f‖2τ,q := ‖f‖2(Hτ )q =
∞∑
n=0

(n!)22qn|f (n)|2τ <∞; (25)

and for f, g ∈ (Hτ )q

(f, g)(Hτ )q =
∞∑
n=0

(n!)22qn(f (n), g(n))H⊗̂nτ
,

where f (n), g(n) ∈ H⊗̂nτ are the kernels from decompositions (24) for f and g correspondingly

(here for f (n) ∈ H⊗̂nτ :〈◦⊗n, f (n)〉 : is the projection of a monomial 〈◦⊗n, f (n)〉 onto Pn, see

Subsection 1.2). Further, f ∈ (Hτ ) (f ∈ (D)) if and only if f can be presented in form (24)

and norm (25) is �nite for each q ∈ Z+ (for each q ∈ Z+ and each τ ∈ T ).
In order to construct an analog of chain (21) with Kondratiev spaces of test functions,

we need some preparation. By analogy with [15] one can easily show that the L�evy white

noise measure µ is concentrated on H−τ̃ with some τ̃ ∈ T , i.e., µ(H−τ̃ ) = 1. Removing from

T the indexes τ such that µ is not concentrated on H−τ , we will assume, in what follows,

that for each τ ∈ T µ(H−τ ) = 1.

Lemma 2.8. There exists τ ′ ∈ T such that for each n ∈ N the space H⊗̂nτ ′ is densely and

continuously embedded into H(n)
ext. Moreover, for all f (n) ∈ H⊗̂nτ ′

|f (n)|2ext ≤ n!cn|f (n)|2τ ′ , (26)

where c > 0 is some constant.

Proof. At �rst we will show that there exists τ ′ ∈ T such that for all f (n) ∈ D⊗̂n estimate

(26) is valid. By analogy with, e.g., [19] one can prove that, since the Laplace transform of

the L�evy white noise measure µ is holomorphic at zero, there exist τ ′ ∈ T and ε > 0 such

that K(τ ′, ε) :=
∫
H−τ ′

e2ε|ω|−τ ′µ(dω) <∞. Further, it follows from the Taylor decomposition

of the exponential function that for arbitrary ω ∈ H−τ ′ and n ∈ Z+

|ω⊗n|−τ ′ = |ω|n−τ ′ ≤ n!
eε|ω|−τ ′

εn
,

therefore

‖| ◦⊗n |−τ ′‖2(L2) =

∫
H−τ ′
|ω⊗n|2−τ ′µ(dω) ≤

(n!)2

ε2n
K(τ ′, ε). (27)
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Let f (n) ∈ D⊗̂n. We have

n!|f (n)|2ext =
∫
D′
|:〈ω⊗n, f (n)〉 :|2µ(dω) ≤

∫
H−τ ′
|〈ω⊗n, f (n)〉|2µ(dω)

≤ |f (n)|2τ ′
∫
H−τ ′
|ω⊗n|2−τ ′µ(dω) ≤

(n!)2

ε2n
K(τ ′, ε)|f (n)|2τ ′ ,

whence estimate (26) for f (n) ∈ D⊗̂n follows.

In order to prove that H⊗̂nτ ′ is embedded into H(n)
ext it remains to show that if a sequence(

f
(n)
k

)∞
k=0
⊂ D⊗̂n is a Cauchy one in H⊗̂nτ ′ and simultaneously lim

k→∞
f
(n)
k = 0 in H(n)

ext then

lim
k→∞

f
(n)
k = 0 in H⊗̂nτ ′ (see, e.g., [4]). In fact, if

(
f
(n)
k

)∞
k=0

is such a sequence, then by the

inequality | · |H⊗̂n ≤ | · |H(n)
ext

(see (8)) lim
k→∞

f
(n)
k = 0 in H⊗̂n. But D⊗̂n ⊂ H⊗̂nτ ′ ⊂ H⊗̂n,

therefore lim
k→∞

f
(n)
k = 0 in H⊗̂nτ ′ . Estimate (26) for a general f (n) ∈ H⊗̂nτ ′ can be obtained by

the corresponding passage to the limit. Finally, the embedding of H⊗̂nτ ′ into H(n)
ext is dense

because D⊗̂n ⊂ H⊗̂nτ ′ and D⊗̂n is a dense set in H(n)
ext; and the continuity of this embedding

follows from (26).

Remark 2.9. It is not di�cult to see that if for some τ ∈ T Hτ is continuously embedded

into Hτ ′ then for each n ∈ N H⊗̂nτ is densely and continuously embedded into H(n)
ext, and there

exists c(τ) > 0 such that for all f (n) ∈ H⊗̂nτ

|f (n)|2ext ≤ n!c(τ)n|f (n)|2τ .

In what follows, it will be convenient to assume that the indexes τ such that Hτ is not

continuously embedded into Hτ ′, are removed from T .

Proposition 2.10. For each τ ∈ T there exists q0 = q0(τ) ∈ Z+ such that for each q ∈
Nq0 := {q0, q0 + 1, · · · } the space (Hτ )q is densely and continuously embedded into (L2).

Proof. Let τ, τ ′ ∈ T , where τ ′ is the parameter from Lemma 2.8. Since for any n ∈ N
| ◦ |H⊗̂n−τ ≤ c(τ)n| ◦ |H⊗̂n−τ ′

with some c(τ) > 0 (now H−τ ′ ⊆ H−τ due to our modi�cation of the

set T ), it follows from estimate (27) that there exist ε(τ) > 0 and K ∈ (0,+∞) such that

‖| ◦⊗n |−τ‖(L2) ≤
n!

ε(τ)n
K. (28)

Let f ∈ (Hτ )q. Using decomposition (24), estimate (28), and (25), we obtain

‖f‖(L2) ≤
∞∑
n=0

‖:〈◦⊗n, f (n)〉 :‖(L2) ≤
∞∑
n=0

‖〈◦⊗n, f (n)〉‖(L2)

≤
∞∑
n=0

‖| ◦⊗n |−τ‖(L2)|f (n)|τ ≤
∞∑
n=0

n!

ε(τ)n
K|f (n)|τ

≤

√√√√ ∞∑
n=0

(n!)22qn|f (n)|2τ

√√√√ ∞∑
n=0

K2

(2qε(τ)2)n
= ‖f‖τ,q

√√√√ ∞∑
n=0

K2

(2qε(τ)2)n
<∞,
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if q ∈ Nq0 , where q0 = q0(τ) is such that 2q0ε(τ)2 > 1. Further, let ‖f‖(L2) = 0. Then for

each n ∈ Z+ |f (n)|ext = 0, where f (n) ∈ H⊗̂nτ ⊂ H(n)
ext are the kernels from decomposition

(24) for f (see Lemma 2.8; by de�nition H⊗̂0τ = R), therefore |f (n)|τ = 0. But this means

that ‖f‖τ,q = 0, so, the continuous embedding of (Hτ )q into (L2) is proved. Finally, this

embedding is dense because PW is a dense set in (Hτ )q and in (L2).

In view of this proposition for τ ∈ T and q ≥ q0(τ) one can consider a chain

(D′) ⊃ (H−τ ) ⊃ (H−τ )−q ⊃ (L2) ⊃ (Hτ )q ⊃ (Hτ ) ⊃ (D),

where (H−τ )−q, (H−τ ) = ind limq∈Nq0 (H−τ )−q, (D
′) = ind limτ∈T (H−τ ) are the spaces dual

of (Hτ )q, (Hτ ), (D) correspondingly with respect to (L2).

De�nition 2.11. The spaces (H−τ )−q, (H−τ ), (D′) are called Kondratiev spaces of general-

ized functions.

Remark 2.12. Let q ∈ Z+, τ ∈ T and β ∈ [0, 1]. One can introduce on PW scalar products

(·, ·)τ,q,β by setting for f, g ∈ PW of form (19)

(f, g)τ,q,β :=

min(Nf ,Ng)∑
n=0

(n!)1+β2qn(f (n), g(n))H⊗̂nτ
,

and de�ne �parametrized Kondratiev spaces of test functions� (Hτ )
β
q as closures of PW with

respect to the norms generated by these scalar products. But (Hτ )
β
q 6⊂ (L2) if β < 1,

generally speaking, so, we can not consider (Hτ )
β
q with β < 1 as spaces of test functions.

Finally, we describe natural orthogonal bases in the spaces (H−τ )−q. Let us consider the
chains

D′(m) ⊃ H(m)
−τ ⊃ H

(m)
ext ⊃ H⊗̂mτ ⊃ D⊗̂m, (29)

m ∈ Z+ (for m = 0, D⊗̂0 = H⊗̂0τ = H(0)
ext = H(0)

−τ = D′(0) = R), where H(m)
−τ , D′

(m) =

ind limτ∈T H(m)
−τ are the spaces dual of H⊗̂mτ , D⊗̂m correspondingly with respect to H(m)

ext .

The next statement follows from the de�nition of the spaces (H−τ )−q and the general duality

theory (cf. [15]).

Proposition 2.13. There exists a system of generalized functions{
:〈◦⊗m, F (m)

ext 〉 : ∈ (H−τ )−q | F (m)
ext ∈ H

(m)
−τ , m ∈ Z+

}
such that

1) for F
(m)
ext ∈ H

(m)
ext ⊂ H

(m)
−τ :〈◦⊗m, F (m)

ext 〉 : is a Wick monomial de�ned in Subsection 1.2;

2) any generalized function F ∈ (H−τ )−q can be presented as a formal series

F =
∞∑
m=0

:〈◦⊗m, F (m)
ext 〉 :, F

(m)
ext ∈ H

(m)
−τ , (30)
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that converges in (H−τ )−q, i.e.,

‖F‖2−τ,−q := ‖F‖2(H−τ )−q =
∞∑
m=0

2−qm|F (m)
ext |2H(m)

−τ
<∞; (31)

and, vice versa, any formal series (30) with �nite norm (31) is a generalized function from

(H−τ )−q;
3) for F,G ∈ (H−τ )−q the scalar product has a form

(F,G)(H−τ )−q =
∞∑
m=0

2−qm(F
(m)
ext , G

(m)
ext )H(m)

−τ
,

where F
(m)
ext , G

(m)
ext ∈ H

(m)
−τ are the kernels from decompositions (30) for F and G respectively;

4) the dual pairing between F ∈ (H−τ )−q and f ∈ (Hτ )q that is generated by the scalar

product in (L2), has the form

〈〈F, f〉〉 =
∞∑
n=0

n!〈F (n)
ext , f

(n)〉ext, (32)

where F
(n)
ext ∈ H

(n)
−τ and f (n) ∈ H⊗̂nτ are the kernels from decompositions (30) and (24) for

F and f respectively, 〈·, ·〉ext is the dual pairing between elements of negative and positive

spaces from chain (29).

Corollary 2.14. F ∈ (H−τ ) (resp., F ∈ (D′)) if and only if F can be presented in form (30)

and norm (31) is �nite for some q ∈ Nq0(τ) (resp., for some τ ∈ T and some q ∈ Nq0(τ)).

3. Extended stochastic integrals on spaces of generalized func-

tions

As we saw in Subsection 1.3, one of the main drawbacks of extended stochastic integral

(13) consists in its unboundedness and, moreover, in dependence of its domain on t1, t2
(see (14)). This essentially restricts the area of possible applications. A possible solution of

this problem�to de�ne stochastic integrals as linear continuous operators acting on spaces of

generalized functions (in particular, from (L2)⊗H to a suitable space of generalized functions,

see [17]). In this section we introduce such integrals and study some of their properties.

3.1. Extended stochastic integrals on spaces of regular generalized functions

Let F ∈ (L2)−β−q ⊗H. It follows from representation (22) for elements of (L2)−β−q that F can

be presented in the form

F (·) =
∞∑
m=0

:〈◦⊗m, F (m)
· 〉 :, F (m)

· ∈ H(m)
ext ⊗H, (33)

with

‖F‖2
(L2)−β−q⊗H

=
∞∑
m=0

(m!)1−β2−qm|F (m)
· |2H(m)

ext ⊗H
<∞. (34)

It is natural to de�ne an extended stochastic integral on (L2)−β−q⊗H as a direct generalization

of integral (13). Namely, we accept the following de�nition.
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De�nition 3.1. For F ∈ (L2)−β−q ⊗ H, t1, t2 ∈ [0,+∞], t1 < t2, we de�ne an extended

stochastic integral
∫ t2
t1
F (u)d̂Lu ∈ (L2)−β−q−1 by setting∫ t2

t1

F (u)d̂Lu :=
∞∑
m=0

:〈◦⊗m+1, F̂
(m)
[t1,t2)
〉 :, (35)

where the kernels F̂
(m)
[t1,t2)

∈ H(m+1)
ext are constructed as in Subsection 1.3 by the kernels F

(m)
· ∈

H(m)
ext ⊗H from decomposition (33) for F .

Since (see (23), (11) and (34))∥∥∥∫ t2

t1

F (u)d̂Lu

∥∥∥2
−q−1,−β

=
∞∑
m=0

((m+ 1)!)1−β2−(q+1)(m+1)|F̂ (m)
[t1,t2)
|2ext

≤
∞∑
m=0

(m!)1−β2−qm|F (m)
· |2H(m)

ext ⊗H
[2−q−1−m(m+ 1)1−β] ≤ c‖F‖2

(L2)−β−q⊗H
,

(36)

where c := maxm∈Z+ [2
−q−1−m(m + 1)1−β], this de�nition is well posed and, moreover, the

extended stochastic integral∫ t2

t1

◦(u)d̂Lu : (L2)−β−q ⊗H → (L2)−β−q−1 (37)

is a linear continuous operator. It is clear also that integral (37) is an extension of integral

(13) (cf. (35) and (12)), and, in particular, is an extension of the It�o stochastic integral.

Note that in the case q = β = 0 (L2)−0−0 = (L2) and therefore integral (13) can be extended

to a linear continuous operator with values in (L2)−0−1 (such an extension was considered in

[17]). We remark also that integral (37) can be naturally extended to a linear continuous

operator acting from (L2)−β ⊗H to (L2)−β; and, as it follows from calculation (36), in the

case β = 1 the operator
∫ t2
t1
◦(u)d̂Lu : (L2)−1−q ⊗ H → (L2)−1−q, de�ned by (35), is a linear

continuous one.

Remark 3.2. Sometimes it can be convenient to consider the extended stochastic integral

given by (35) as an operator acting from (L2)−β−q ⊗ H to (L2)−β−q . In the case β < 1 this

operator will be unbounded, but closable: if we take the set of F ∈ (L2)−β−q ⊗ H such that∥∥ ∫ t2
t1
F (u)d̂Lu

∥∥
−q,−β <∞ as its domain, then

∫ t2
t1
◦(u)d̂Lu : (L2)−β−q ⊗H → (L2)−β−q is a closed

operator; this can be proved by analogy with the case q = β = 0, see [16].

It was proved in [16] that extended stochastic integral (13) is the adjoint operator to the

Hida stochastic derivative. Let us show that this property holds true for integral (37).

De�nition 3.3. Let t1, t2 ∈ [0,+∞], t1 < t2. For g ∈ (L2)βq+1 we de�ne a Hida stochastic

derivative 1[t1,t2)(·)∂·g ∈ (L2)βq ⊗H by setting

1[t1,t2)(·)∂·g :=
∞∑
n=0

(n+ 1):〈◦⊗n, g(n+1)(·)1[t1,t2)(·)〉 :, (38)

where g(n+1) ∈ H(n+1)
ext , n ∈ Z+, are the kernels from decomposition (5) for g, considered as

elements of H(n)
ext ⊗H (see Subsection 1.4).



184 N. A. Kachanovsky

Since (see (15) and (20))

‖1[t1,t2)(·)∂·g‖2(L2)βq⊗H
=
∞∑
n=0

(n!)1+β2qn(n+ 1)2|g(n+1)(·)1[t1,t2)(·)|2H(n)
ext⊗H

≤
∞∑
n=0

((n+ 1)!)1+β2(q+1)(n+1)|g(n+1)|2ext[(n+ 1)1−β2−q−1−n] ≤ c‖g‖2q+1,β,

(39)

where c := maxn∈Z+ [(n+1)1−β2−q−1−n], this de�nition is well posed and, moreover, the Hida

stochastic derivative

1[t1,t2)(·)∂· : (L2)βq+1 → (L2)βq ⊗H (40)

is a linear continuous operator. It is clear also that this derivative is a restriction of derivative

(17) onto (L2)βq+1. We note that the restriction of derivative (40) onto (L2)β can be considered

as a linear continuous operator 1[t1,t2)(·)∂· : (L2)β → (L2)β ⊗ H; and, as it follows from

calculation (39), in the case β = 1 the operator 1[t1,t2)(·)∂· : (L2)1q → (L2)1q ⊗H, de�ned by

(38), is a linear continuous one.

Remark 3.4. Sometimes it can be convenient to consider the Hida stochastic derivative

given by (38) as an operator acting from (L2)βq to (L2)βq ⊗ H. In the case β < 1 this

operator will be unbounded, but closable: if we take the set of g ∈ (L2)βq such that

‖1[t1,t2)(·)∂·g‖(L2)βq⊗H < ∞ as its domain, then 1[t1,t2)(·)∂· : (L2)βq → (L2)βq ⊗ H is a closed

operator; this can be proved by analogy with the case q = β = 0, see [16].

Theorem 3.5. For arbitrary t1, t2 ∈ [0,+∞], t1 < t2, extended stochastic integral (37) and

Hida stochastic derivative (40) are mutually adjoint operators.

Proof. By analogy with [16], Subsection 2.2, one can show that for F ∈ (L2)−β−q ⊗ H and

g ∈ (L2)βq+1

〈〈
∫ t2

t1

F (u)d̂Lu, g〉〉 =
(
F (·), 1[t1,t2)(·)∂·g

)
(L2)⊗H, (41)

where (·, ·)(L2)⊗H denotes the dual pairing generated by the scalar product in (L2)⊗H. Since
operators (37) and (40) are continuous ones, the result of the theorem follows from (41).

Remark 3.6. The result of this theorem holds true for the extended stochastic integral∫ t2
t1
◦(u)d̂Lu : (L2)−β ⊗H → (L2)−β and the Hida stochastic derivative 1[t1,t2)(·)∂· : (L2)β →

(L2)β ⊗ H; in the same way as for
∫ t2
t1
◦(u)d̂Lu : (L2)−β−q ⊗ H → (L2)−β−q and 1[t1,t2)(·)∂· :

(L2)βq → (L2)βq ⊗H (see Remarks 3.2 and 3.4), in the last case these (unbounded) operators

are closed. The proof is quite analogous to the corresponding proof in the case q = β = 0,

see Subsection 2.2 in [16]: it is necessary to use (41) and to verify that the domains of∫ t2
t1
◦(u)d̂Lu and (1[t1,t2)(·)∂·)∗◦ (correspondingly of 1[t1,t2)(·)∂· and

( ∫ t2
t1
◦d̂L

)∗
· ) coincide.

3.2. Extended stochastic integrals on spaces of nonregular generalized functions

Let F ∈ (H−τ )−q ⊗ H. It follows from representation (30) for elements of (H−τ )−q that F
can be represented in the form

F (·) =
∞∑
m=0

:〈◦⊗m, F (m)
ext,·〉 :, F

(m)
ext,· ∈ H

(m)
−τ ⊗H, (42)
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with

‖F‖2(H−τ )−q⊗H =
∞∑
m=0

2−qm|F (m)
ext,·|2H(m)

−τ ⊗H
<∞. (43)

In order to de�ne an extended stochastic integral on (H−τ )−q⊗H, we need some preparation.

Consider a family of chains

D′⊗̂m ⊃ H⊗̂m−τ ⊃ H⊗̂m ⊃ H⊗̂mτ ⊃ D⊗̂m, m ∈ N. (44)

Since the spaces of test functions in chains (44) and (29) coincide, there exists a family of

natural isomorphisms

Um : D′(m) → D′⊗̂m

such that for all F
(m)
ext ∈ D′

(m) and f (m) ∈ D⊗̂m

〈F (m)
ext , f

(m)〉ext = 〈UmF (m)
ext , f

(m)〉.

It is easy to see that the restrictions of Um onto H(m)
−τ are isometrical isomorphisms between

H(m)
−τ and H⊗̂m−τ .

De�nition 3.7. Let t1, t2 ∈ [0,+∞], t1 < t2, and F ∈ (H−τ )−q⊗H. We de�ne an extended

stochastic integral
∫ t2
t1
F (u)dLu ∈ (H−τ )−q by setting∫ t2

t1

F (u)dLu :=
∞∑
m=0

:〈◦⊗m+1, F̂
(m)
ext,[t1,t2)

〉 :, (45)

where

F̂
(m)
ext,[t1,t2)

:= U−1m+1{Pr[(Um ⊗ 1)F
(m)
ext,·1[t1,t2)(·)]} ∈ H

(m+1)
−τ , (46)

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m ∈ Z+

from H⊗̂m−τ ⊗H to H⊗̂m+1
−τ ), F

(m)
ext,· ∈ H

(m)
−τ ⊗H, m ∈ Z+, are the kernels from decomposition

(42) for F , U0 = 1 : R→ R.

Since

|F̂ (m)
ext,[t1,t2)

|H(m+1)
−τ

= |Pr[(Um ⊗ 1)F
(m)
ext,·1[t1,t2)(·)]|H⊗̂m+1

−τ

≤ |(Um ⊗ 1)F
(m)
ext,·|H⊗̂m−τ ⊗H = |F (m)

ext,·|H(m)
−τ ⊗H

and therefore (see (31) and (43))∥∥∥∫ t2

t1

F (u)dLu

∥∥∥2
−τ,−q

=
∞∑
m=0

2−q(m+1)|F̂ (m)
ext,[t1,t2)

|2
H(m+1)
−τ

≤ 2−q
∞∑
m=0

2−qm|F (m)
ext,·|2H(m)

−τ ⊗H
= 2−q‖F‖2(H−τ )−q⊗H,

this de�nition is correct and, moreover, the extended stochastic integral∫ t2

t1

◦(u)dLu : (H−τ )−q ⊗H → (H−τ )−q (47)

is a linear continuous operator.

In what follows, we will show that integral (47) is an extension of integral (13), but at �rst

let us establish an interconnection between integral (47) and the Hida stochastic derivative.
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De�nition 3.8. Let t1, t2 ∈ [0,+∞], t1 < t2. For g ∈ (Hτ )q we de�ne a Hida stochastic

derivative 1[t1,t2)(·)∂·g ∈ (Hτ )q ⊗H by formula (38), where g(n+1) ∈ H⊗̂n+1
τ , n ∈ Z+, are the

kernels from decomposition (24) for g, considered as elements of H⊗̂nτ ⊗H.

Since (see (25))

‖1[t1,t2)(·)∂·g‖2(Hτ )q⊗H =
∞∑
n=0

((n+ 1)!)22qn|g(n+1)(·)1[t1,t2)(·)|2H⊗̂nτ ⊗H

≤ 2−q
∞∑
n=0

((n+ 1)!)22q(n+1)|g(n+1)|2τ ≤ 2−q‖g‖2τ,q,

this de�nition is well posed and, moreover, the Hida stochastic derivative

1[t1,t2)(·)∂· : (Hτ )q → (Hτ )q ⊗H (48)

is a linear continuous operator. Moreover, as it follows from construction of the kernels

g(n+1)(·) ∈ H(n)
ext ⊗ H from (16) (see Subsection 1.4), this derivative is the restriction of

derivative (17) onto (Hτ )q. We also note that the restrictions of derivative (48) onto (Hτ )

and (D) are linear continuous operators 1[t1,t2)(·)∂· : (Hτ ) → (Hτ ) ⊗ H and 1[t1,t2)(·)∂· :
(D)→ (D)⊗H respectively.

Theorem 3.9. For arbitrary t1, t2 ∈ [0,+∞], t1 < t2, extended stochastic integral (47) and

Hida stochastic derivative (48) are mutually adjoint operators.

Proof. Using (45), (24), (32), (46), (38) and (42), for F ∈ (H−τ )−q ⊗ H and g ∈ (Hτ )q we

obtain

〈〈
∫ t2

t1

F (u)dLu, g〉〉 = 〈〈
∞∑
m=0

:〈◦⊗m+1, F̂
(m)
ext,[t1,t2)

〉 :,
∞∑
n=0

:〈◦⊗n, g(n)〉 :〉〉

=
∞∑
m=0

(m+ 1)!〈F̂ (m)
ext,[t1,t2)

, g(m+1)〉ext

=
∞∑
m=0

(m+ 1)!〈(Um ⊗ 1)F
(m)
ext,·1[t1,t2)(·), g(m+1)〉

=
∞∑
m=0

m!(m+ 1)(F
(m)
ext,·, g

(m+1)(·)1[t1,t2)(·))H(m)
ext ⊗H

=
( ∞∑
m=0

:〈◦⊗m, F (m)
ext,·〉 :,

∞∑
n=0

(n+ 1):〈◦⊗n, g(n+1)(·)1[t1,t2)(·)〉 :
)
(L2)⊗H

= (F (·), 1[t1,t2)(·)∂·g)(L2)⊗H.

Since operators (47) and (48) are continuous, the statement of the theorem follows from this

calculation.

Corollary 3.10. Extended stochastic integral (47) is an extension of integral (13).
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Proof. The result follows from the above theorem, (18) and the fact that derivative (48) is

the restriction of derivative (17) onto (Hτ )q.

Remark 3.11. The statements of Theorem 3.9 and its corollary hold true for
∫ t2
t1
◦(u)dLu :

(H−τ ) ⊗ H → (H−τ ) (correspondingly
∫ t2
t1
◦(u)dLu : (D′) ⊗ H → (D′)) and 1[t1,t2)(·)∂· :

(Hτ )→ (Hτ )⊗H (correspondingly 1[t1,t2)(·)∂· : (D)→ (D)⊗H).

Finally, as is easy to see now, if F ∈ (D′) ⊗ H ∩ (L2)−1 ⊗ H then
∫ t2
t1
F (u)dLu =∫ t2

t1
F (u)d̂Lu ∈ (D′) ∩ (L2)−1.

Stochastic derivatives on the spaces of generalized functions will be considered in another

paper.
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