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We study the pseudo-differential equation (Au)(x) = f(x), x ∈ D, in the Sobolev-Slobodetskii

spaces Hs(D), where A is a elliptic pseudo-differential operator, D is an m-dimensional piecewise

smooth manifold with boundary having singularity points. The singularity points of D are called the

points breaking smoothness property for the boundary ∂D. Using the wave factorization concept for

elliptic symbols, it is possible to describe solvability conditions for the equation with singularities

of the “cone” as well as “wedge” types. Most of author’s results on solvability were related to the

planar case. Here we consider an essentially multi-dimensional situation.
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Ìè âèâ÷à¹ìî ïñåâäîäèôåðåíöiàëüíå ðiâíÿííÿ (Au)(x) = f(x), x ∈ D, â ïðîñòîðàõ Ñîáîë¹âà-

Ñëîáîäåöüêîãî Hs(D), äå A � åëiïòè÷íèé ïñåâäîäèôåðåíöiàëüíèé îïåðàòîð, D � m-âèìiðíèé

êóñêîâî-ãëàäêèé ìíîãîâèä ç ìåæåþ, ùî ìiñòèòü ñèíãóëÿðíi òî÷êè. Ñèíãóëÿðíèìè ìè íàçè-

âà¹ìî òî÷êè ìíîãîâèäó D, â ÿêèõ íåìà¹ ãëàäêîñòi ìåæi. Çà äîïîìîãîþ ïîíÿòòÿ õâèëüîâî¨

ôàêòîðèçàöi¨ äëÿ åëiïòè÷íèõ ñèìâîëiâ âäàëîñÿ îïèñàòè óìîâè iñíóâàííÿ ðîçâ'ÿçêó äëÿ ðiâíÿíü

ç ñèíãóëÿðíîñòÿìè òèïó �êîíóñà� òà �ðåáðà�. Áiëüøiñòü ðåçóëüòàòiâ àâòîðà ùîäî ðîçâ'ÿçíîñòi

ñòîñóâàëèñÿ äâîâèìiðíîãî âèïàäêó. Òóò ìè ðîçãëÿäà¹ìî ñóòò¹âî áàãàòîâèìiðíèé âèïàäîê.

Introduction

Our main goal is to describe possible solvability conditions for the pseudo-di�erential

equation

(Au)(x) = f(x), x ∈ D,
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whereD is a manifold with boundary, A is a pseudo-di�erential operator with symbol A(x, ξ).

Such operators are de�ned locally by the formula

u(x) 7−→
∫
Rm

∫
Rm

A(x, ξ)u(y)e−iy·ξ dξdy (1)

in the case of a smooth compact manifold D, since �the freezing coe�cients principle� (or

�the local principle�) can be applied. For a manifold with smooth boundary we need a new

local formula for de�nition of A. In the inner points of D we use the formula (1), whereas

we need to introduce another formula in the boundary points:

u(x) 7−→
∫
Rm+

∫
Rm

A(x, ξ)u(y)e−iy·ξdξdy.

For invertibility of such an operator with symbol A(·, ξ) that does not depend on the

spatial variable x one can apply theory of the classical Riemann boundary problem for

upper and lower complex half-planes with a parameter ξ′. This approach was systematically

studied in [4]. But if the boundary ∂D has at least one conical point, this approach is not

e�ective.

The conical point at boundary is a point having a neighborhood, di�eomorphic to the

cone

Ca
+ = {(x1, . . . , xm) ∈ Rm : xm > a|x′|, x′ = (x1, . . . , xm−1)}, a > 0,

hence the local de�nition for a pseudo-di�erential operator near the conical point can be

given by

u(x) 7−→
∫
Ca+

∫
Rm

A(x, ξ)u(y)e−iy·ξdξdy. (2)

1. Spaces, operators, factorization

We consider the operator (1) in the Sobolev-Slobodetskii space Hs(Rm) with norm

‖u‖2s =
∫
Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ,

and introduce the following class of symbols non-depending on spatial variable x:

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2, ξ ∈ Rm, (3)

where c1, c2 are some positive constants. The number α ∈ R is called the order of the pseudo-

di�erential operator A. It is well-known that a pseudo-di�erential operator with symbol A(ξ)

satisfying (2) is a linear bounded operator acting from Hs(Rm) into Hs−α(Rm) [4].

We are interested in studying the invertibility of operator (2) in the corresponding

Sobolev-Slobodetskii spaces. By de�nition, the space Hs(Ca
+) consists of distributions from

Hs(Rm) with support in Ca
+. The norm in Hs(Ca

+) is induced by the Hs(Rm)-norm. Such

an operator is associated with the corresponding equation

(Au+)(x) = f(x), x ∈ Ca
+, (4)
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where the right-hand side f belongs to Hs−α
0 (Ca

+). Next, H
s
0(C

a
+) is the space of distributions

S ′(Ca
+), which admit a continuation on Hs(Rm). The norm in Hs

0(C
a
+) is de�ned by

‖f‖+s = inf ‖lf‖s,

the in�mum taken over all possible continuations l of f .

From now on, we assume that symbols A(ξ) satisfy the condition (3).

De�nition 1.1. We say that a symbol A(ξ) admits the wave factorization provided

A(ξ) = A6=(ξ)A=(ξ),

where the factors A6=(ξ), A=(ξ) satisfy the following conditions:

• A6=(ξ), A=(ξ) are de�ned everywhere, except for points of the set

{ξ ∈ Rm : |ξ′|2 = a2ξ2m};

• A6=(ξ), A=(ξ) admit analytical continuations into the radial tube domains T (
∗
Ca

+),

T (
∗
Ca
−) respectively, and these continuations satisfy the estimates

|A±16= (ξ + iτ)| ≤ c1(1 + |ξ|+ |τ |)±κ, |A±1= (ξ − iτ)| ≤ c2(1 + |ξ|+ |τ |)±(α−κ), τ ∈
∗
Ca

+ .

The number κ is called the index of wave factorization.

Here
∗
Ca

+ is the conjugate cone to Ca
+, and

∗
Ca
−= −

∗
Ca

+.

Example 1.2. Let

A = − ∂2

∂x21
− · · · − ∂2

∂x2m
+ k2, k ∈ R \ {0},

Then the symbol of this operator has form A(ξ) = ξ21 + ξ22 + · · · + ξ2m + k2, by properties

of the Fourier transform. The following equality is the wave factorization of the Helmholtz

operator:

ξ2m + |ξ′|2 + k2 =
(√

a2 + 1 ξm +
√
a2ξ2m − |ξ′|2 − k2

)(√
a2 + 1 ξm −

√
a2ξ2m − |ξ′|2 − k2

)
,

where the value
√
a2ξ2m − |ξ′|2 − k2 is treated as the boundary value

√
a2(ξm+i0)2−|ξ′|2−k2.

Remark 1.3. Two interesting applied problems from the di�raction and elasticity theory

can be solved by the wave factorization mentioned above [3, 5]. For these problems we have

the two-dimensional equation (4) with symbol

A(ξ1, ξ2) = (ξ21 + ξ22 − k2)±1/2.

The existence of the wave factorization permits to obtain a solution of certain analogue

of the multidimensional Riemann problem as follows

(Gmu)(x) = lim
τ→0+

∫
Rm

u(y′, ym)dy
′dym

(|x′ − y′|2 − a2(xm − ym + iτ)2)m/2
. (5)
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The integral is a multidimensional analogue of the Cauchy type integral, i.e. its limit case

corresponds to the boundary values. It looks as a convolution with the kernel which is the

Fourier image of Ca
+-indicator. But this multiplier is a non-integrable function. Therefore

we need to go into the complex plane to destroy the divergence. The de�nition (5) is one

of possible de�nitions for the singular integral. Of course, it is very desirable to give this

de�nition for real variables (as the principal value type of the Cauchy integral like in the one-

dimensional case), but it is worth noting however that such de�nition was used in classical

papers.

2. Solvability theorems

The concept of wave factorization permits to describe the full solvability cases for the

equation (4). For simplicity we assume m = 2. From now on we also suppose that the

symbol admits the wave factorization.

Theorem 2.1. Let κ−s = δ, |δ| < 1/2. For any right-hand side f ∈ Hs−α
0 (Ca

+) the equation

(4) admits a unique solution u+ ∈ Hs(C
a
+) with the Fourier transform of the form

ũ+ = A−16= G2A
−1
=

˜̀f,

where `f is an arbitrary continuation of f ∈ Hs−α
0 (Ca

+) on Hs−α(R2). In addition, the

following estimate holds

‖u+‖s ≤ c‖f‖+s−α.

Theorem 2.2. Let κ − s = n+ δ, n > 0 be an integer, |δ| < 1/2. Then for any right-hand

side f ∈ Hs−α
0 (Ca

+) there exists a solution u+ ∈ Hs(C
a
+) of the equation (4) with the Fourier

transform

ũ+(ξ) = A−16= QG2Q
−1A−1=

˜̀f

+ A−16=

(
n−1∑
k=0

(
c̃k(ξ1 − aξ2)k(ξ1 + aξ2)

k + d̃k(ξ1 + aξ2)(ξ1 − aξ2)k
)

+

nδ∑
k1+k2=0

ak1k2(ξ1 − aξ2)k1(ξ1 + aξ2)
k2

)
,

where ck, dk are arbitrary functions from Hsk(R−), Hsk(R+) respectively, Q(ξ) is an arbitrary

elliptic polynomial of order n satisfying the estimate (3) with α = n, sk = s− κ + k + 1/2,

k = 0, 1, . . . , n− 1, ak1k2 ∈ C,

nδ =

{
n− 1, if δ > 0

n− 2, if δ ≤ 0.

The latter formula describes all possible solutions of equation (4). Moreover, these solution

satisfy the a priori estimate

‖u+‖s ≤ c
(
‖f‖+s−α +

n−1∑
k=0

(
[ck]sk + [dk]sk

)
+

nδ∑
k1+k2=0

|ak1k2|
)
.
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Theorem 2.3. Let κ − s = n + δ, n ∈ Z, n < 0, |δ| < 1/2. The equation (4) admits a

solution u+ from Hs(C
a
+) if and only if the following conditions hold(

1

a

∂

∂y1
− ∂

∂y2

)β1 (1

a

∂

∂y1
+

∂

∂y2

)β2
A−1= `f(y)

∣∣∣∣
y=0

= 0,(
1

a

∂

∂y1
− ∂

∂y2

)β1 (1

a

∂

∂y1
+

∂

∂y2

)β2
A−1= `f(y)

∣∣∣∣ay1 − y2 ≤ 0

ay1 + y2 = 0

= 0,

(
1

a

∂

∂y1
− ∂

∂y2

)β1 (1

a

∂

∂y1
+

∂

∂y2

)β2
A−1= `f(y)

∣∣∣∣ay1 − y2 = 0

ay1 + y2 ≥ 0

= 0,

where |β| ∈ {0, 1, . . . , |n|−2}. Moreover, there exists a constant c such that ‖u+‖s ≤ c‖f‖+s−α.

In particular, Theorem 2.2 helps us to state correct boundary value problems for identi-

fying the unknown functions ck, dk. For simplicity we assume that n = 1, a = 1, f ≡ 0. In

the case of the Dirichlet or Neumann boundary conditions we have two unknown functions

c̃0(ξ1 − ξ2), d̃0(ξ1 + ξ2), and an application of the Mellin transform leads to the system of

linear algebraic equations with the matrix

R(λ) =

(
K(λ) I

I M(λ)

)
,

where K(λ), M(λ), I are square matrices of the order 2.

The conditions detR(λ) 6= 0, Reλ = 1/2 are called the conical Shapiro-Lopatinsky con-

dition.

If A is the Laplacian, then R(λ) can be calculated explicitly [3, 5].

3. Some distributions

If we will try to consider more complicated singularities like a cusp point at the boundary,

we need some additional investigation. Each singularity corresponds to a certain distribution

and it is useful to know what kind of distributions we will obtain in special limit cases. All

results below in this section are treated in the sense of distributions.

Let us denote by ⊗ the direct product of distributions. Next, the distribution P 1
x
is

introdused in V. S. Vladimirov's book [2].

Theorem 3.1. The following equality holds

lim
a→∞

a

2π2

1

ξ21 − a2ξ22
=

i

2π
P
1

ξ1
⊗ δ (ξ2) , (6)

where δ is the Dirac function.

The distribution (6) corresponds to a half-in�nite crack with an adjoint mass.

If we �nd another asymptotic for distribution (6) as a→ 0, then we have
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lim
a→0

a

2π2

1

ξ21 − a2ξ22
=

1

2π i
δ (ξ1)⊗ P

1

ξ2
,

and it corresponds to half-plane case (see [4]).

Now we will speak on another asymptotics related to multi-wedge angle. The simplest

variant of such angle is {x ∈ R3 : x3 > a |x1| + b |x2|}, where a, b are two parameters. If

these parameters tend to 0 or ∞, then we obtain new types of thin singularities.

The distribution corresponding to such angle is [3, 5]

Ka,b (ξ1, ξ2, ξ3) =
4iab

(2π)3
ξ3

(ξ21 − a2ξ23) (ξ22 − b2ξ23)
.

We consider di�erent relations between a and b.

Theorem 3.2. lim
b→∞

4iabξ3

(2π)3 (ξ21 − a2ξ23) (ξ22 − b2ξ23)
=

i

2 π
δ (ξ1)⊗ P

1

ξ2
⊗ δ (ξ3) .

Theorem 3.3. lim
a→∞

4iabξ3

(2π)3 (ξ21 − a2ξ23) (ξ22 − b2ξ23)
=

i

2 π
P
1

ξ1
⊗ δ (ξ2)⊗ δ (ξ3) .

Theorem 3.4. lim
b→0

4iab

(2π)3
ξ3

(ξ21 − a2ξ23) (ξ22 − b2ξ23)
= δ (ξ2)⊗Ka (ξ1, ξ3) .

Theorem 3.5. lim
a→0

4iab

(2π)3
ξ3

(ξ21 − a2ξ23) (ξ22 − b2ξ23)
= δ (ξ1)⊗Kb (ξ2, ξ3) .

Theorem 3.6. lim
a→0, b→0

4iab

(2π)3
ξ3

(ξ21 − a2ξ23) (ξ22 − b2ξ23)
=

1

2π i
δ (ξ′)⊗ P

1

ξ3
, ξ′ = (ξ1, ξ2) .

The last result corresponds to the half-space case x3 > 0 [4].

In the case m = 2, a→ +∞, the following formal representations are useful

Ka(ξ1, ξ2) =
k∑

n=0

(−1)n

n! an
P
1

ξ1
⊗ δ(n)(ξ2) +Rk(ξ1, ξ2),

Ka(ξ1, ξ2) =
+∞∑
n=0

(−1)n

n! an
P
1

ξ1
⊗ δ(n)(ξ2).

4. Quasi-elliptic case

Freezing coe�cients yields symbols A(·, ξ) ≡ A(ξ), which are homogeneous of order m in

the generalized sense:

A(tα1ξ1, ..., t
αmξm) = tmA(ξ),

for all t > 0 and α1 + α2 + ...+ αm = m. The heat operator

A : u 7−→ ∂u

∂t
− a2

(
∂2u

∂x21
+ ...+

∂2u

∂x2m

)
with the symbol A(ξ) = iξ0 − a2(ξ21 + · · ·+ ξ2m) has the homogeneity order m+ 1:

α1 = α2 = · · · = αm, α0 = 2.
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One can adapt de�nition of the wave factorization for studying such operators (equa-

tions) by the following way. According to above we separate one variable and introduce the

following notation (0 < γ < +∞):

Ca
+ = {x ∈ Rm+1 : x = (x0, x1, . . . , xm), x0 > a|x′|, x′ = (x1, . . . , xm)},
∗
Ca

+ = {x ∈ Rm+1 : ax0 > |x′|}.

De�nition 4.1. By the wave factorization of a symbol A(ξ) we understand its representation

in the form

A(ξ) = A6=(ξ)A=(ξ),

where the factors A6=(ξ), A=(ξ) satisfy the following conditions:

• A6=(ξ), A=(ξ) are de�ned everywhere without may be the points of the set

{ξ ∈ Rm+1 : |ξ′|2 = a2ξ2m};

• A6=(ξ), A=(ξ) admit an analytical continuation into radial tube domains T (
∗
Ca

+), T (
∗
Ca
−)

respectively, satisfying the estimates |A±16= (ξ + iτ)| ≤ c1(1 + |ξ′| + |ξ0|1/γ + |τ |)±κ,

|A±1= (ξ − iτ)| ≤ c2(1 + |ξ′|+ |ξ0|1/γ + |τ |)±(α−κ) for every τ ∈
∗
Ca

+.

The number κ is called the index of wave factorization.

Furthermore, if we consider the equation (4) in the Sobolev�Slobodetskii space with the

norm

‖u‖2s,γ =
∫

Rm+1

|ũ(ξ)|2(1 + |ξ′|+ |ξ0|1/γ)2sdξ,

we can obtain the following simple result (m = 1).

Theorem 4.2. Let κ− s = δ, |δ/γ| < 1/2. Then for any right-hand side f ∈ Hs−α
0 (Ca

+) the

equation (4) has a unique solution u+ ∈ Hs(C
a
+) for which the Fourier transform is given by

ũ+ = A−16= G2A
−1
=

˜̀f , where `f is an arbitrary continuation of f ∈ Hs−α
0 (Ca

+) on Hs−α(R2).

Moreover, this solution satis�es the a priori estimate ‖u+‖s,γ ≤ c‖f‖+s−α.

5. Future extensions

The author is going to study in the nearest future the following cases.

(i) The essentially multi-dimensional case with the distribution∑
ak(P )δ

(k)(P ),

on the boundary. Here P is the surface of cone (cf. [1]).

(ii) The asymptotical case (thin singularities) [7].

(iii) The discrete case, for which there are some interesting results related to the Calderon-

Zygmund operators [6].

(iv) The non-elliptic case, e.g. parabolic equations.
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