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Gelfand-Hille type theorems for topological algebras and for ordered topological algebras are

considered. It is shown that if a ∈ A is Abel bounded in an ordered topological algebra (ordering

is defined by a closed normal algebra cone), then a is Cesàro bounded. We find conditions under

which the identity element of an ordered topological algebra A is the unique element a ∈ A with

spectrum σ(a) = {1}.
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ãi÷íèõ àëãåáð // Ìàò. âiñíèê ÍÒØ. � 2013. � Ò.10. � C. 85�96.

Ðîçãëÿäàþòüñÿ òåîðåìè òèïó �åëüôàíäà-Ãiëëå äëÿ (âïîðÿäêîâàíèõ) òîïîëîãi÷íèõ àëãåáð.
Ïîêàçàíî, ùî êîæåí îáìåæåíèé çà Àáåëåì åëåìåíò a ∈ A âïîðÿäêîâàíî¨ òîïîëîãi÷íî¨ àëãåáðè
A ¹ îáìåæåíèé ïî ×åçàðî. Çíàéäåíî óìîâè, çà ÿêèõ ¹äèíèì åëåìåíòîì a ∈ A ç îäèíè÷íèì
ñïåêòðîì σ(a) = {1} ¹ îäèíèöÿ âïîðÿäêîâàíî¨ òîïîëîãi÷íî¨ àëãåáðè A.

1. Introduction

There are several papers written about the di�erent boundedness conditions for ordered

Banach algebras. When one looks at the proofs more carefully, it is possible to observe that

the existence of the norm is not always necessary and that many results hold also in more

general case. The main source for this paper is [2], where several results and ideas of this

paper can be found for Banach algebra case. This paper is an attempt to generalize �rst the

notions of di�erent kinds of boundedness for a topological algebra without using the norm.
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The second and the main goal of this paper is to show that results, known for ordered

Banach algebras, hold also in general case and that several proofs do not depend on the

topology obtained with the norm. Some results remain true also without the partial ordering.

Nevertheless, there are some results, which had to be presented with a bit di�erent conditions.

2. Results for general topological algebras

By a topological algebra we mean a topological vector space over C in which the multi-

plication is separately continuous. Through the whole paper, let A be a topological algebra

with unit eA and a zero element θA. Let R+ = {λ ∈ R : λ > 0}. Recall that the spectrum of

an element a ∈ A is de�ned as the set

σ(a) = {λ ∈ C : a− λeA is not invertible in A}.

We will say that an element a ∈ A is

a) power bounded if for every neighbourhood O of zero in A there exists λO ∈ R+ such

that an ∈ λOO for all n ∈ N.

b) Ces�aro bounded if for every neighbourhood O of zero in A there exists λO ∈ R+ such

that

Mn(a) :=
eA + a+ · · ·+ an

n+ 1
∈ λOO

for all n ∈ N.

c) Abel bounded if
∞∑
k=0

µkak (1)

exists in A for every µ ∈ (0, 1) and for every neighbourhood O of zero in A there exists

λO ∈ R+ such that

(1− µ)
∞∑
k=0

µkak ∈ λOO

for all µ ∈ (0, 1).

d) uniformly Abel bounded if for every neighbourhood O of zero in A there exists λO ∈ R+

such that

(1− µ)
n∑
k=0

µkak ∈ λOO

for all µ ∈ (0, 1) and all n ∈ N.

e) (N)-Abel bounded (for some N ∈ N) if (1) exists in A for every µ ∈ (0, 1) and for every

neighbourhood O of zero in A there exists λO ∈ R+ such that

(1− µ)N
∞∑
k=0

µkak ∈ λOO

for all µ ∈ (0, 1).
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We start with a generalization of Theorem 2.4 from [2, p. 44].

Theorem 2.1. Let A be a topological algebra with jointly continuous multiplication and

let a ∈ A be such that aN is Abel bounded for some N ∈ N. Then a is Abel bounded.

Proof. Let a ∈ A and let N ∈ N be such that aN is Abel bounded. Take any neighbourhood

O of zero in A. Then there exist balanced neighbourhoods U and V of zero in A such that

UU ⊆ O and

V + · · ·+ V︸ ︷︷ ︸
N summands

⊆ U.

Moreover, there exist λ0, . . . , λN−1 ∈ R+ such that

eA ∈ λ0V, µa ∈ λ1V, (µa)2 ∈ λ2V, . . . , (µa)N−1 ∈ λN−1V

for all µ ∈ (0, 1), because V is balanced. Let λ := max{λ0, . . . , λN−1}. Then

eA + µa+ (µa)2 + · · ·+ (µa)N−1 ∈ λ0V + λ1V + λ2V + · · ·+ λN−1V =

= λ
(λ0
λ
V
)

+ λ
(λ1
λ
V
)

+ · · ·+ λ
(λN−1

λ
V
)
⊆ λ(V + · · ·+ V︸ ︷︷ ︸

N summands

) ⊆ λU

for all µ ∈ (0, 1). As µN ∈ (0, 1) and aN is Abel bounded, there exists νU ∈ R+ such that

(1− µN)
∞∑
k=0

µNkaNk ∈ νUU.

Since

N(m+1)−1∑
k=0

µkak =
m∑
k=0

(µa)Nk +
m∑
k=0

(µa)Nk+1 + · · ·+
m∑
k=0

(µa)Nk+(N−1) =

= (eA + µa+ (µa)2 + · · ·+ (µa)N−1)
m∑
k=0

µNkaNk

for every m ∈ N and all µ ∈ (0, 1), then

∞∑
k=0

µkak = lim
m→∞

N(m+1)−1∑
k=0

µkak = (eA + µa+ (µa)2 + · · ·+ (µa)N−1)
∞∑
k=0

µNkaNk.

Hence (1) exists in A for each µ ∈ (0, 1). Now

(1− µ)
∞∑
k=0

µkak = (eA + µa+ (µa)2 + · · ·+ (µa)N−1)
1− µ

1− µN
(1− µN)

∞∑
k=0

µNkaNk ∈

λU
1− µ

1− µN
νUU = (λνU)U

( 1− µ
1− µN

U
)
⊆ (λνU)UU ⊆ (λνU)O,

because 1−µ
1−µN∈ (0, 1). Taking λO := λνU ∈ R+, we obtain that (1−µ)

∑∞
k=0 µ

kak ∈ λOO for

all µ ∈ (0, 1). Hence, a is Abel bounded.
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Using analoguous argumentation, we can easily prove the following corollary (generalizing

Corollary 2.5 from [2, p. 44]).

Corollary 2.2. Let A be a topological algebra with jointly continuous multiplication and

let a ∈ A be such that aN is uniformly Abel bounded for some N ∈ N. Then a is uniformly

Abel bounded.

Next result gives a generalization of Theorem 2.6 of [2, p. 44].

Proposition 2.3. Let A be a topological algebra with jointly continuous multiplication and

with continuous inversion. If a ∈ A is Abel bounded and σ(a) ⊆ [0,∞), then aN is Abel

bounded for all N ∈ N.

Proof. Let a ∈ A be Abel bounded and σ(a) ∈ [0,∞). Let ν ∈ (0, 1). Moreover, let W be a

neighbourhood of zero in A. Fix an arbitrary N ∈ N. Then there exists µ ∈ (0, 1) such that

µN = ν and a balanced neighbourhood O of zero in A such that NOO ⊆ W .

Let pN : A → A be de�ned by pN(b) = b + b2 + · · · + bN−1 for every b ∈ A. Since

σ(a) ⊂ [0,∞), then, by Spectral Mapping Theorem (see, for example, [1], Proposition 1.7.3.),

we have σ(pN(µa)) = pN(µσ(a)) ⊂ [0,∞) for all µ ∈ (0, 1). Therefore, −1 6∈ σ(pN(µa)).

Hence, eA+µa+(µa)2+ · · ·+(µa)N−1 = pN(µa)−(−1)eA is invertible in A for all µ ∈ [0, 1]).

By assumption, the inversion in A is continuous. Thus, the map F : [0, 1]→ A, de�ned by

F (µ) = (eA + µa+ · · ·+ (µa)N−1)−1

is continuous. Hence, F ([0, 1]) is a compact subset in A, because [0, 1] is compact in R.
Therefore, F ([0, 1]) is bounded in A (see, for example, [3, p. 147], Proposition 7). Conse-

quently, there is a positive number ρ such that (eA +µa+ (µa)2 + · · ·+ (µa)N−1)−1 ∈ ρO for

all µ ∈ (0, 1).

By the assumptions, we know that (1) exists in A for every µ ∈ (0, 1) and for every

neighbourhood O of zero in A there exists λO ∈ R+ such that (1− µ)
∑∞

k=0 µ
kak ∈ λOO for

all µ ∈ (0, 1).

As it was shown in the proof of Theorem 1, for every m ∈ N and each µ ∈ (0, 1) we get

N(m+1)−1∑
k=0

µkak = (eA + µa+ (µa)2 + · · ·+ (µa)N−1)
m∑
k=0

µNkaNk.

Hence,
m∑
k=0

µNkaNk = (eA + µa+ (µa)2 + · · ·+ (µa)N−1)−1
N(m+1)−1∑

k=0

µkak.

Thus,

∞∑
k=0

µNkaNk = lim
m→∞

m∑
k=0

µNkaNk = (eA + µa+ (µa)2 + · · ·+ (µa)N−1)−1
∞∑
k=0

µkak
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for each µ ∈ (0, 1). Therefore, the sum
∑∞

k=0 ν
k(aN)k =

∑∞
k=0 µ

NkaNk exists in A for each

ν ∈ (0, 1). It is easy to see that (eA−µa)
∑∞

k=0 µ
kak = eA and (eA−(µa)N)

∑∞
k=0(µa)Nk = eA.

Moreover, eA − (µa)N = (eA − µa)(eA + µa+ · · ·+ (µa)N−1). Hence,

∞∑
k=0

(µa)Nk = (eA − (µa)N)−1 = (eA + µa+ · · ·+ (µa)N−1)−1
∞∑
k=0

µkak.

Finally,

(1− ν)
∞∑
k=0

νk(aN)k = (1− µN)
∞∑
k=0

(µa)Nk =

= (1 + µ+ µ2 + · · ·+ µN−1)(eA + µa+ · · ·+ (µa)N−1)−1(1− µ)
∞∑
k=0

µkak ∈

∈ ρλON
(1 + µ+ µ2 + · · ·+ µN−1

N
OO
)
⊆ ρλO(NOO) ⊆ ρλOW

for all ν ∈ (0, 1). Thus, taking λW := ρλO, we see that aN is Abel bounded. Since N ∈ N
was chosen arbitrarily, aN is Abel bounded for all N ∈ N.

3. Results for ordered topological algebras

Let A be an algebra. An algebra cone C ⊆ A is a subset of A which satis�es the following

conditions:

1) C + C ⊆ C;

2) λC ⊆ C for every λ ∈ R+ ∪ {0};

3) C · C ⊆ C;

4) eA ∈ C.

An algebra cone is called

a) proper if C ∩ (−C) = {θA} and

b) inverse closed if for every invertible element a ∈ A (with inverse a−1 ∈ A) the inclusion
a ∈ C implies a−1 ∈ C.

Every algebra cone C induces a partial order ≤C on A as follows:

for a, b ∈ A we say that a ≤C b if and only if b− a ∈ C.

Next, we generalize the de�nitions for the classes of algebra cones of Banach algebras to the

case of general topological algebras.

Let A be a topological algebra and C ⊆ A an algebra cone. We will endowe C with a

subspace topology induced by the topology of A. An algebra cone, is called
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c) normal if for every neighborhood O of zero there exists a real number α ≥ 1 such that

{a ∈ A : θA ≤C a ≤C b} ⊂ α ·O for every b ∈ O;

d) closed if C is a closed subset in the topology of A.

We will denote by (A,≤C) an algebra A with an order ≤C induced by an algebra cone C.

The following result generalizes Theorem 2.1 of [2, p. 42].

Theorem 3.1. Let (A,≤C) be an ordered topological algebra, where C is a closed normal

algebra cone. If a ∈ C is Abel bounded, then a is Cesàro bounded.

Proof. Fix an arbitrary neighbourhood U of zero in A. Then there exists a balanced neigh-

bourhood O of zero such that O ⊆ U . By assumption, a is Abel bounded. Hence, there

exists νO ∈ R+ such that

(1− µ)
∞∑
k=0

µkak ∈ νOO

for all µ ∈ (0, 1). Since a ∈ C and C is an algebra cone, we get

xn := (1− µ)
n∑
k=0

µkak ∈ C

for every n ∈ N. Since the sum (1) exists in A, then the sequence (xn) converges in A and

the limit x of the sequence (xn) also belongs to C, because C is closed, i.e.,

x := (1− µ)
∞∑
k=0

µkak ∈ C.

Similarily, we see that, for every �xed n0 ∈ N, we have

yn := (1− µ)
n∑

k=n0

µkak ∈ C

for every n ∈ N with n > n0. Taking again the limit, we get

x− xn0 = (1− µ)
∞∑

k=n0+1

µkak ∈ C

for every n0 ∈ N. Now, we have obtained that

θA ≤C xn ≤C x and x ∈ νOO

for every n ∈ N. Fix now an arbitrary n ∈ N. Since µ is arbitrary in (0, 1), we get that

everything remains true also for µ = n
n+1

. In this case

(
1− n

n+ 1

) n∑
k=0

( n

n+ 1

)k
ak =

1

n+ 1

n∑
k=0

( n

n+ 1

)k
ak
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and ( n

n+ 1

)n
Mn(a) =

1

n+ 1

( n

n+ 1

)n n∑
k=0

ak.

Since a ∈ C and C is an algebra cone, we have

Mn(a),
( n

n+ 1

)n
Mn(a),

1

n+ 1

n∑
k=0

[( n

n+ 1

)k
−
( n

n+ 1

)n]
ak ∈ C.

As
1

n+ 1

n∑
k=0

[( n

n+ 1

)k
−
( n

n+ 1

)n]
ak = xn −

( n

n+ 1

)n
Mn(a),

then

θA ≤C
( n

n+ 1

)n
Mn(a) ≤C xn ≤C x and xn ∈ νOO.

Because νOO is also a neighbourhood of zero and C is a normal cone, it follows that there

exists a real number α ≥ 1 such that( n

n+ 1

)n
Mn(a) ∈ α(νOO).

Therefore,

Mn(a) ∈
(

1− 1

n+ 1

)−n
ανOO =

(
1− 1

n+ 1

)−(n+1) n

n+ 1
· ανOO ⊂ eαν0O

because O is balanced and

0 <
(

1− 1

n+ 1

)−(n+1)

≤ e

for all n ∈ N, where e is the Euler number. Taking λU := eανO ∈ R+, we see that

Mn(a) ∈ λUO ⊆ λUU . Since n ∈ N was chosen arbitrarily, we have Mn(a) ∈ λUU for all

n ∈ N. Thus, a is Cesàro bounded.

Now we generalize Theorem 2.7 from [2, p. 45].

Proposition 3.2. Let (A,≤C) be an ordered topological algebra with jointly continuous

multiplication and with continuous inversion, where C is a closed proper algebra cone. Let

a ∈ A be such that σ(a) ⊆ [0,∞). Then the following are equivalent:

a) a = eA;

b) there exist L,N ∈ N such that aL is Abel bounded and aN ≥C eA.

Proof. The implication a)⇒ b) is obvious (we take L = N = 1).

Suppose now, that b) holds. Then (by Theorem 2.1) a is Abel bounded because aL is

Abel bounded. By Proposition 2.3, we see that aN is also Abel bounded. Hence,

∞∑
k=0

µk(aN)k
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exists in A for every µ ∈ (0, 1) and for every neighbourhood O of zero in A there exists

λO ∈ R+ such that

(1− µ)S(aN, µ) := (1− µ)
∞∑
k=0

µk(aN)k ∈ λOO

for all µ ∈ (0, 1). Therefore,

lim
µ→1−

(1− µ)2S(aN, µ) = θA.

Since

eA − µaN = µ
(1− µ

µ
eA − (aN − eA)

)
,

we have
∞∑
k=0

µk(aN)k = (eA − µaN)−1 =
1

µ

(1− µ
µ

eA − (aN − eA)
)−1

.

Hence,

(1− µ)2S(aN , µ) =
(1− µ)2

µ

(1− µ
µ

eA − (aN − eA)
)−1

=

= (1− µ)
∞∑
k=0

( µ

1− µ

)k
(aN − eA)k =

= µ(aN − eA) + (1− µ)eA + (1− µ)
∞∑
k=2

( µ

1− µ

)k
(aN − eA)k.

As eA ∈ C and aN ≥C eA, then aN , aN − eA, (aN)k ∈ C for all k ∈ N and

m∑
k=2

( µ

1− µ

)k
(aN − eA)k ∈ C

for all m ∈ N with m ≥ 2. Because C is closed, we get

∞∑
k=2

( µ

1− µ

)k
(aN − eA)k ∈ C.

Taking this into account, we have that

(1− µ)eA + (1− µ)
∞∑
k=2

( µ

1− µ

)k
(aN − eA)k ∈ C

for all µ ∈ (0, 1). Hence,

lim
µ→1−

[
(1− µ)eA + (1− µ)

∞∑
k=2

( µ

1− µ

)k
(aN − eA)k

]
= −(aN − eA).

Again, as C is closed, then −(aN − eA) ∈ C.
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So, we have obtained that aN − eA ∈ C and −(aN − eA) ∈ C. Consequently, aN − eA ∈
C ∩ (−C) = {θA}, since C is a proper cone. Therefore, aN = eA.

In case N = 1, we have a−eA = θA and our problem is solved. Suppose now that N ≥ 2.

Then

θA = aN − eA = (a− eA)(aN−1 + · · ·+ a+ eA).

Using again the map pN : A→ A, de�ned in the proof of Proposition 2.3, we obtain that

aN−1 + · · ·+ a+ eA = pN(a)− (−1)eA

is invertible in A, because σ(pN(a)) ∈ [0,∞). Hence, (aN−1 + · · · + a + eA)−1 exists in A.

Thus,

a− eA = θA(aN−1 + · · ·+ a+ eA)−1 = θA

and we have again obtained a = eA.

Next, we give a version of the Theorem 3.1 from [2, p. 47].

Theorem 3.3. Let (A,≤C) be a topological algebra, where C is a closed proper algebra cone.

If a ∈ A and N ∈ N are such that a ≥C eA and a is (N)-Abel bounded, then (a−eA)N = θA.

Proof. Let a ∈ A and N ∈ N be such that a is (N)-Abel bounded. Then (1) exists in A for

every µ ∈ (0, 1) and for every neighbourhood O of zero in A there exists λO ∈ R+ such that

(1− µ)N
∞∑
k=0

µkak ∈ λOO

for all µ ∈ (0, 1).

Similarily as in the proof of Proposition 3.2, we have

(1− µ)N
∞∑
k=0

µkak = µN
(1− µ

µ

)N 1

µ

(1− µ
µ

eA − (a− eA)
)−1

=

= µN−1
(1− µ

µ

)N ∞∑
k=0

( µ

1− µ

)k+1

(a− eA)k.

Hence,

S := µN−1

(
1− µ
µ

)N ∞∑
k=0

(
µ

1− µ

)k+1

(a− eA)k ∈ λOO

for all µ ∈ (0, 1), which implies that S is bounded in A. Thus,

lim
µ→1−

1− µ
µ

S = θA.

Now,

1− µ
µ

S = µN−1
∞∑
k=0

( µ

1− µ

)k−N
(a− eA)k =

= µN−1
((1−µ

µ

)N
eA+

(1−µ
µ

)N−1
(a−eA)+ · · ·+(a−eA)N

)
+µN−1

∞∑
k=N+1

( µ

1−µ

)k−N
(a−eA)k.
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Since a ≥C eA, then a− eA ∈ C, which implies that

Sm := µN−1

(
1− µ
µ

)N m∑
k=0

(
µ

1− µ

)k+1

(a− eA)k ∈ C

for every m ∈ N and every µ ∈ (0, 1). Because C is closed, then

S = lim
m→∞

Sm ∈ C

and also

µN−1
∞∑

k=N+1

(
µ

1− µ

)k−N

(a− eA)k =
1− µ
µ

(S − SN) ∈ C (2)

for every µ ∈ (0, 1). Now the equality

θA = lim
µ→1−

1− µ
µ

S = (a− eA)N + lim
µ→1−

µN−1
∞∑

k=N+1

(
µ

1− µ

)k−N

(a− eA)k

implies

lim
µ→1−

µN−1
∞∑

k=N+1

(
µ

1− µ

)k−N

(a− eA)k = −(a− eA)N .

Since C is closed, (2) yields −(a− eA)N ∈ C. Thus,

(a− eA)N ∈ C ∩ (−C) = {θA},

because C is a proper cone. Consequently, (a− eA)N = θA.

Next result is a non-normed version of Theorem 3.2 from [2, p. 48].

Proposition 3.4. Let (A,≤C) be an ordered topological algebra, where C is a closed normal

algebra cone. If there exists N ∈ N such that a ∈ C is (N)-Abel bounded, then

lim
n→∞

Mn(a)

nN
= θA. (3)

Proof. Let N ∈ N be such that a ∈ C is (N)-Abel bounded. Then the sum (1) exists in A

for every µ ∈ (0, 1). Thus,

lim
m→∞

m∑
k=n+1

µkak =
∞∑

k=n+1

µkak

belongs to A for every µ ∈ (0, 1) and every n ∈ N. Since a ∈ C and C is a cone, then

(1− µ)N
m∑
k=0

µkak, (1− µ)N
m∑

k=n+1

µkak, (1− µ)N
n∑
k=0

(µk − µn)ak ∈ C

for every µ ∈ (0, 1) and every m,n ∈ N with n < m. Therefore,

(1− µ)N
∞∑
k=0

µkak, (1− µ)N
∞∑

k=n+1

µkak ∈ C
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for every n ∈ N, because C is closed. Thus, we have obtained

θA ≤C (1−µ)Nµn(n+1)Mn(a) = (1−µ)Nµn
n∑
k=0

ak ≤C (1−µ)N
n∑
k=0

µkak ≤C (1−µ)N
∞∑
k=0

µkak

for every µ ∈ (0, 1) and every n ∈ N.
Let O be any neighbourhood of zero in A. Then there exists a balanced neighbourhood

U of zero in A such that U ⊆ O. Moreover, let α ≥ 1 be the constant from the normality

condition for the cone C.

Since a is (N)-Abel bounded, there exists λU ∈ R+ such that

(1− µ)N
∞∑
k=0

µkak ∈ λUU

for all µ ∈ (0, 1). By assumption, C is normal. Therefore,

(1− µ)Nµn(n+ 1)Mn(a) ∈ αλUU

for all n ∈ N and all µ ∈ (0, 1). If we take µ := n
n+1

, then

Mn(a) ∈ αλU(n+ 1)N−1
(

1 +
1

n

)n
U ⊆ αλU(n+ 1)N−1eU,

because (1 + 1
n
)n ≤ e for every n ∈ N and U is balanced. Taking λO := αλUe

2, gives

Mn(a)

nN
∈ αλUe

1

n

(
1 +

1

n

)N−1
U ⊆ 1

n
αλUe

2U ⊆ 1

n
λOU ⊂ U ⊂ O

for all n > max{λO, (e
1

N−1 − 1)−1}. Hence, (3) is true.

The last result is a generalization of Theorem 4.1 from [2, p. 49].

Theorem 3.5. Let (A,≤C) be an ordered topological algebra with continuous inversion,

where C is a closed proper and inverse closed algebra cone. If a ∈ A is such that σ(a) = {1},
then the following are equivalent:

a) a = eA;

b) aN ∈ C for some N ∈ N.

Proof. It is obvious that a) implies b).

Suppose, now, that there exists N ∈ N such that aN ∈ C. Since C is an algebra cone,
aNk

λk+1 ∈ C for every λ ∈ R+ and every k ∈ N. Therefore,

Sm :=
m∑
k=0

aNk

λk+1
∈ C

for every λ ∈ R+ and for every m ∈ N. If σ(a) = {1} and λ > 1, then the sequence (Sm)

converges and its limit

S =
∞∑
k=0

aNk

λk+1
= lim

m→∞
Sm ∈ C,
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because C is closed. Hence, S = (λeA − aN)−1 ∈ C. Since C is inverse closed, then also

λeA − aN ∈ C for every λ > 1. Using again the fact that C is closed, we obtain that

eA − aN = lim
λ→1+

(λeA − aN) ∈ C.

From σ(a) = {1} it follows (by the Spectral Mapping Theorem) that σ(aN) = {1}, thus aN
is invertible in A. Hence, a−N = (aN)−1 ∈ C, because C is inverse closed. Following the

steps above, we can show that

(λeA − a−N)−1 =
∞∑
k=0

a−Nk

λk+1
∈ C

for every λ > 1. Taking the limit λ→ 1+, we obtain that eA− a−N ∈ C, as well. Therefore,

−(eA − aN) = aN − eA = aN(eA − a−N) ∈ C.

Since also eA − aN ∈ C and C is proper, we get aN − eA = θA.

In case N = 1, we have a = eA. In case N ≥ 2, we write

aN − eA = (a− eA)(aN−1 + · · ·+ eA) = θA

and use the same argumentation as in the proof of Proposition 3.2 to see that

(aN−1 + · · ·+ eA) is invertible, which implies that a− eA = θA, i.e., a = eA.
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