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Gelfand-Hille type theorems for topological algebras and for ordered topological algebras are
considered. It is shown that if @ € A is Abel bounded in an ordered topological algebra (ordering
is defined by a closed normal algebra cone), then a is Cesaro bounded. We find conditions under
which the identity element of an ordered topological algebra A is the unique element a € A with
spectrum o(a) = {1}.

Mart Abel, Mati Abel. Teopemu muny Ieavdanda-Lisne dns nopadKkosanus YHimMabHUT MONOAO-
2iwnuz anzebp // Mar. sicamk HTTII. — 2013. — T.10. — C. 85-96.

Posrsiaiorbes Teopemu tuiy Lenbdarnna-Tinte s (BLOPS/IKOBAHUX) TOLOJIOITYHUX AIredp.
IMokazano, 10 KoxkeH obMmexkennii 3a AGeseM eeMeHT a € A BIOPSIIKOBAHOI TOTOJIOTTYHOI ajredpn
A € oomexenmnit mo Yesapo. 3HaiieHO yMOBH, 3a SIKUX €IUHAM €JIeMEHTOM a € A 3 OguHuIHUM
cuekrpom o(a) = {1} € opuHMIg BIOPSAIKOBAHOI TOMOJOrIYHOI anrebpu A.

1. Introduction

There are several papers written about the different boundedness conditions for ordered
Banach algebras. When one looks at the proofs more carefully, it is possible to observe that
the existence of the norm is not always necessary and that many results hold also in more
general case. The main source for this paper is [2|, where several results and ideas of this
paper can be found for Banach algebra case. This paper is an attempt to generalize first the
notions of different kinds of boundedness for a topological algebra without using the norm.
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The second and the main goal of this paper is to show that results, known for ordered
Banach algebras, hold also in general case and that several proofs do not depend on the
topology obtained with the norm. Some results remain true also without the partial ordering.
Nevertheless, there are some results, which had to be presented with a bit different conditions.

2. Results for general topological algebras

By a topological algebra we mean a topological vector space over C in which the multi-
plication is separately continuous. Through the whole paper, let A be a topological algebra
with unit e4 and a zero element 64. Let RT = {\A € R: A > 0}. Recall that the spectrum of
an element a € A is defined as the set

o(a) ={X € C:a— Aey is not invertible in A}.
We will say that an element a € A is

a) power bounded if for every neighbourhood O of zero in A there exists Ao € R such
that a™ € A\pO for all n € N.

b) Cesaro bounded if for every neighbourhood O of zero in A there exists Ao € R such

that er bt g
M,, =4 € \oO
(a) n+1 ©

for all n € N.

c) Abel bounded if
> pkak (1)
k=0

exists in A for every u € (0, 1) and for every neighbourhood O of zero in A there exists
Mo € RT such that

(1—p) Z,ukak € A0
k=0
for all 4 € (0,1).

d) uniformly Abel bounded if for every neighbourhood O of zero in A there exists \p € R™
such that

n

(1 —p) Z,ukak € \oO

k=0
for all € (0,1) and all n € N.

e) (N)-Abel bounded (for some N € N) if (1) exists in A for every p € (0,1) and for every
neighbourhood O of zero in A there exists Ao € R™ such that

(1—p)N Z,ukak € A0

k=0

for all 4 € (0,1).
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We start with a generalization of Theorem 2.4 from [2, p. 44].

Theorem 2.1. Let A be a topological algebra with jointly continuous multiplication and
let a € A be such that a” is Abel bounded for some N € N. Then a is Abel bounded.

Proof. Let a € A and let N € N be such that a” is Abel bounded. Take any neighbourhood
O of zero in A. Then there exist balanced neighbourhoods U and V of zero in A such that
UU C O and

V+---4+V CU.

—_——

N summands

Moreover, there exist Ag, ..., Ay_1 € RT such that
ea € NV, pa € M\V, (,ua)2 e NV, ..., (,ua)N_1 € Av_1V
for all p € (0,1), because V is balanced. Let A\ := max{\o,...,Ax_1}. Then
ea+pa+ (pa)? + -+ (pa)N e XNV F MV F XV 4+ AV =

—/\<):\0V>+)\<%V>+---+>\<)\]§\1 >§/\(V+---+V)£)\U

N summands

for all 4 € (0,1). As ¥ € (0,1) and @ is Abel bounded, there exists vy € R such that

00
Nk Nk

Dk

k=0

Since
N(m+1)—-1 m m m
Z M Z (,LLCL)Nk + Z (,LLCL)Nk+1 4ot Z (Iua)NkH*(Nfl) _
k=0 k=0 k=0 k=0
= (ea+pa+ (pa)’ + -+ (pa)=) > pNra*
k=0
for every m € N and all 4 € (0,1), then
k k1 N-1 Nk, Nk
kz_oua _nlbli%o Z pFa® = (eq + pa + (pna)® + - - + (ua) );u a™".

k=0 L=n k=0
AU —LeusU = Qw)U 1__‘]‘VU C Owy)UU € (D)0,
1—pN 1—u

because 11;% € (0,1). Taking Ao := Ay € RT, we obtain that (1 —pu) >"o, uFa* € \oO for
all 4 € (0,1). Hence, a is Abel bounded. O
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Using analoguous argumentation, we can easily prove the following corollary (generalizing
Corollary 2.5 from [2, p. 44]).

Corollary 2.2. Let A be a topological algebra with jointly continuous multiplication and
let a € A be such that a” is uniformly Abel bounded for some N € N. Then a is uniformly
Abel bounded.

Next result gives a generalization of Theorem 2.6 of |2, p. 44].

Proposition 2.3. Let A be a topological algebra with jointly continuous multiplication and
with continuous inversion. If a € A is Abel bounded and o(a) C [0,00), then a” is Abel
bounded for all N € N.

Proof. Let a € A be Abel bounded and o(a) € [0,00). Let v € (0,1). Moreover, let W be a
neighbourhood of zero in A. Fix an arbitrary N € N. Then there exists p € (0,1) such that
Y = v and a balanced neighbourhood O of zero in A such that NOO C W.

Let py : A — A be defined by py(b) = b+ b? + --- + bV~ for every b € A. Since
o(a) C [0,00), then, by Spectral Mapping Theorem (see, for example, [1]|, Proposition 1.7.3.),
we have o(py(pa)) = py(uo(a)) C [0,00) for all u € (0,1). Therefore, —1 & o(pn(ua)).
Hence, es+pa+ (pa)?+- -+ (pa) ' = py(pa) — (—1)ea is invertible in A for all u € [0, 1]).
By assumption, the inversion in A is continuous. Thus, the map F : [0, 1] — A, defined by

F(p) = (ea+pa+ -+ (pa)¥ )~

is continuous. Hence, F(]0,1]) is a compact subset in A, because [0, 1] is compact in R.
Therefore, F([0,1]) is bounded in A (see, for example, |3, p. 147|, Proposition 7). Conse-
quently, there is a positive number p such that (eq + pa + (pa)>+- -+ (pa) 1)~ € pO for
all € (0,1).

By the assumptions, we know that (1) exists in A for every p € (0,1) and for every
neighbourhood O of zero in A there exists Ao € R such that (1 — u) Y 77, u*a* € \oO for
all 4 € (0,1).

As it was shown in the proof of Theorem 1, for every m € N and each p € (0, 1) we get

N(m+1)-1 m
Z pra® = (eq + pa + (pa)* + - +(ua)N_1)ZkaaNk.
k=0
Hence,
m N(m+1)—1
Z,uNk NE— (eq + pa+ (pa)? + -+ (ua)¥H ™ Z pFa®.
k=0 k=0
Thus,

ZMNk Nk n}iﬁ;zﬂm alVk — (€4 + pa + (,ua) 4 (,ua)N—l)—lzlukak
k=0
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for each p € (0,1). Therefore, the sum Y 2 v*(a™)* = S°77 "% a™* exists in A for each
v € (0,1). Itis easy to see that (ea—pa) > ooy pFa* = eq and (ea—(ua)N) Y op  (pa)Vk = e4.
Moreover, e4 — (pa)y = (ea — pa)(es + pa + - -+ + (ua)¥=1). Hence,

S (1) = (ea — (pa)) " = (eat pat -+ (ua) )T ikt
k=0 k=0

Finally,

(1=w) > vk = (1= ™) D (o)™ =
=+t N eat pat o+ ()N )= ) Y ptdh €

L+ p+p?+ -+ ph!
N

e p/\ON( 00) C pAo(NOO) C proW

for all v € (0,1). Thus, taking A\ := plo, we see that a” is Abel bounded. Since N € N
was chosen arbitrarily, @’V is Abel bounded for all N € N. n

3. Results for ordered topological algebras

Let A be an algebra. An algebra cone C' C A is a subset of A which satisfies the following
conditions:

1) C+C CC;
2) \C C C for every A € Rt U{0};
3) C-CCC,
4) eq € C.
An algebra cone is called
a) proper it C' N (—C) = {04} and

b) inverse closed if for every invertible element a € A (with inverse a=* € A) the inclusion
a € C implies a™! € C.

Every algebra cone C induces a partial order <, on A as follows:
for a,b € A we say that a <¢ b if and only if b —a € C.

Next, we generalize the definitions for the classes of algebra cones of Banach algebras to the
case of general topological algebras.

Let A be a topological algebra and C' C A an algebra cone. We will endowe C' with a
subspace topology induced by the topology of A. An algebra cone, is called
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¢) normal if for every neighborhood O of zero there exists a real number o > 1 such that
{a€eA:04<ca<cb} Ca-O forevery b € O;

d) closed if C'is a closed subset in the topology of A.

We will denote by (A, <¢) an algebra A with an order <. induced by an algebra cone C.
The following result generalizes Theorem 2.1 of |2, p. 42].

Theorem 3.1. Let (A, <¢) be an ordered topological algebra, where C' is a closed normal
algebra cone. If a € C' is Abel bounded, then a is Cesaro bounded.

Proof. Fix an arbitrary neighbourhood U of zero in A. Then there exists a balanced neigh-
bourhood O of zero such that O C U. By assumption, a is Abel bounded. Hence, there
exists vo € RT such that

(1—p) Z,ukak € vp0
k=0

for all € (0,1). Since a € C and C' is an algebra cone, we get
Ty = (1—M)Zukak eC
k=0

for every n € N. Since the sum (1) exists in A, then the sequence (z,) converges in A and
the limit z of the sequence (x,,) also belongs to C, because C' is closed, i.e.,

T = (1—M)Zukak e C.
k=0

Similarily, we see that, for every fixed ng € N, we have

n

yn::(l—,u)z,ukakEC'

k=ng

for every n € N with n > ng. Taking again the limit, we get

T —Tp, = (1 —p) Z pka* e C
k=no+1
for every ny € N. Now, we have obtained that

0 <cxp<cx and 2z € ro0

for every n € N. Fix now an arbitrary n € N. Since p is arbitrary in (0, 1), we get that
everything remains true also for y = -%5. In this case

(- ) S ) e = Y ()
n+1 n+1 n+1 n-+1

k=0 k=0
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and
n

n 1 n
(o) Moo = 5 () e
n+1 n+1\n+1 —

Since a € C' and C'is an algebra cone, we have

Mx(a). (nj— 1>nM"(a)’ n—ll—lan:L—l)k B (nj— 1>n}ak €C.

k=0
As
L) - ) e = - () o
n—l—lk:O n+1 n+1 o n—+1 A
then
n n
04 <c (n+1> M, (a) <¢ z, <cx and =z, € 0.

Because vpO is also a neighbourhood of zero and C' is a normal cone, it follows that there
exists a real number o > 1 such that

<nil>nM”(a) € a(10).

Therefore,

- avpO C earyO

-n 1 ) —(n+1) n

M"<a)€<1_ 11) O‘VOO:(l_n+1 n+ 1

n

because O is balanced and

1 N (D)
0< (1 — ) <e

n+1
for all n € N, where e is the Euler number. Taking Ay := earvp € R*, we see that
M,(a) € \yO C A\yU. Since n € N was chosen arbitrarily, we have M,(a) € \yU for all
n € N. Thus, a is Cesaro bounded. O

Now we generalize Theorem 2.7 from [2, p. 45].

Proposition 3.2. Let (A, <¢) be an ordered topological algebra with jointly continuous
multiplication and with continuous inversion, where C' is a closed proper algebra cone. Let
a € A be such that o(a) C [0,00). Then the following are equivalent:

a) a=eu;
b) there exist L, N € N such that a® is Abel bounded and a® >¢ e4.

Proof. The implication a)= b) is obvious (we take L = N = 1).
Suppose now, that b) holds. Then (by Theorem 2.1) a is Abel bounded because al is
Abel bounded. By Proposition 2.3, we see that a” is also Abel bounded. Hence,

Zluk<aN>lc
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exists in A for every u € (0,1) and for every neighbourhood O of zero in A there exists
Ao € R such that

(1 — p)S(a” p) Zuk Mk € X0

k=0

for all € (0,1). Therefore,

lim (1 — p)2S(a™ p) = 04.

pn—1-
Since 1
eA—,uaNz,u< NGA—(GN—GAD,
we have
- 11— -1
Zﬂk N GA—MGN) 1:—( MGA—(@N—@Q) :
om0 [
Hence,

p p N
=B (fE) @ —ent -
:M(aN_eA)+(1—u)eA+(1_M)i<ﬁ>k(a1v_m)k.

k=2
As ey € C and o >¢ ey, then o, a® — ey, (a™V)* € C for all k € N and
S K kN k
Z(—) (@ —ex)" €l
k=2 1—p

for all m € N with m > 2. Because C is closed, we get

o0

k
Z(%) (¥ —eq) e
= M
Taking this into account, we have that
- BoNF N k
A=mwea+ Q=Y (+5=) (@ —en)eC
= M
for all € (0,1). Hence,
ligl_[(l— wea+ ( Z( ) N—e)f] = —(a" —ea).
a k=2

Again, as C is closed, then —(a” —e4) € C.
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So, we have obtained that a”¥ —e4 € C and —(a’¥ — e4) € C. Consequently, a’¥ — e, €
C N (=C) = {04}, since C is a proper cone. Therefore, a™ = e4.

In case N =1, we have a — e, = 04 and our problem is solved. Suppose now that N > 2.
Then

Or=a" —es=(a—ex) (' +- +aten).
Using again the map py : A — A, defined in the proof of Proposition 2.3, we obtain that
a4 daten=pn(a) — (—1)ey

is invertible in A, because o(py(a)) € [0,00). Hence, (V' + - - +a+ ea)™" exists in A.
Thus,
a—ep :QA(GN_1+"‘+CL+€A)_1 :9,4

and we have again obtained a = e4. O]
Next, we give a version of the Theorem 3.1 from [2, p. 47].

Theorem 3.3. Let (A, <¢) be a topological algebra, where C' is a closed proper algebra cone.
Ifa € Aand N € N are such that a >¢ e4 and a is (N)-Abel bounded, then (a —e )N = 04.

Proof. Let a € A and N € N be such that a is (N)-Abel bounded. Then (1) exists in A for
every p € (0,1) and for every neighbourhood O of zero in A there exists A\p € R* such that

(1—p)N Z,ukak € A0
k=0

for all 4 € (0,1).
Similarily as in the proof of Proposition 3.2, we have

St () (0

PN

Hence,

1 N o k+1
S = IUN_l (Tlu> Z <ﬁ> (CL — €A)k S )\OO

k=0
for all p € (0, 1), which implies that S is bounded in A. Thus,

1 _
lim — "5 =0,

p—1- M
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Since a >¢ ez, then a — ey € C, which implies that
. N ., k+1
S .= Nl —H H . k
i <—,u Z T (a—ex)” el
k=0

for every m € N and every p € (0,1). Because C' is closed, then

S=lim S,, € C

m—r0o0

and also

ptt i <L> (a—er) = 1_—'“(5 - Sy) el

k=N+1 1—p

for every pu € (0,1). Now the equality

pn—1- % pn—1-

k—N
1 o oo
04 = lim ST Hhg (a—ea)N + lim pN! Z <1L> (a—ey)”
implies

lim pN! Z <L> (a—eq)=—(a—ea)"

ol Nt \ L T
Since C is closed, (2) yields —(a — e4)™ € C. Thus,
(a—ex)N € CN(=C) = {04},
because C'is a proper cone. Consequently, (a — )™ = 64.

Next result is a non-normed version of Theorem 3.2 from [2, p. 48].

Proposition 3.4. Let (A, <¢) be an ordered topological algebra, where C'is a closed normal

algebra cone. If there exists N € N such that a € C' is (N)-Abel bounded, then

M.
lim n(a)

n—oo ’)’LN

=04.

(3)

Proof. Let N € N be such that a € C' is (IV)-Abel bounded. Then the sum (1) exists in A

for every p € (0,1). Thus,

[N RS Sp

k=n+1 k=n+1

belongs to A for every p € (0,1) and every n € N. Since a € C' and C' is a cone, then

n

Nkz_ou’“a’“, (1- Z phab, (1= (b — pMat e C

k=n+1 k=0

for every pu € (0,1) and every m,n € N with n < m. Therefore,

—wNY ptab, 1= Y pratec
k=0

k=n-+1
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for every n € N, because C'is closed. Thus, we have obtained
0a <c (1=p)" " (n+1) Ma(a) = (1=p)¥p" Y _a* <o (1= Y _pha" <o (1=p)™ Y pta*
k=0 k=0 k=0

for every p € (0,1) and every n € N.

Let O be any neighbourhood of zero in A. Then there exists a balanced neighbourhood
U of zero in A such that U C O. Moreover, let o > 1 be the constant from the normality
condition for the cone C.

Since a is (N)-Abel bounded, there exists Ay € RT such that

(1— M)NZukak e U
k=0

for all p € (0,1). By assumption, C' is normal. Therefore,
(1 — )N (n +1)M,(a) € aryU

for all n € N and all p € (0,1). If we take p:= 2, then

1\"
M, (a) € arg(n+ 1)V (1 + —) U C aly(n+1)N el

n

because (1 + %)" < e for every n € N and U is balanced. Taking Ao := a)\ye?, gives

M, 1 I\N-1 1 1
](V@ € alye— (1 + —) UC —alge’U C =AU CUCO
n n n n n
for all n > max{ Ao, (eNl—l —1)7'}. Hence, (3) is true. O

The last result is a generalization of Theorem 4.1 from |2, p. 49].

Theorem 3.5. Let (A, <¢) be an ordered topological algebra with continuous inversion,
where C' is a closed proper and inverse closed algebra cone. If a € A is such that o(a) = {1},
then the following are equivalent:

a) a=eu;
b) o € C for some N € N.

Proof. Tt is obvious that a) implies b).
Suppose, now, that there exists N € N such that ¥ € C. Since C is an algebra cone,
fk—]i € C for every A € R" and every k € N. Therefore,

m gk
S 1= Z Ak+1 cC
k=0

for every A € RT and for every m € N. If o(a) = {1} and A > 1, then the sequence (S,,)
converges and its limit
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because C' is closed. Hence, S = (Aea — a’¥)™' € C. Since C is inverse closed, then also
Xeg —a” € C for every A > 1. Using again the fact that C is closed, we obtain that
eq—a = lim (Aey — a®) € C.
A—1F
From o(a) = {1} it follows (by the Spectral Mapping Theorem) that o(a’¥) = {1}, thus a®

is invertible in A. Hence, a™ = (a™)™! € C, because C' is inverse closed. Following the
steps above, we can show that

> —Nk

N a
(Aeg —a ™M)t = )\k+160
k=0

for every A > 1. Taking the limit A — 17, we obtain that e4 —a™" € C, as well. Therefore,
—(ea—aV)=a" —es=a"(ea—a ) e C.

Since also e4 — a™ € C and C is proper, we get a”¥ — ey = 04.
In case N =1, we have a = e4. In case N > 2, we write

aV —eqs=(a—eq) (@ 4 den) =04

and use the same argumentation as in the proof of Proposition 3.2 to see that
(aV! 4 ...+ ey) is invertible, which implies that a — ey = 0,4, ie., a = ey, O
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