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Let 7(¢): Z — Z be a multiplicative function such that 7(¢)(p®) = >_djo 1. In the present paper we

introduce generalizations of 7(¢) over the ring of Gaussian integers Z[i]. We determine their maximal
orders by proving a general result and establish asymptotic formulas for their average orders.

A B. Jleneuenko. FErxcnonenyitna @ynryia nodiavrocmi wad s'aycosumu yiaumu wucaamu // Mar.
Bicuuk HTIII. — 2013. — T.10. — C. 65-74.

Hexaii 7(¢): Z — 7 — taka mynsrumiikatusaa dykmis, mo 7(¢) (p) = Ed‘a 1. V crarri o3Ha-
weni y3aranbrenns ¢yHkiii 7(¢) Ha Kigble rayCoBHX HLTHX duces Z[i]. 9k nacninoxk 3arajbHOrO

pe3ysbraTy BU3HAYEHO MAKCUMAJIBHI TMOPsIKA TakuxX (GyHKIii. Takoxk mobyJoBaHO aCHMITOTHIHI
dopmyn it BIAHIOBIAHUX CyMaTOPHUX (DyHKIIIH.

1. Introduction

In 1972 M.V. Subbarao introduced [8] exponential divisor function 7(®): Z — Z, which
is multiplicative and
7Op") = 71(a),

where 7: Z — Z stands for the usual divisor function. Erdds estimated its maximal order
and Subbarao proved an asymptotic formula for - _ 7(9(n). Later Wu [11] gave a more
precise estimation:

Z 7 (n) = Az + Bz'/? + O(2%279),

n<e
where A and B are computable constants, 6, is an exponent in the error term of the
estimation Y . . 1 = ((2)a +((1/2)2"/* + O(22*¢). The best modern result, [2] yields the
upper bound 6, » < 1057/4785.
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In the present paper we generalize the exponential divisor function over the ring of
Gaussian integers Z[i]. Namely we introduce multiplicative functions 97 > 7,
) Z[i] — Z such that

W) =ta), 90 =1(@), ) =ta) (1)

where p is prime over Z, p is prime over Z[i], t(a) is a number of non-associated in pairs
Gaussian integer divisors of a.

The aims of this paper are to determine maximal orders of 7'*6), t(e), £ and to provide
asymptotic formulas for an ( ), EN ()<z t ©)(a), ZN (a). A theorem on the

maximal order of multiplicative functions over Z[i], generahzmg [9] is also proved.

2. Notation

Let us denote the ring of Gaussian integers by Zl[i], N(a + bi) = a* + b*. In asymptotic
relations we use ~, =<, Landau symbols O and o, Vinogradov symbols < and > in their
usual meanings. All asymptotic relations are written for the argument tending to the infinity.
Letters p and q with or without indexes denote Gaussian primes; p and ¢ denote rational
primes.

As usual ((s) denotes the Riemann zeta-function, L(s, x) is the Dirichlet L-function. Let
X4 be the single nonprincipal character modulo 4, then Z(s) = ((s)L(s, x4) is the Hecke zeta-
function for the ring of Gaussian integers. Real and imaginary components of a complex
number s are denoted by o := Res and ¢ := Ims, so s = o + it. We use abbreviations
llog x := loglog x, lllog x := log log log x.

The notation " means the summation over non-associated elements of Z[i], and ]’
means the similar relative to multiplication. Notation a ~ b means that a and b are associ-
ated, that is a/b € {1, +i}. But in asymptotic relations ~ preserves its usual meaning,.

The letter v denotes the Euler-Mascheroni constant. Everywhere ¢ > 0 is an arbitrarily
small number (not always the same). We write f x g for the notation of the Dirichlet
convolution

(f*9)(n) =>_ f(d)g(n/d).

din
3. Preliminary lemmas
We need the following auxiliary results.

Lemma 3.1 (Gauss’s criterion). Gaussian integer p is prime if and only if one of the following
cases holds:

e bl
e p~p, where p=3 (mod 4),
e N(p) =p, where p=1 (mod 4).

In the last case there are exactly two non-associated p; and py such that N(p1) = N(ps) =
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Proof. See [1, §34]. O

Lemma 3.2.

> " logN(p) ~ z, (3)

Proof. Taking into account Gauss’s criterion and the asymptotic law of distribution of primes
in the arithmetic progression we get

S 1~ #{p|p=3(mod 4),p < Va} +2#{p|p=1(mod 4),p < z} ~

N(p)<z
NS x o
o@)logz/2  “p(4)logz  logx’
A partial summation with use of (2) gives us the second statement of the lemma. ]

Lemma 3.3.

1
e og7(n) _ 10g27 (1)
n>1 n 2

1
max 284 _ log3 (5)
n>1 n 2

Proof. Tt is well-known that 7(n) < 2y/n. Indeed the set of divisors of n can be divided into
pairs (d,n/d) and the least element of a pair is <y/n. Similarly the set of non-associated
Gaussian divisors of n can be divided into pairs («a, ) such that a8 ~ n, where N(a) < n
or N(8) < n,sot(n) <mn/2.

Consider the functions

f(n) = n7log(2v/n) = n""(log2 + (logn)/2),
g(n) = n'log(mn/2) = n_l(logg + (logn)).

Both functions are decreasing for n > 3 because (n"!logn)’ = n~2(1 —logn). Then due to
the definition (1)

log 7(n) log2 log3 log 2
= ) ) 4}: ’
me =m0 TS S ) =
logt(n) log 3 _ log3
) o2 ) b2

]

Lemma 3.4. Let ': Z — C be a multiplicative function such that F(p*) = f(a), where
f(n) < nP for some 3 > 0. Then
log F'(n)llogn log f(n)
p———=.

lim sup = su
n—oo logn n>1 N
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Proof. See |9]. O

Lemma 3.5. Let f(t) > 0. IfflT f(t)dt < g(T), where g(T) = T*log’ T, a > 1, then

T B+1 . _
f(t) logV ™ T ifa=1,
I(T) = —Ldt
(T) /1 i ST 0’ T ifas 1.

Proof. Let us divide the interval of integration into parts:

g9(T/2")
(7)< / IO 4y / F(t)dt < |
2 o 1< 2 T ), 2 T
Now the lemma’s statement follows from elementary estimates. O]

Lemma 3.6. Let T'> 10 and |d — 1/2| < 1/logT. Then we have the following estimates
d+iT d d-+iT d
| RO <o and [ L) < og' T
d—iT S d—iT s
for growing T.

Proof. The statement is the result of the application of Lemma 3.5 to the estimates |6, Th.
10.1, p. 75]. O]

Lemma 3.7. Let § > 0 be a value such that ((1/2 +it) < t% ast — oo, and let n > 0 be
arbitrarily small. Then

[t]1/2-(1=20)c o€l0,1/2],
((s) < |t|26(1_0) log2/3 lt|, oe[l-n1],

The same estimates are valid for L(s, x4) as well.

Proof. The statement follows from Phragmén—Lindel6f principle, exact and approximate
functional equations for ((s) and L(s, x4). See [4] and [10] for details. O

The best modern result 3] is that 0 < 32/205 + «.

4. Main results

First we give maximal orders of 7\, t© and ¢\
The following theorem generalizes Lemma 3.4 to Gaussian integers; the proof’s outline
follows the proof of Lemma 3.4 in [9].

Theorem 4.1. Let F': Z[i] — C be a multiplicative function such that F(p*) = f(a), where
f(n) < n? for some 3 > 0. Then
log F(a) llog N («) log f(n)

lims = su = K.
R T
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Proof. Let us fix arbitrarily small € > 0.
Firstly, let us show that there are infinitely many « such that

log F'() llog N («v)
log N(«)

>Kf—6.

By definition of Ky we can choose [ such that (log f(1))/l > K; — /2. It follows from (3)
that for x > 2 the inequality Z;V(p)@ log N(p) > Az holds, where 0 < A < 1.
Let q be an arbitrarily large Gaussian prime, N(q) > 2. Consider

r= Z/ 1 and a= H/ p.
N(p)<N(a) N(p)<N(q)
Then F(a) = (f(1))" and we have
log N(«)

/
rlogN(q) > ——= > logN(p) > AN(q), (6)
N(p)<N(q)

B log N(«) log f(1)
log F'(a) = rlog f(l) > e N@) [

But (6) implies
log N
ng@ < llog N(a),

so log N(q) < llog N(«) — log A. Then it follows from (7) that

log N(«) log f(1)
log N(a) —log A 1

log A+log N(q) < log

log F'(a) >

and since (log f(1))/l > Ky — /2 and A < 1 we have

log F'(a) llog N(«) llog N («)
log N(«) llog N(«a) — log A

(Kf —8/2) > Kf —E.

Second, let us show the existence of N(g) such that for all n > N(e) we get

log F'(n) llog N(«)
log N(«)

< (1 +€)Kf.

Let us choose 6 € (0,¢) and 1 € (0,0/(1+ 8)). Suppose N(a) > 3, and put

(1+0)K;

w:=w(a) = TogN(a)’ Q= Qa) =log' " N(a).

By choice of 6 and n we have
Q° = exp(wlog Q) = exp((1 —n)(1 + §)K;) > ™.
Suppose that the canonical expansion of « is

al a, b1 b,
OéNpl '..pTqu ...q;’
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where N(p;) < Q and N(qk) > (). Then

f s
H Nwakakpk H wak qk H2 (8)

k=1

Because of 0¥ > /7 and Ky > (log f(bk)) /br, we get

f(br) f(or)  f(bx) <1
Nka(qk) Qka erbk x 1,

which implies IT, < 1. Consider IT;. From the statement of the theorem we have f(n) < n”,
S0

flag) a,
New(p) & (@)md &9

Then

log N(«
log IT; < Qlogw™” < log' "N (a)lllog N(ar) = o <llogg N((a))>

And finally by (8) we get

140)K1 —NK,1
1OgF(n)=wlogn+logH1+logH2:( +9) fog”+(€ ) Ky logn

llogn llogn
O
Theorem 4.2.
, log 7! ( ) llog n log 3
lim sup = )
n—00 log n 2
, log t) () llog N () log 2
lim sup = )
a—00 log N(Ck) 2
. log £ () llog N(a) log 3
lim sup = .
a—00 10g N<Oé) 2

Proof. The first statement follows from (4) and Lemma 3.4. The second and the third
statements follow from (4), (5) and Theorem 4.1. O

A simple corollary of the Theorem 4.2 is that

(e (n) < nf, t(e)(a) < N¢(a), tff)(oz) < N¢(a). (9)

Now we are ready to provide asymptotic formulas for sums of T*(e)(n), ) (a), tgf)(a).

Let us denote
s) =Y 1 n)n", T.(x) =Y 7{(n)

5) =3 () N"(a), M) =Y ()
a N(a)<z

5) =3 49(a)N"(a), M) = 3 ().
a N(a)<z
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Lemma 4.3.

G.(s) = C(s)¢%(25)¢(5s)

<§38§ K.(s), (10)
Ry = TR ), (12

where Dirichlet series H(s) is absolutely convergent for Res > 1/8 and the Dirichlet series
for H.(s), K.(s) are absolutely convergent for Res > 1/6.

Proof. Bell series for +©) have the following representation.

(1— x5)(1 + O(a:7))

) (pF)ak = 1424222 +22% 4324+ 227 +42°4+0(27) = (1—a2)(1 —22)(1 —ab)’

Mg

tée) (x) =

i
=)

(e)

In the case of t,” we have

(1—a3) (1 + O(xG))
(1 —2)(1 —22)2(1 — 25)

£y (2) = Zt;”)(p’“)x = 1+2+322+22° + 52" +42° +62°4+0(z") =

i
=)

and the same for 7).

Now (10), (11) and (12) follow from the representations of G., F, F,, ¢ and Z in the
form of infinite products by p or p:

-IIe. o =Tlo-r

Theorem 4.4. T,(z) = Az + Ayx'/?logz + Asx'/? + O(2'/3+¢), where A;, Ay, Az are
computable constants.

Proof. Tdentity (10) implies

n<x
where
T(L2,2n) = Y 1, T(L2,2%z)=>» 7(1,2,2%n)= Y L
ab2c2=n, n<x ab?c?<x

and series > -, f(n)n~7 is absolutely convergent for o > 1/3. Due to [5, (6.4), (6.16)] we
have

T(1,2,22) = *(2)z + C(%) 1/210gfv+((%—DC(%)+%C’(%))x1/2+0(x8/25“)~ (14)
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Let us define C) = (?(2), Cy = ((1/2)/2, C5 = (2y — 1)¢(1/2) + ¢'(1/2)/2 and

- )1
flzz_;@> inl/g7 fs = Zf n1/2gn'

One can get the following estimations.

f(n) p2/3+e p2/3+e
2. =0 ang ) (15)
n>x n>x
. —1/6+a —1/64¢
s - o z) o), w
n>x n>x
f(n)logn _ - 1/6+e f(n)logn _ —1/6+¢
; - =0 ; e | =0 ). (17)

Finally we get by substitution of estimates (14), (15), (16) and (17) into (13)

1/2 f(n) 1/2 f(n)logn 2 f(n)
Cl Z_+C /logxzn1/2 /Z W2 C3$1/ ZW—F

n<e n<T n<T n<e

+ O(x8/25+6) =Cfix + nggl’l/Q logx + (Csfy — Cgfg)l'l/Q + O(x1/3+€).

Lemma 4.5.
res F(s)z®/s = Cx, res F.(s)z%/s = Cyx, (18)

where

C = %H (1 n i (@) ]_VT(;‘; — 1)> ~ 1,156 101, (19)
c,= = H < Z )N:((;L)_ 1)) ~ 1,524 172, (20)

a=2

Proof. As a consequence of the representation (11) we have
F(s) = 7(a) )—T a—l)
Z(S) ];[ ( ; Nas(p) H Z Nas

and so function F(s)/Z(s) is regular in the neighbourhood of s = 1. At the same time we

have
res Z(s) = L(1, xa) res ((s) =
which implies (19). The proof of (20) is similar.
Numerical values of C' and C, in (19) and (20) were calculated in PARI/GP |7]| with the
use of the transformation

[[rve) =r@ I1 f@* I r0®

p:4k+1 p=4k+3

e

due to Lemma 3.1. O
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Theorem 4.6.

M(z) = Cx+O0(z?log" ), (21)
C.x + O(z'?10g" 3 z), (22)

=
S
I

where C' and C, were defined in (19) and (20).

Proof. By Perron formula and by (9) for c =1+ 1/logz, logT =< logx we have

1 c+iT Z'H_E
M(az):—/ F(s)xss_lds+0( T )

21 Joir

Suppose d = 1/2 — 1/logx. Let us shift the interval of integration to [d — iT,d + ¢T]. To
do this consider an integral about a closed rectangle path with vertexes in d — T, d 4 1T,
c¢+iT and ¢ —iT. There are two poles in s = 1 and s = 1/2 inside the contour. The residue
at s = 1 was calculated in (18). The residue at s = 1/2 is equal to Dz'/2, D = const and
will be absorbed by error term (see below).

Identity (11) implies F'(s) = Z(s)Z(2s)H(s), where H(s) is regular for Res > 1/3, so
for each € > 0 it is uniformly bounded for Res > 1/3 + .

Let us estimate the error term using Lemma 3.6 and Lemma 3.7. The error term absorbs
values of integrals about three sides of the integration’s rectangle. We take into account

Z(s) = ((s)L(s, x4). On the horizontal segments we have

c+iT
/ Z(s)Z(2s) “ds < max Z(o +iT)Z (20 + 2iT)2° T <«
d

T o€ld,c]
< I1/2T26_1 10g4/3T+l'T_1 10g4/3 T,

It is well-known that ((s) ~ (s — 1)~! in the neighborhood of s = 1. So on the vertical
segment we have

d+1i s 1 1 dt
/ Z(5)Z(28)—ds < xlﬂ/ ¢(2d + 2it)dt < :cl/z/ m < % log z,
d S 0 =

o fit—1/loga

d+iT s
/ 2()2(25) " ds <
d+i S

1/2

4 dt T diN1/2 T dt
-1\ |4 . 4 N
< ((/1 C(1/2+it)[*= /1 |L(1/2 + it, x4)] —t) /1 | Z(1 + 2it)| 7) <

< $1/2(10g5T . 10g8/3+1 T)1/2 < x1/2 10g13/3 T

The choice T' = '/?*¢ finishes the proof of (21).
The proof of (22) is similar. O
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