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Let τ (e) : Z→ Z be a multiplicative function such that τ (e)(pa) =
∑

d|a 1. In the present paper we

introduce generalizations of τ (e) over the ring of Gaussian integers Z[i]. We determine their maximal

orders by proving a general result and establish asymptotic formulas for their average orders.
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Íåõàé τ (e) : Z → Z � òàêà ìóëüòèïëiêàòèâíà ôóêöiÿ, ùî τ (e)(pa) =
∑

d|a 1. Ó ñòàòòi îçíà-

÷åíi óçàãàëüíåííÿ ôóíêöi¨ τ (e) íà êiëüöå ãàóñîâèõ öiëèõ ÷èñåë Z[i]. ßê íàñëiäîê çàãàëüíîãî

ðåçóëüòàòó âèçíà÷åíî ìàêñèìàëüíi ïîðÿäêè òàêèõ ôóíêöié. Òàêîæ ïîáóäîâàíî àñèìïòîòè÷íi

ôîðìóëè äëÿ âiäïîâiäíèõ ñóìàòîðíèõ ôóíêöié.

1. Introduction

In 1972 M.V. Subbarao introduced [8] exponential divisor function τ (e) : Z → Z, which
is multiplicative and

τ (e)(pa) = τ(a),

where τ : Z → Z stands for the usual divisor function. Erd�os estimated its maximal order

and Subbarao proved an asymptotic formula for
∑

n6x τ
(e)(n). Later Wu [11] gave a more

precise estimation: ∑
n6x

τ (e)(n) = Ax+Bx1/2 +O(xθ1,2+ε),

where A and B are computable constants, θ1,2 is an exponent in the error term of the

estimation
∑

ab26x 1 = ζ(2)x+ ζ(1/2)x1/2 +O(xθ1,2+ε). The best modern result [2] yields the

upper bound θ1,2 6 1057/4785.
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In the present paper we generalize the exponential divisor function over the ring of

Gaussian integers Z[i]. Namely we introduce multiplicative functions τ
(e)
∗ : Z → Z, t(e),

t
(e)
∗ : Z[i]→ Z such that

τ (e)∗ (pa) = t(a), t(e)(pa) = τ(a), t(e)∗ (pa) = t(a), (1)

where p is prime over Z, p is prime over Z[i], t(a) is a number of non-associated in pairs

Gaussian integer divisors of a.

The aims of this paper are to determine maximal orders of τ
(e)
∗ , t(e), t

(e)
∗ and to provide

asymptotic formulas for
∑

n6x τ
(e)
∗ (n),

∑′
N(α)6x t

(e)(α),
∑′

N(α)6x t
(e)
∗ (α). A theorem on the

maximal order of multiplicative functions over Z[i], generalizing [9], is also proved.

2. Notation

Let us denote the ring of Gaussian integers by Z[i], N(a + bi) = a2 + b2. In asymptotic

relations we use ∼, �, Landau symbols O and o, Vinogradov symbols � and � in their

usual meanings. All asymptotic relations are written for the argument tending to the in�nity.

Letters p and q with or without indexes denote Gaussian primes; p and q denote rational

primes.

As usual ζ(s) denotes the Riemann zeta-function, L(s, χ) is the Dirichlet L-function. Let

χ4 be the single nonprincipal character modulo 4, then Z(s) = ζ(s)L(s, χ4) is the Hecke zeta-

function for the ring of Gaussian integers. Real and imaginary components of a complex

number s are denoted by σ := Re s and t := Im s, so s = σ + it. We use abbreviations

llog x := log log x, lllog x := log log log x.

The notation
∑′ means the summation over non-associated elements of Z[i], and

∏′
means the similar relative to multiplication. Notation a ∼ b means that a and b are associ-

ated, that is a/b ∈ {±1,±i}. But in asymptotic relations ∼ preserves its usual meaning.

The letter γ denotes the Euler�Mascheroni constant. Everywhere ε > 0 is an arbitrarily

small number (not always the same). We write f ? g for the notation of the Dirichlet

convolution

(f ? g)(n) =
∑
d|n

f(d)g(n/d).

3. Preliminary lemmas

We need the following auxiliary results.

Lemma 3.1 (Gauss's criterion). Gaussian integer p is prime if and only if one of the following

cases holds:

• p ∼ 1 + i,

• p ∼ p, where p ≡ 3 (mod 4),

• N(p) = p, where p ≡ 1 (mod 4).

In the last case there are exactly two non-associated p1 and p2 such that N(p1) = N(p2) = p.
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Proof. See [1, �34].

Lemma 3.2. ∑′

N(p)6x

1 ∼ x

log x
, (2)

∑′

N(p)6x

logN(p) ∼ x, (3)

Proof. Taking into account Gauss's criterion and the asymptotic law of distribution of primes

in the arithmetic progression we get∑′

N(p)6x

1 ∼ #{p | p ≡ 3 (mod 4), p 6
√
x}+ 2#{p | p ≡ 1 (mod 4), p 6 x} ∼

∼
√
x

ϕ(4) log x/2
+ 2

x

ϕ(4) log x
=

x

log x
.

A partial summation with use of (2) gives us the second statement of the lemma.

Lemma 3.3.

max
n>1

log τ(n)

n
=

log 2

2
, (4)

max
n>1

log t(n)

n
=

log 3

2
. (5)

Proof. It is well-known that τ(n) 6 2
√
n. Indeed the set of divisors of n can be divided into

pairs (d, n/d) and the least element of a pair is 6
√
n. Similarly the set of non-associated

Gaussian divisors of n can be divided into pairs (α, β) such that αβ ∼ n, where N(α) 6 n

or N(β) 6 n, so t(n) 6 πn/2.

Consider the functions

f(n) = n−1 log(2
√
n) = n−1

(
log 2 + (log n)/2

)
,

g(n) = n−1 log(πn/2) = n−1
(
log

π

2
+ (log n)

)
.

Both functions are decreasing for n > 3 because (n−1 log n)′ = n−2(1− log n). Then due to

the de�nition (1)

max
n>1

log τ(n)

n
= max

{
0,

log 2

2
,
log 3

3
, f(4)

}
=

log 2

2
,

max
n>1

log t(n)

n
= max

{
0,

log 3

2
, g(3)

}
=

log 3

2
.

Lemma 3.4. Let F : Z → C be a multiplicative function such that F (pa) = f(a), where

f(n)� nβ for some β > 0. Then

lim sup
n→∞

logF (n) llog n

log n
= sup

n>1

log f(n)

n
.
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Proof. See [9].

Lemma 3.5. Let f(t) > 0. If
∫ T
1
f(t) dt� g(T ), where g(T ) = Tα logβ T , α > 1, then

I(T ) :=

∫ T

1

f(t)

t
dt�

{
logβ+1 T if α = 1,

Tα−1 logβ T if α > 1.

Proof. Let us divide the interval of integration into parts:

I(T ) 6
log2 T∑
k=0

∫ T/2k

T/2k+1

f(t)

t
dt <

log2 T∑
k=0

1

T/2k+1

∫ T/2k

1

f(t)dt�
log2 T∑
k=0

g(T/2k)

T/2k+1
.

Now the lemma's statement follows from elementary estimates.

Lemma 3.6. Let T > 10 and |d− 1/2| � 1/ log T . Then we have the following estimates∫ d+iT

d−iT
|ζ(s)|4ds

s
� log5 T and

∫ d+iT

d−iT
|L(s, χ4)|4

ds

s
� log5 T,

for growing T .

Proof. The statement is the result of the application of Lemma 3.5 to the estimates [6, Th.

10.1, p. 75].

Lemma 3.7. Let θ > 0 be a value such that ζ(1/2 + it) � tθ as t → ∞, and let η > 0 be

arbitrarily small. Then

ζ(s)�


|t|1/2−(1−2θ)σ, σ ∈ [0, 1/2],

|t|2θ(1−σ), σ ∈ [1/2, 1− η],

|t|2θ(1−σ) log2/3 |t|, σ ∈ [1− η, 1],

log2/3 |t|, σ > 1.

The same estimates are valid for L(s, χ4) as well.

Proof. The statement follows from Phragm�en�Lindel�of principle, exact and approximate

functional equations for ζ(s) and L(s, χ4). See [4] and [10] for details.

The best modern result [3] is that θ 6 32/205 + ε.

4. Main results

First we give maximal orders of τ
(e)
∗ , t(e) and t

(e)
∗ .

The following theorem generalizes Lemma 3.4 to Gaussian integers; the proof's outline

follows the proof of Lemma 3.4 in [9].

Theorem 4.1. Let F : Z[i]→ C be a multiplicative function such that F (pa) = f(a), where

f(n)� nβ for some β > 0. Then

lim sup
α→∞

logF (α) llogN(α)

logN(α)
= sup

n>1

log f(n)

n
:= Kf .
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Proof. Let us �x arbitrarily small ε > 0.

Firstly, let us show that there are in�nitely many α such that

logF (α) llogN(α)

logN(α)
> Kf − ε.

By de�nition of Kf we can choose l such that
(
log f(l)

)
/l > Kf − ε/2. It follows from (3)

that for x > 2 the inequality
∑′

N(p)6x logN(p) > Ax holds, where 0 < A < 1.

Let q be an arbitrarily large Gaussian prime, N(q) > 2. Consider

r =
∑′

N(p)6N(q)

1 and α =
∏′

N(p)6N(q)

pl.

Then F (α) =
(
f(l)

)r
and we have

r logN(q) >
logN(α)

l
=

∑′

N(p)6N(q)

logN(p) > AN(q), (6)

logF (α) = r log f(l) >
logN(α)

logN(q)

log f(l)

l
. (7)

But (6) implies

logA+ logN(q) < log
logN(α)

l
6 llogN(α),

so logN(q) < llogN(α)− logA. Then it follows from (7) that

logF (α) >
logN(α)

llogN(α)− logA

log f(l)

l

and since
(
log f(l)

)
/l > Kf − ε/2 and A < 1 we have

logF (α) llogN(α)

logN(α)
>

llogN(α)

llogN(α)− logA
(Kf − ε/2) > Kf − ε.

Second, let us show the existence of N(ε) such that for all n > N(ε) we get

logF (n) llogN(α)

logN(α)
< (1 + ε)Kf .

Let us choose δ ∈ (0, ε) and η ∈
(
0, δ/(1 + δ)

)
. Suppose N(α) > 3, and put

ω := ω(α) =
(1 + δ)Kf

llogN(α)
, Ω := Ω(α) = log1−ηN(α).

By choice of δ and η we have

Ωω = exp(ω log Ω) = exp
(
(1− η)(1 + δ)Kf

)
> eKf .

Suppose that the canonical expansion of α is

α ∼ pa11 · · · parr qb11 · · · qbss ,
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where N(pk) 6 Ω and N(qk) > Ω. Then

F (α)

Nω(α)
=

r∏
k=1

f(ak)

Nωak(pk)
·

s∏
k=1

f(bk)

Nωbk(qk)
:= Π1 · Π2 (8)

Because of Ωω > eKf and Kf >
(
log f(bk)

)
/bk, we get

f(bk)

Nωbk(qk)
<
f(bk)

Ωωbk
<
f(bk)

eKf bk
6 1,

which implies Π2 6 1. Consider Π1. From the statement of the theorem we have f(n)� nβ,

so
f(ak)

Nωak(pk)
� aβk

(ω)akβ
� ω−β.

Then

log Π1 � Ω logw−β � log1−ηN(α) lllogN(α) = o

(
logN(α)

llogN(α)

)
And �nally by (8) we get

logF (n) = ω log n+ log Π1 + log Π2 =
(1 + δ)Kf log n

llog n
+

(ε− δ)Kf log n

llog n
.

Theorem 4.2.

lim sup
n→∞

log τ
(e)
∗ (n) llog n

log n
=

log 3

2
,

lim sup
α→∞

log t(e)(α) llogN(α)

logN(α)
=

log 2

2
,

lim sup
α→∞

log t
(e)
∗ (α) llogN(α)

logN(α)
=

log 3

2
.

Proof. The �rst statement follows from (4) and Lemma 3.4. The second and the third

statements follow from (4), (5) and Theorem 4.1.

A simple corollary of the Theorem 4.2 is that

τ (e)∗ (n)� nε, t(e)(α)� N ε(α), t(e)∗ (α)� N ε(α). (9)

Now we are ready to provide asymptotic formulas for sums of τ
(e)
∗ (n), t(e)(α), t

(e)
∗ (α).

Let us denote

G∗(s) :=
∑
n

τ (e)∗ (n)n−s, T∗(x) :=
∑
n6x

τ (e)∗ (n),

F (s) :=
∑′

α

t(e)(α)N−s(α), M(x) :=
∑′

N(α)6x

t(e)(α),

F∗(s) :=
∑′

α

t(e)∗ (α)N−s(α), M∗(x) :=
∑′

N(α)6x

t(e)∗ (α).
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Lemma 4.3.

G∗(s) =
ζ(s)ζ2(2s)ζ(5s)

ζ(3s)
K∗(s), (10)

F (s) =
Z(s)Z(2s)Z(6s)

Z(5s)Z(7s)
H(s), (11)

F∗(s) =
Z(s)Z2(2s)Z(5s)

Z(3s)
H∗(s), (12)

where Dirichlet series H(s) is absolutely convergent for Re s > 1/8 and the Dirichlet series

for H∗(s), K∗(s) are absolutely convergent for Re s > 1/6.

Proof. Bell series for t(e) have the following representation.

t
(e)
p (x) =

∞∑
k=0

t(e)(pk)xk = 1+x+2x2+2x3+3x4+2x5+4x6+O(x7) =
(1− x5)

(
1 +O(x7)

)
(1− x)(1− x2)(1− x6)

.

In the case of t
(e)
∗ we have

t
(e)
∗p (x) =

∞∑
k=0

t(e)∗ (pk)xk = 1+x+3x2+2x3+5x4+4x5+6x6+O(x7) =
(1− x3)

(
1 +O(x6)

)
(1− x)(1− x2)2(1− x5)

and the same for τ
(e)
∗p .

Now (10), (11) and (12) follow from the representations of G∗, F , F∗, ζ and Z in the

form of in�nite products by p or p:

G∗(s) =
∏
p

τ (e)∗p (p−s), ζ(s) =
∏
p

(1− p−s)−1,

F (s) =
∏
p

t
(e)
p (p−s), F∗(s) =

∏
p

t
(e)
∗p (p−s), Z(s) =

∏
p

(1− p−s)−1.

Theorem 4.4. T∗(x) = A1x + A2x
1/2 log x + A3x

1/2 + O(x1/3+ε), where A1, A2, A3 are

computable constants.

Proof. Identity (10) implies

τ (e)∗ = τ(1, 2, 2; ·) ? f, T∗(x) =
∑
n6x

T (1, 2, 2;x/n)f(n), (13)

where

τ(1, 2, 2;n) =
∑

ab2c2=n

1, T (1, 2, 2;x) :=
∑
n6x

τ(1, 2, 2;n) =
∑

ab2c26x

1,

and series
∑∞

n=1 f(n)n−σ is absolutely convergent for σ > 1/3. Due to [5, (6.4), (6.16)] we

have

T (1, 2, 2;x) = ζ2(2)x+
1

2
ζ(1

2
)x1/2 log x+

(
(2γ−1)ζ(1

2
) +

1

2
ζ ′(1

2
)
)
x1/2 +O(x8/25+ε). (14)
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Let us de�ne C1 = ζ2(2), C2 = ζ(1/2)/2, C3 = (2γ − 1)ζ(1/2) + ζ ′(1/2)/2 and

f1 =
∞∑
n=1

f(n)

n
, f2 =

∞∑
n=1

f(n)

n1/2
, f3 =

∞∑
n=1

f(n) log n

n1/2
.

One can get the following estimations.∑
n>x

f(n)

n
= O

(
x−2/3+ε

∑
n>x

f(n)

n1/3+ε

)
= O(x−2/3+ε), (15)

∑
n>x

f(n)

n1/2
= O

(
x−1/6+ε

∑
n>x

f(n)

n1/3+ε

)
= O(x−1/6+ε), (16)

∑
n>x

f(n) log n

n1/2
= O

(
x−1/6+ε

∑
n>x

f(n) log n

n1/3+ε

)
= O(x−1/6+ε). (17)

Finally we get by substitution of estimates (14), (15), (16) and (17) into (13)

T∗(x) = C1x
∑
n6x

f(n)

n
+ C2x

1/2 log x
∑
n6x

f(n)

n1/2
− C2x

1/2
∑
n6x

f(n) log n

n1/2
+ C3x

1/2
∑
n6x

f(n)

n1/2
+

+O(x8/25+ε) = C1f1x+ C2f2x
1/2 log x+ (C3f2 − C2f3)x

1/2 +O(x1/3+ε).

Lemma 4.5.

res
s=1

F (s)xs/s = Cx, res
s=1

F∗(s)x
s/s = C∗x, (18)

where

C =
π

4

∏
p

(
1 +

∞∑
a=2

τ(a)− τ(a− 1)

Na(p)

)
≈ 1,156 101, (19)

C∗ =
π

4

∏
p

(
1 +

∞∑
a=2

t(a)− t(a− 1)

Na(p)

)
≈ 1,524 172. (20)

Proof. As a consequence of the representation (11) we have

F (s)

Z(s)
=
∏
p

(
1 +

∞∑
a=1

τ(a)

Nas(p)

)
(1− p−1) =

∏
p

(
1 +

∞∑
a=2

τ(a)− τ(a− 1)

Nas(p)

)
,

and so function F (s)/Z(s) is regular in the neighbourhood of s = 1. At the same time we

have

res
s=1

Z(s) = L(1, χ4) res
s=1

ζ(s) =
π

4
,

which implies (19). The proof of (20) is similar.

Numerical values of C and C∗ in (19) and (20) were calculated in PARI/GP [7] with the

use of the transformation∏
p

f
(
N(p)

)
= f(2)

∏
p=4k+1

f(p)2
∏

p=4k+3

f(p2)

due to Lemma 3.1.
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Theorem 4.6.

M(x) = Cx+O(x1/2 log13/3 x), (21)

M∗(x) = C∗x+O(x1/2 log17/3 x), (22)

where C and C∗ were de�ned in (19) and (20).

Proof. By Perron formula and by (9) for c = 1 + 1/ log x, log T � log x we have

M(x) =
1

2πi

∫ c+iT

c−iT
F (s)xss−1 ds+O

(
x1+ε

T

)
.

Suppose d = 1/2 − 1/ log x. Let us shift the interval of integration to [d − iT, d + iT ]. To

do this consider an integral about a closed rectangle path with vertexes in d − iT , d + iT ,

c+ iT and c− iT . There are two poles in s = 1 and s = 1/2 inside the contour. The residue

at s = 1 was calculated in (18). The residue at s = 1/2 is equal to Dx1/2, D = const and

will be absorbed by error term (see below).

Identity (11) implies F (s) = Z(s)Z(2s)H(s), where H(s) is regular for Re s > 1/3, so

for each ε > 0 it is uniformly bounded for Re s > 1/3 + ε.

Let us estimate the error term using Lemma 3.6 and Lemma 3.7. The error term absorbs

values of integrals about three sides of the integration's rectangle. We take into account

Z(s) = ζ(s)L(s, χ4). On the horizontal segments we have∫ c+iT

d+iT

Z(s)Z(2s)
xs

s
ds � max

σ∈[d,c]
Z(σ + iT )Z(2σ + 2iT )xσT−1 �

� x1/2T 2θ−1 log4/3 T + xT−1 log4/3 T,

It is well-known that ζ(s) ∼ (s − 1)−1 in the neighborhood of s = 1. So on the vertical

segment we have∫ d+i

d

Z(s)Z(2s)
xs

s
ds� x1/2

∫ 1

0

ζ(2d+ 2it)dt� x1/2
∫ 1

0

dt

|it− 1/ log x|
� x1/2 log x,

∫ d+iT

d+i

Z(s)Z(2s)
xs

s
ds�

�
((∫ T

1

|ζ(1/2 + it)|4dt
t

∫ T

1

|L(1/2 + it, χ4)|4
dt

t

)1/2 ∫ T

1

|Z(1 + 2it)|2dt
t

)1/2

�

� x1/2(log5 T · log8/3+1 T )1/2 � x1/2 log13/3 T.

The choice T = x1/2+ε �nishes the proof of (21).

The proof of (22) is similar.
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