AN EXPONENTIAL DIVISOR FUNCTION OVER GAUSSIAN INTEGERS

Andrew V. Lelechenko

I.I. Mechnikov Odessa National University

Abstract

A.V. Lelechenko, An exponential divisor function over Gaussian integers, Math. Bull. Shevchenko Sci. Soc. 10 (2013), 65-74.

Let $\tau^{(e)}: \mathbb{Z} \rightarrow \mathbb{Z}$ be a multiplicative function such that $\tau^{(e)}\left(p^{a}\right)=\sum_{d \mid a} 1$. In the present paper we introduce generalizations of $\tau^{(e)}$ over the ring of Gaussian integers $\mathbb{Z}[i]$. We determine their maximal orders by proving a general result and establish asymptotic formulas for their average orders.

А.В. Лелеченко. Експонениійна функиія подільності над ґаусовими иілими числами // Мат. вісник НТШ. - 2013. - Т.10. - С. 65-74.

Нехай $\tau^{(e)}: \mathbb{Z} \rightarrow \mathbb{Z}$ - така мультиплікативна фукція, що $\tau^{(e)}\left(p^{a}\right)=\sum_{d \mid a} 1$. У статті означені узагальнення функції $\tau^{(e)}$ на кільце гаусових цілих чисел $\mathbb{Z}[i]$. Як наслідок загального результату визначено максимальні порядки таких функцій. Також побудовано асимптотичні формули для відповідних суматорних функцій.

1. Introduction

In 1972 M.V. Subbarao introduced [8] exponential divisor function $\tau^{(e)}: \mathbb{Z} \rightarrow \mathbb{Z}$, which is multiplicative and

$$
\tau^{(e)}\left(p^{a}\right)=\tau(a)
$$

where $\tau: \mathbb{Z} \rightarrow \mathbb{Z}$ stands for the usual divisor function. Erdös estimated its maximal order and Subbarao proved an asymptotic formula for $\sum_{n \leqslant x} \tau^{(e)}(n)$. Later Wu [11] gave a more precise estimation:

$$
\sum_{n \leqslant x} \tau^{(e)}(n)=A x+B x^{1 / 2}+O\left(x^{\theta_{1,2}+\varepsilon}\right),
$$

where A and B are computable constants, $\theta_{1,2}$ is an exponent in the error term of the estimation $\sum_{a b^{2} \leqslant x} 1=\zeta(2) x+\zeta(1 / 2) x^{1 / 2}+O\left(x^{\theta_{1,2}+\varepsilon}\right)$. The best modern result [2] yields the upper bound $\theta_{1,2} \leqslant 1057 / 4785$.

In the present paper we generalize the exponential divisor function over the ring of Gaussian integers $\mathbb{Z}[i]$. Namely we introduce multiplicative functions $\tau_{*}^{(e)}: \mathbb{Z} \rightarrow \mathbb{Z}, \mathfrak{t}^{(e)}$, $\mathfrak{t}_{*}^{(e)}: \mathbb{Z}[i] \rightarrow \mathbb{Z}$ such that

$$
\begin{equation*}
\tau_{*}^{(e)}\left(p^{a}\right)=\mathfrak{t}(a), \quad \mathfrak{t}^{(e)}\left(\mathfrak{p}^{a}\right)=\tau(a), \quad \mathfrak{t}_{*}^{(e)}\left(\mathfrak{p}^{a}\right)=\mathfrak{t}(a), \tag{1}
\end{equation*}
$$

where p is prime over \mathbb{Z}, \mathfrak{p} is prime over $\mathbb{Z}[i], \mathfrak{t}(a)$ is a number of non-associated in pairs Gaussian integer divisors of a.

The aims of this paper are to determine maximal orders of $\tau_{*}^{(e)}, \mathfrak{t}^{(e)}, \mathfrak{t}_{*}^{(e)}$ and to provide asymptotic formulas for $\sum_{n \leqslant x} \tau_{*}^{(e)}(n), \sum_{N(\alpha) \leqslant x}^{\prime} \mathfrak{t}^{(e)}(\alpha), \sum_{N(\alpha) \leqslant x}^{\prime} \mathfrak{t}_{*}^{(e)}(\alpha)$. A theorem on the maximal order of multiplicative functions over $\mathbb{Z}[i]$, generalizing [9], is also proved.

2. Notation

Let us denote the ring of Gaussian integers by $\mathbb{Z}[i], N(a+b i)=a^{2}+b^{2}$. In asymptotic relations we use \sim, \asymp, Landau symbols O and o, Vinogradov symbols \ll and \gg in their usual meanings. All asymptotic relations are written for the argument tending to the infinity. Letters \mathfrak{p} and \mathfrak{q} with or without indexes denote Gaussian primes; p and q denote rational primes.

As usual $\zeta(s)$ denotes the Riemann zeta-function, $L(s, \chi)$ is the Dirichlet L-function. Let χ_{4} be the single nonprincipal character modulo 4 , then $Z(s)=\zeta(s) L\left(s, \chi_{4}\right)$ is the Hecke zetafunction for the ring of Gaussian integers. Real and imaginary components of a complex number s are denoted by $\sigma:=\operatorname{Re} s$ and $t:=\operatorname{Im} s$, so $s=\sigma+i t$. We use abbreviations $\log x:=\log \log x, 1 l \log x:=\log \log \log x$.

The notation \sum^{\prime} means the summation over non-associated elements of $\mathbb{Z}[i]$, and Π^{\prime} means the similar relative to multiplication. Notation $a \sim b$ means that a and b are associated, that is $a / b \in\{ \pm 1, \pm i\}$. But in asymptotic relations \sim preserves its usual meaning.

The letter γ denotes the Euler-Mascheroni constant. Everywhere $\varepsilon>0$ is an arbitrarily small number (not always the same). We write $f \star g$ for the notation of the Dirichlet convolution

$$
(f \star g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

3. Preliminary lemmas

We need the following auxiliary results.
Lemma 3.1 (Gauss's criterion). Gaussian integer \mathfrak{p} is prime if and only if one of the following cases holds:

- $\mathfrak{p} \sim 1+i$,
- $\mathfrak{p} \sim p$, where $p \equiv 3(\bmod 4)$,
- $N(\mathfrak{p})=p$, where $p \equiv 1(\bmod 4)$.

In the last case there are exactly two non-associated \mathfrak{p}_{1} and \mathfrak{p}_{2} such that $N\left(\mathfrak{p}_{1}\right)=N\left(\mathfrak{p}_{2}\right)=p$.

Proof. See [1, §34].

Lemma 3.2.

$$
\begin{array}{r}
\sum_{N(\mathfrak{p}) \leqslant x}^{\prime} 1 \sim \frac{x}{\log x}, \\
\sum_{N(\mathfrak{p}) \leqslant x}^{\prime} \log N(\mathfrak{p}) \sim x, \tag{3}
\end{array}
$$

Proof. Taking into account Gauss's criterion and the asymptotic law of distribution of primes in the arithmetic progression we get

$$
\begin{aligned}
\sum_{N(\mathfrak{p}) \leqslant x}^{\prime} 1 \sim \#\{p \mid p \equiv 3(\bmod 4), p \leqslant \sqrt{x}\}+2 \#\{p \mid & p \equiv 1(\bmod 4), p \leqslant x\} \sim \\
& \sim \frac{\sqrt{x}}{\varphi(4) \log x / 2}+2 \frac{x}{\varphi(4) \log x}=\frac{x}{\log x}
\end{aligned}
$$

A partial summation with use of (2) gives us the second statement of the lemma.

Lemma 3.3.

$$
\begin{align*}
& \max _{n \geqslant 1} \frac{\log \tau(n)}{n}=\frac{\log 2}{2}, \tag{4}\\
& \max _{n \geqslant 1} \frac{\log \mathfrak{t}(n)}{n}=\frac{\log 3}{2} . \tag{5}
\end{align*}
$$

Proof. It is well-known that $\tau(n) \leqslant 2 \sqrt{n}$. Indeed the set of divisors of n can be divided into pairs $(d, n / d)$ and the least element of a pair is $\leqslant \sqrt{n}$. Similarly the set of non-associated Gaussian divisors of n can be divided into pairs (α, β) such that $\alpha \beta \sim n$, where $N(\alpha) \leqslant n$ or $N(\beta) \leqslant n$, so $\mathfrak{t}(n) \leqslant \pi n / 2$.

Consider the functions

$$
\begin{aligned}
f(n) & =n^{-1} \log (2 \sqrt{n})=n^{-1}(\log 2+(\log n) / 2) \\
g(n) & =n^{-1} \log (\pi n / 2)=n^{-1}\left(\log \frac{\pi}{2}+(\log n)\right)
\end{aligned}
$$

Both functions are decreasing for $n \geqslant 3$ because $\left(n^{-1} \log n\right)^{\prime}=n^{-2}(1-\log n)$. Then due to the definition (1)

$$
\begin{aligned}
& \max _{n \geqslant 1} \frac{\log \tau(n)}{n}=\max \left\{0, \frac{\log 2}{2}, \frac{\log 3}{3}, f(4)\right\}=\frac{\log 2}{2} \\
& \max _{n \geqslant 1} \frac{\log \mathfrak{t}(n)}{n}=\max \left\{0, \frac{\log 3}{2}, g(3)\right\}=\frac{\log 3}{2}
\end{aligned}
$$

Lemma 3.4. Let $F: \mathbb{Z} \rightarrow \mathbb{C}$ be a multiplicative function such that $F\left(p^{a}\right)=f(a)$, where $f(n) \ll n^{\beta}$ for some $\beta>0$. Then

$$
\limsup _{n \rightarrow \infty} \frac{\log F(n) \log n}{\log n}=\sup _{n \geqslant 1} \frac{\log f(n)}{n} .
$$

Proof. See [9].
Lemma 3.5. Let $f(t) \geqslant 0$. If $\int_{1}^{T} f(t) d t \ll g(T)$, where $g(T)=T^{\alpha} \log ^{\beta} T, \alpha \geqslant 1$, then

$$
I(T):=\int_{1}^{T} \frac{f(t)}{t} d t \ll\left\{\begin{array}{cl}
\log ^{\beta+1} T & \text { if } \alpha=1 \\
T^{\alpha-1} \log ^{\beta} T & \text { if } \alpha>1
\end{array}\right.
$$

Proof. Let us divide the interval of integration into parts:

$$
I(T) \leqslant \sum_{k=0}^{\log _{2} T} \int_{T / 2^{k+1}}^{T / 2^{k}} \frac{f(t)}{t} d t<\sum_{k=0}^{\log _{2} T} \frac{1}{T / 2^{k+1}} \int_{1}^{T / 2^{k}} f(t) d t \ll \sum_{k=0}^{\log _{2} T} \frac{g\left(T / 2^{k}\right)}{T / 2^{k+1}} .
$$

Now the lemma's statement follows from elementary estimates.
Lemma 3.6. Let $T>10$ and $|d-1 / 2| \ll 1 / \log T$. Then we have the following estimates

$$
\int_{d-i T}^{d+i T}|\zeta(s)|^{4} \frac{d s}{s} \ll \log ^{5} T \quad \text { and } \quad \int_{d-i T}^{d+i T}\left|L\left(s, \chi_{4}\right)\right|^{4} \frac{d s}{s} \ll \log ^{5} T,
$$

for growing T.
Proof. The statement is the result of the application of Lemma 3.5 to the estimates $[6, \mathrm{Th}$. 10.1, p. 75].

Lemma 3.7. Let $\theta>0$ be a value such that $\zeta(1 / 2+i t) \ll t^{\theta}$ as $t \rightarrow \infty$, and let $\eta>0$ be arbitrarily small. Then

$$
\zeta(s) \ll\left\{\begin{array}{cc}
|t|^{1 / 2-(1-2 \theta) \sigma}, & \sigma \in[0,1 / 2], \\
|t|^{2 \theta(1-\sigma)}, & \sigma \in[1 / 2,1-\eta], \\
|t|^{2 \theta(1-\sigma)} \log ^{2 / 3}|t|, & \sigma \in[1-\eta, 1], \\
\log ^{2 / 3}|t|, & \sigma \geqslant 1 .
\end{array}\right.
$$

The same estimates are valid for $L\left(s, \chi_{4}\right)$ as well.
Proof. The statement follows from Phragmén-Lindelöf principle, exact and approximate functional equations for $\zeta(s)$ and $L\left(s, \chi_{4}\right)$. See [4] and [10] for details.

The best modern result [3] is that $\theta \leqslant 32 / 205+\varepsilon$.

4. Main results

First we give maximal orders of $\tau_{*}^{(e)}, \mathfrak{t}^{(e)}$ and $\mathfrak{t}_{*}^{(e)}$.
The following theorem generalizes Lemma 3.4 to Gaussian integers; the proof's outline follows the proof of Lemma 3.4 in [9].

Theorem 4.1. Let $F: \mathbb{Z}[i] \rightarrow \mathbb{C}$ be a multiplicative function such that $F\left(\mathfrak{p}^{a}\right)=f(a)$, where $f(n) \ll n^{\beta}$ for some $\beta>0$. Then

$$
\limsup _{\alpha \rightarrow \infty} \frac{\log F(\alpha) \log N(\alpha)}{\log N(\alpha)}=\sup _{n \geqslant 1} \frac{\log f(n)}{n}:=K_{f} .
$$

Proof. Let us fix arbitrarily small $\varepsilon>0$.
Firstly, let us show that there are infinitely many α such that

$$
\frac{\log F(\alpha) \log N(\alpha)}{\log N(\alpha)}>K_{f}-\varepsilon .
$$

By definition of K_{f} we can choose l such that $(\log f(l)) / l>K_{f}-\varepsilon / 2$. It follows from (3) that for $x \geqslant 2$ the inequality $\sum_{N(\mathfrak{p}) \leqslant x}^{\prime} \log N(\mathfrak{p})>A x$ holds, where $0<A<1$.

Let \mathfrak{q} be an arbitrarily large Gaussian prime, $N(\mathfrak{q}) \geqslant 2$. Consider

$$
r=\sum_{N(\mathfrak{p}) \leqslant N(\mathfrak{q})}^{\prime} 1 \quad \text { and } \quad \alpha=\prod_{N(\mathfrak{p}) \leqslant N(\mathfrak{q})}^{\prime} \mathfrak{p}^{l} .
$$

Then $F(\alpha)=(f(l))^{r}$ and we have

$$
\begin{gather*}
r \log N(\mathfrak{q}) \geqslant \frac{\log N(\alpha)}{l}=\sum_{N(\mathfrak{p}) \leqslant N(\mathfrak{q})}^{\prime} \log N(\mathfrak{p})>A N(\mathfrak{q}), \tag{6}\\
\log F(\alpha)=r \log f(l) \geqslant \frac{\log N(\alpha)}{\log N(\mathfrak{q})} \frac{\log f(l)}{l} . \tag{7}
\end{gather*}
$$

But (6) implies

$$
\log A+\log N(\mathfrak{q})<\log \frac{\log N(\alpha)}{l} \leqslant \log N(\alpha),
$$

so $\log N(\mathfrak{q})<\operatorname{llog} N(\alpha)-\log A$. Then it follows from (7) that

$$
\log F(\alpha)>\frac{\log N(\alpha)}{\log N(\alpha)-\log A} \frac{\log f(l)}{l}
$$

and since $(\log f(l)) / l>K_{f}-\varepsilon / 2$ and $A<1$ we have

$$
\frac{\log F(\alpha) \log N(\alpha)}{\log N(\alpha)}>\frac{\log N(\alpha)}{\log N(\alpha)-\log A}\left(K_{f}-\varepsilon / 2\right)>K_{f}-\varepsilon .
$$

Second, let us show the existence of $N(\varepsilon)$ such that for all $n \geqslant N(\varepsilon)$ we get

$$
\frac{\log F(n) \log N(\alpha)}{\log N(\alpha)}<(1+\varepsilon) K_{f} .
$$

Let us choose $\delta \in(0, \varepsilon)$ and $\eta \in(0, \delta /(1+\delta))$. Suppose $N(\alpha) \geqslant 3$, and put

$$
\omega:=\omega(\alpha)=\frac{(1+\delta) K_{f}}{\log N(\alpha)}, \quad \Omega:=\Omega(\alpha)=\log ^{1-\eta} N(\alpha) .
$$

By choice of δ and η we have

$$
\Omega^{\omega}=\exp (\omega \log \Omega)=\exp \left((1-\eta)(1+\delta) K_{f}\right)>e^{K_{f}} .
$$

Suppose that the canonical expansion of α is

$$
\alpha \sim \mathfrak{p}_{1}^{a_{1}} \cdots p_{r}^{a_{r}} \mathfrak{q}_{1}^{b_{1}} \cdots \mathfrak{q}_{s}^{b_{s}},
$$

where $N\left(\mathfrak{p}_{k}\right) \leqslant \Omega$ and $N\left(\mathfrak{q}_{k}\right)>\Omega$. Then

$$
\begin{equation*}
\frac{F(\alpha)}{N^{\omega}(\alpha)}=\prod_{k=1}^{r} \frac{f\left(a_{k}\right)}{N^{\omega a_{k}}\left(\mathfrak{p}_{k}\right)} \cdot \prod_{k=1}^{s} \frac{f\left(b_{k}\right)}{N^{\omega b_{k}}\left(\mathfrak{q}_{k}\right)}:=\Pi_{1} \cdot \Pi_{2} \tag{8}
\end{equation*}
$$

Because of $\Omega^{\omega}>e^{K_{f}}$ and $K_{f} \geqslant\left(\log f\left(b_{k}\right)\right) / b_{k}$, we get

$$
\frac{f\left(b_{k}\right)}{N^{\omega} b_{k}\left(q_{k}\right)}<\frac{f\left(b_{k}\right)}{\Omega^{\omega b_{k}}}<\frac{f\left(b_{k}\right)}{e^{K_{f} b_{k}}} \leqslant 1,
$$

which implies $\Pi_{2} \leqslant 1$. Consider Π_{1}. From the statement of the theorem we have $f(n) \ll n^{\beta}$, so

$$
\frac{f\left(a_{k}\right)}{N^{\omega a_{k}}\left(p_{k}\right)} \ll \frac{a_{k}^{\beta}}{(\omega)^{a_{k} \beta}} \ll \omega^{-\beta} .
$$

Then

$$
\log \Pi_{1} \ll \Omega \log w^{-\beta} \ll \log ^{1-\eta} N(\alpha) 11 \log N(\alpha)=o\left(\frac{\log N(\alpha)}{\log N(\alpha)}\right)
$$

And finally by (8) we get

$$
\log F(n)=\omega \log n+\log \Pi_{1}+\log \Pi_{2}=\frac{(1+\delta) K_{f} \log n}{\log n}+\frac{(\varepsilon-\delta) K_{f} \log n}{\log n} .
$$

Theorem 4.2.

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{\log \tau_{*}^{(e)}(n) \log n}{\log n}=\frac{\log 3}{2}, \\
& \limsup _{\alpha \rightarrow \infty} \frac{\log \mathfrak{t}^{(e)}(\alpha) \log N(\alpha)}{\log N(\alpha)}=\frac{\log 2}{2}, \\
& \limsup _{\alpha \rightarrow \infty} \frac{\log \mathfrak{t}_{*}^{(e)}(\alpha) \log N(\alpha)}{\log N(\alpha)}=\frac{\log 3}{2} .
\end{aligned}
$$

Proof. The first statement follows from (4) and Lemma 3.4. The second and the third statements follow from (4), (5) and Theorem 4.1.

A simple corollary of the Theorem 4.2 is that

$$
\begin{equation*}
\tau_{*}^{(e)}(n) \ll n^{\varepsilon}, \quad \mathfrak{t}^{(e)}(\alpha) \ll N^{\varepsilon}(\alpha), \quad \mathfrak{t}_{*}^{(e)}(\alpha) \ll N^{\varepsilon}(\alpha) . \tag{9}
\end{equation*}
$$

Now we are ready to provide asymptotic formulas for sums of $\tau_{*}^{(e)}(n), \mathfrak{t}^{(e)}(\alpha), \mathfrak{t}_{*}^{(e)}(\alpha)$.
Let us denote

$$
\begin{aligned}
G_{*}(s):=\sum_{n} \tau_{*}^{(e)}(n) n^{-s}, & T_{*}(x):=\sum_{n \leqslant x} \tau_{*}^{(e)}(n), \\
F(s):=\sum_{\alpha}^{\prime} \mathfrak{t}^{(e)}(\alpha) N^{-s}(\alpha), & M(x):=\sum_{N(\alpha) \leqslant x}^{\prime} \mathfrak{t}^{(e)}(\alpha), \\
F_{*}(s):=\sum_{\alpha}^{\prime} \mathfrak{t}_{*}^{(e)}(\alpha) N^{-s}(\alpha), & M_{*}(x):=\sum_{N(\alpha) \leqslant x}^{\prime} \mathfrak{t}_{*}^{(e)}(\alpha) .
\end{aligned}
$$

Lemma 4.3.

$$
\begin{align*}
G_{*}(s) & =\frac{\zeta(s) \zeta^{2}(2 s) \zeta(5 s)}{\zeta(3 s)} K_{*}(s) \tag{10}\\
F(s) & =\frac{Z(s) Z(2 s) Z(6 s)}{Z(5 s) Z(7 s)} H(s) \tag{11}\\
F_{*}(s) & =\frac{Z(s) Z^{2}(2 s) Z(5 s)}{Z(3 s)} H_{*}(s) \tag{12}
\end{align*}
$$

where Dirichlet series $H(s)$ is absolutely convergent for $\operatorname{Re} s>1 / 8$ and the Dirichlet series for $H_{*}(s), K_{*}(s)$ are absolutely convergent for $\operatorname{Re} s>1 / 6$.

Proof. Bell series for $\mathfrak{t}^{(e)}$ have the following representation.
$\mathfrak{t}_{\mathfrak{p}}^{(e)}(x)=\sum_{k=0}^{\infty} \mathfrak{t}^{(e)}\left(\mathfrak{p}^{k}\right) x^{k}=1+x+2 x^{2}+2 x^{3}+3 x^{4}+2 x^{5}+4 x^{6}+O\left(x^{7}\right)=\frac{\left(1-x^{5}\right)\left(1+O\left(x^{7}\right)\right)}{(1-x)\left(1-x^{2}\right)\left(1-x^{6}\right)}$.
In the case of $\mathfrak{t}_{*}^{(e)}$ we have
$\mathfrak{t}_{* \mathfrak{p}}^{(e)}(x)=\sum_{k=0}^{\infty} \mathfrak{t}_{*}^{(e)}\left(\mathfrak{p}^{k}\right) x^{k}=1+x+3 x^{2}+2 x^{3}+5 x^{4}+4 x^{5}+6 x^{6}+O\left(x^{7}\right)=\frac{\left(1-x^{3}\right)\left(1+O\left(x^{6}\right)\right)}{(1-x)\left(1-x^{2}\right)^{2}\left(1-x^{5}\right)}$
and the same for $\tau_{* p}^{(e)}$.
Now (10), (11) and (12) follow from the representations of G_{*}, F, F_{*}, ζ and Z in the form of infinite products by p or \mathfrak{p} :

$$
\begin{gathered}
G_{*}(s)=\prod_{p} \tau_{* p}^{(e)}\left(p^{-s}\right), \quad \zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1} \\
F(s)=\prod_{\mathfrak{p}} \mathfrak{t}_{\mathfrak{p}}^{(e)}\left(\mathfrak{p}^{-s}\right), \quad F_{*}(s)=\prod_{\mathfrak{p}} \mathfrak{f}_{* \mathfrak{p}}^{(e)}\left(\mathfrak{p}^{-s}\right), \quad Z(s)=\prod_{\mathfrak{p}}\left(1-\mathfrak{p}^{-s}\right)^{-1} .
\end{gathered}
$$

Theorem 4.4. $T_{*}(x)=A_{1} x+A_{2} x^{1 / 2} \log x+A_{3} x^{1 / 2}+O\left(x^{1 / 3+\varepsilon}\right)$, where A_{1}, A_{2}, A_{3} are computable constants.

Proof. Identity (10) implies

$$
\begin{equation*}
\tau_{*}^{(e)}=\tau(1,2,2 ; \cdot) \star f, \quad T_{*}(x)=\sum_{n \leqslant x} T(1,2,2 ; x / n) f(n), \tag{13}
\end{equation*}
$$

where

$$
\tau(1,2,2 ; n)=\sum_{a b^{2} c^{2}=n} 1, \quad T(1,2,2 ; x):=\sum_{n \leqslant x} \tau(1,2,2 ; n)=\sum_{a b^{2} c^{2} \leqslant x} 1,
$$

and series $\sum_{n=1}^{\infty} f(n) n^{-\sigma}$ is absolutely convergent for $\sigma>1 / 3$. Due to $[5,(6.4),(6.16)]$ we have

$$
\begin{equation*}
T(1,2,2 ; x)=\zeta^{2}(2) x+\frac{1}{2} \zeta\left(\frac{1}{2}\right) x^{1 / 2} \log x+\left((2 \gamma-1) \zeta\left(\frac{1}{2}\right)+\frac{1}{2} \zeta^{\prime}\left(\frac{1}{2}\right)\right) x^{1 / 2}+O\left(x^{8 / 25+\varepsilon}\right) \tag{14}
\end{equation*}
$$

Let us define $C_{1}=\zeta^{2}(2), C_{2}=\zeta(1 / 2) / 2, C_{3}=(2 \gamma-1) \zeta(1 / 2)+\zeta^{\prime}(1 / 2) / 2$ and

$$
f_{1}=\sum_{n=1}^{\infty} \frac{f(n)}{n}, \quad f_{2}=\sum_{n=1}^{\infty} \frac{f(n)}{n^{1 / 2}}, \quad f_{3}=\sum_{n=1}^{\infty} \frac{f(n) \log n}{n^{1 / 2}} .
$$

One can get the following estimations.

$$
\begin{align*}
\sum_{n>x} \frac{f(n)}{n} & =O\left(x^{-2 / 3+\varepsilon} \sum_{n>x} \frac{f(n)}{n^{1 / 3+\varepsilon}}\right)=O\left(x^{-2 / 3+\varepsilon}\right), \tag{15}\\
\sum_{n>x} \frac{f(n)}{n^{1 / 2}} & =O\left(x^{-1 / 6+\varepsilon} \sum_{n>x} \frac{f(n)}{n^{1 / 3+\varepsilon}}\right)=O\left(x^{-1 / 6+\varepsilon}\right), \tag{16}\\
\sum_{n>x} \frac{f(n) \log n}{n^{1 / 2}} & =O\left(x^{-1 / 6+\varepsilon} \sum_{n>x} \frac{f(n) \log n}{n^{1 / 3+\varepsilon}}\right)=O\left(x^{-1 / 6+\varepsilon}\right) . \tag{17}
\end{align*}
$$

Finally we get by substitution of estimates (14), (15), (16) and (17) into (13)

$$
\begin{gathered}
T_{*}(x)=C_{1} x \sum_{n \leqslant x} \frac{f(n)}{n}+C_{2} x^{1 / 2} \log x \sum_{n \leqslant x} \frac{f(n)}{n^{1 / 2}}-C_{2} x^{1 / 2} \sum_{n \leqslant x} \frac{f(n) \log n}{n^{1 / 2}}+C_{3} x^{1 / 2} \sum_{n \leqslant x} \frac{f(n)}{n^{1 / 2}}+ \\
+O\left(x^{8 / 25+\varepsilon}\right)=C_{1} f_{1} x+C_{2} f_{2} x^{1 / 2} \log x+\left(C_{3} f_{2}-C_{2} f_{3}\right) x^{1 / 2}+O\left(x^{1 / 3+\varepsilon}\right) .
\end{gathered}
$$

Lemma 4.5.

$$
\begin{equation*}
\underset{s=1}{\operatorname{res}} F(s) x^{s} / s=C x, \quad \underset{s=1}{\operatorname{res}} F_{*}(s) x^{s} / s=C_{*} x, \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& C=\frac{\pi}{4} \prod_{\mathfrak{p}}\left(1+\sum_{a=2}^{\infty} \frac{\tau(a)-\tau(a-1)}{N^{a}(\mathfrak{p})}\right) \approx 1,156101, \tag{19}\\
& C_{*}=\frac{\pi}{4} \prod_{\mathfrak{p}}\left(1+\sum_{a=2}^{\infty} \frac{\mathfrak{t}(a)-\mathfrak{t}(a-1)}{N^{a}(\mathfrak{p})}\right) \approx 1,524172 . \tag{20}
\end{align*}
$$

Proof. As a consequence of the representation (11) we have

$$
\frac{F(s)}{Z(s)}=\prod_{p}\left(1+\sum_{a=1}^{\infty} \frac{\tau(a)}{N^{a s}(\mathfrak{p})}\right)\left(1-\mathfrak{p}^{-1}\right)=\prod_{\mathfrak{p}}\left(1+\sum_{a=2}^{\infty} \frac{\tau(a)-\tau(a-1)}{N^{a s}(\mathfrak{p})}\right)
$$

and so function $F(s) / Z(s)$ is regular in the neighbourhood of $s=1$. At the same time we have

$$
\operatorname{res}_{s=1}^{\operatorname{res}} Z(s)=L\left(1, \chi_{4}\right) \underset{s=1}{\operatorname{res}} \zeta(s)=\frac{\pi}{4},
$$

which implies (19). The proof of (20) is similar.
Numerical values of C and C_{*} in (19) and (20) were calculated in PARI/GP [7] with the use of the transformation

$$
\prod_{\mathfrak{p}} f(N(\mathfrak{p}))=f(2) \prod_{p=4 k+1} f(p)^{2} \prod_{p=4 k+3} f\left(p^{2}\right)
$$

due to Lemma 3.1.

Theorem 4.6.

$$
\begin{align*}
M(x) & =C x+O\left(x^{1 / 2} \log ^{13 / 3} x\right) \tag{21}\\
M_{*}(x) & =C_{*} x+O\left(x^{1 / 2} \log ^{17 / 3} x\right) \tag{22}
\end{align*}
$$

where C and C_{*} were defined in (19) and (20).

Proof. By Perron formula and by (9) for $c=1+1 / \log x, \log T \asymp \log x$ we have

$$
M(x)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} F(s) x^{s} s^{-1} d s+O\left(\frac{x^{1+\varepsilon}}{T}\right)
$$

Suppose $d=1 / 2-1 / \log x$. Let us shift the interval of integration to $[d-i T, d+i T]$. To do this consider an integral about a closed rectangle path with vertexes in $d-i T, d+i T$, $c+i T$ and $c-i T$. There are two poles in $s=1$ and $s=1 / 2$ inside the contour. The residue at $s=1$ was calculated in (18). The residue at $s=1 / 2$ is equal to $D x^{1 / 2}, D=$ const and will be absorbed by error term (see below).

Identity (11) implies $F(s)=Z(s) Z(2 s) H(s)$, where $H(s)$ is regular for $\operatorname{Re} s>1 / 3$, so for each $\varepsilon>0$ it is uniformly bounded for $\operatorname{Re} s>1 / 3+\varepsilon$.

Let us estimate the error term using Lemma 3.6 and Lemma 3.7. The error term absorbs values of integrals about three sides of the integration's rectangle. We take into account $Z(s)=\zeta(s) L\left(s, \chi_{4}\right)$. On the horizontal segments we have

$$
\begin{aligned}
\int_{d+i T}^{c+i T} Z(s) Z(2 s) \frac{x^{s}}{s} d s & \ll \max _{\sigma \in[d, c]} Z(\sigma+i T) Z(2 \sigma+2 i T) x^{\sigma} T^{-1} \ll \\
& \ll x^{1 / 2} T^{2 \theta-1} \log ^{4 / 3} T+x T^{-1} \log ^{4 / 3} T
\end{aligned}
$$

It is well-known that $\zeta(s) \sim(s-1)^{-1}$ in the neighborhood of $s=1$. So on the vertical segment we have

$$
\begin{aligned}
& \int_{d}^{d+i} Z(s) Z(2 s) \frac{x^{s}}{s} d s \ll x^{1 / 2} \int_{0}^{1} \zeta(2 d+2 i t) d t \ll x^{1 / 2} \int_{0}^{1} \frac{d t}{|i t-1 / \log x|} \ll x^{1 / 2} \log x \\
& \begin{aligned}
\int_{d+i}^{d+i T} Z(s) Z(2 s) \frac{x^{s}}{s} d s \ll
\end{aligned} \\
& \ll\left(\left(\int_{1}^{T}|\zeta(1 / 2+i t)|^{4} \frac{d t}{t} \int_{1}^{T}\left|L\left(1 / 2+i t, \chi_{4}\right)\right|^{4} \frac{d t}{t}\right)^{1 / 2} \int_{1}^{T}|Z(1+2 i t)|^{2} \frac{d t}{t}\right)^{1 / 2} \ll \\
& \ll x^{1 / 2}\left(\log ^{5} T \cdot \log ^{8 / 3+1} T\right)^{1 / 2} \ll x^{1 / 2} \log ^{13 / 3} T
\end{aligned}
$$

The choice $T=x^{1 / 2+\varepsilon}$ finishes the proof of (21).
The proof of (22) is similar.

REFERENCES

1. C.F. Gauss, Theoria residuorum biquadraticorum, Commentatio secunda, Comm. Soc. Reg. Sci. Göttingen 7 (1832), 1-34.
2. S.W. Graham, G. Kolesnik, On the difference between consecutive squarefree integers, Acta Arith. 49:5 (1988), 435-447.
3. M.N. Huxley, Exponential sums and the Riemann zeta function V, Proc. Lond. Math. Soc. 90:1 (2005), 1-41.
4. A. Ivić, The Riemann Zeta-function: Theory and Applications. Mineola, New York : Dover Publications (2003), 562 p .
5. E. Krätzel, Lattice points, Dordrecht, Boston: Kluwer Academic Publishers (1988), 320 p.
6. H.L. Montgomery, Topics in multiplicative number theory, Springer Verlag, 227 (1971), 178 p.
7. The PARI Group, Bordeaux, PARI/GP, Version 2.6.0, (2012); http://pari.math.u-bordeaux.fr/.
8. M.V. Subbarao, On some arithmetic convolutions, The theory of arithmetical functions: Proceedings of the Conference at Western Michigan University, April 29 - May 1, 1971, Springer Verlag, 251 (1972), 247-271.
9. D. Suryanarayana, R. Sita Rama Chandra Rao, On the true maximum order of a class of arithmetic functions, Math. J. Okayama Univ. 17 (1975), 95-101.
10. E.C. Titchmarsh, The theory of the Riemann Zeta-function, NY: Oxford University Press (1986), 412 р.
11. J. Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, J. Théor. Nombres Bordeaux. 7:1 (1995), 133-141.
