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In present paper we consider a problem of constructing of asympto-
tical solutions to a singularly perturbed non-linear system with dege-
nerations and pulses at the fixed moments of time. Here we propose an
algorithm of constructing of asymptotical approximation to the soluti-
ons and prove a theorem on asymptotical estimation for constructed
m-approximation of this solution.

INTRODUCTION

Study of differential equations with degenerative matrix at derivatives is an
actual and important problem of the up-to-date theory of differential equa-
tions [6,9,12, 15,16]. Different aspects of the problem were considered in a
number of papers. Indeed, in [6] there were investigated the linear singular
perturbed differential equations with degenerations by means of method
of transformation method of two matrices to a canonical form. In [12] it
was proposed an operator method for analysis of the same problem. Here
it would be mentioned that the main attention in papers devoted to the
studying of degenerative singular perturbed differential equations was paid
to development of different algorithms of constructing of (formal) asymptoti-
cal solutions of such differential equations and to their decomposition [T].
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The papers [8,11] deal with a problem of constructing of asymptotical
solutions for linear degenerative singular perturbed systems of differenti-
al equations with pulses [2] and establishment of asymptotical estimation
for the constructed approximative (asymptotical) solution. Similar problems
have a great practical significance because such differential equations appear
as mathematical models in case when different physical processes and phe-
nomenon are examined [13,17]. It should be noted, that by studying systems
of differential equations with pulses we have necessarily to take into account
that such systems are essentially non-linear even in a case of linear differenti-
al equations and have some so-called specific properties caused by presents
of pulse conditions [3,14].

This paper deals with a problem of constructing of asymptotical soluti-
ons for the non-linear degenerative singular perturbed system of differential
equations with pulses at the fixed moments of time. We develop an algorithm
of constructing of asymptotic solution on the basis of methods [10, 18] and
establish an estimation for constructed m-approximated solution.

FORMULATION OF PROBLEM AND MAIN ASSUMPTIONS

We consider a singularly perturbed non-linear system

eB()S = f(t,2) (1)
with pulses
Azli=t; = z(t; +0) —z(t; — 0) = L;(z(t; - 0)), JEN, (2)

at the fixed moments of time t;, j € N, where tj4; —t; > 6 > 0, j € N,
t1 > tg, and § is some number. Here z(t,e) and f(f,z) are n-dimension
vectors; B(t) is the degenerated matrix of order n x n. The problem (1), (2)
is supposed to have a solution.

By a solution of the problem (1), (2) we mean a infinity differentiable
vector-function z(t,€) (for all t # ¢;, t € N) that has the first type break at
the points of pulses ¢;, j € N, and is left-hand continuous at these points.

Suppose that the following assumptions holds:

1°. Elements of matrix B(t) are infinitely differentiable for all ¢ € [tg, T

20, The vector-function f(z,t) has continuous partial derivations for all
arguments of any power on every intervals [tj,t;4+1), € N.

49, The determinant det B(¢) = 0 for all ¢ € [to; T



Asymptotical solutions to singularly perturbed systems ... 263

59. The unperturbed problem (equation (1) when € = 0, i.e.

flt,z2)=0 (3)

under condition (2)) has a solution z = (t), which is the infinitely differenti-
able vector-function everywhere except points ¢;, j € N.

6°. The determinant ¥(t) = (%ﬁ) lz=4(z) i8 not zero.

7°. The vector-functions I;(z), j € N, are infinitely differentiable for all
t € to, T].

89. The matrix ®;(t) = (gzl) lz=p()» J € N, satisfies the following condi-
tion:

det(®;(t;) - E)#0, jeN, for all te [t;T].

9°. The bundle of matrices L(¢,A) = ¥(¢) — AB(t) has an unique s-
multiple ,finite" elementary divisor and an unique p-multiple ,infinite* ele-
mentary divisor (for all ¢ € [tg,T]) and s + p = n.

Let us develop an algorithm for constructing of approximative (asympto-
tical) solution of the problem (1), (2) and give its justification.

CONSTRUCTION OF ASYMPTOTICAL SOLUTION
The solution of the problem (1), (2) we represent as sum of two vectors
z(t,€) = u(t,e) + Iz(t, 7,¢), (4)

every of which is supposed to be realized by asymptotical series on small
parameter ¢ as follows:

o0
ut,e) = > eFux(t), (5)

k=0
HZ‘(T,E) = ZHiU(Tj,E), T= (TI)T2aT3:"‘): (6)

t;<t
where
= t—t; .
Mz(rj,e) = Y _eMga(ry), 7= "‘E_J jeN. (7)
k=0

Series (5) are the regular part and series (6) are the singular part of the
asymptotical solution (4). Boundary vector-functions IIxz(7;), & = 0,1,...,
are supposed to be defined for 7; > 0 for all j € N.
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Firstly we describe an algorithm of constructing of the asymptotical
solution (4). Substituting the expression (4) into equation (1) we have

eB(t) (@gfl +el dﬂ"’gf’ 8)) = F(t,ult,) + a(t, 7, €)).

Without restriction of generality we will consider the given system of
differential equations at any point ¢; € {t1,%9,t3,...}. Terms of the singular
and the regular parts of asymptotic are defined as solutions of the following
systems of differential equations:

BO™EE - j(t,u(t,e)) ®)
B(t)fi—n—"fo%ﬁ —TIF(r,e), o)

where [I1F(r,e) = f(t,u(t,e) + Hz(r,€)) — f(t,u(t,€)).
Let us decompose vector-functions f(¢,u(t,¢)) and IIF(7;,¢) into series
on small parameter €. We have:

f(tult,e)) = f(t,uo(®) + ) _ e* [P (u(t) + Ge(®)] + O™, (10)
k=1

F(7,€) = f(t;,uo(t;) + Moz(5)) — ft5, uo(t;))+

+ ) e W (m) Mz (73) + Fie(my)] + O™ ). (11)
k=1

where ¥(t) denotes the Jacobi matrix (%5) calculated at the point (¢, ug(t));

U(7;) denotes the Jacobi matrix (g{) calculated at the point (¢, uo(t;) +

Ipz(7;)). Vector-functions Gi(t), Fx(7;) in (10), (11) are infinity differenti-
able functions and can be recursively determined by u;(t), ILiz(7;), ¢ =
i,....k—1.

Examine the system (8). At ¢ = 0 we obtain equation f(f,ug(t)) = 0
that by assumption 5° has a unique solution

uo(t) = ¢(t). (12)

By equating coefficients at the same powers of € in both parts of (8) we
obtain terms of regular part of asymptotic in exact form:

ui(t) = U1 (B(t) ug-r(t) - Gku)), E=0,1.... (13)
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Thus, the regular part of asymptotic (4) is found.

Let us describe an algorithm of constructing of boundary functions
z(7;,€), 7 € N. Firstly we equate coefficients at the same powers of small
parameter ¢ in both parts of relation (9).

For £° we have

B(ﬂm = ftj,uo(t;) + Mox(r;)) — f(tj,ue(t;)), jeN.  (14)

dr. 4
It is easy to see, that the equation (14) has only a trivial solution
Iyz(7;) = 0. From (9), by equating the coefficients at €* and taking into
consideration (11) we obtain:

dllxz(T;)

B(t) d’Tj

= U(r))xz(r;) + Ti(75), (15)

where
dlly_1z(75)

Ti(3) = Fe(rj) — B(t) ar,

, keN.

The system of equations (15) is degenerative, because det B(t) = 0 for all
t € [to; T]. Therefore, some additional conditions must be fulfilled to obtain
the system (15) as well-posed problem.

By assumption 9°, bundle of matrices L(t,\) = ¥(t) — AB(t) has an
unique s-multiple ,finite" elementary divisor and unique p-multiple ,infinite*
elementary divisor for all ¢t € [to,T). In this case due to [1,4,12,15] there
exist non-degenerative matrices P(¢, 7;) and Q(t, 7;), which transform matrix
L{t, 15, A) to a diagonal matrix of the following form:

P(ta Tj)(\p(Tj) - AB(t))Q(tv Tj) = S(t, TJ') — AH, (16)

where S(t,7;) = diag(Ms(t,75), Ep), H = diag(Fs, Jp). Here M,(t,75) is
some (8 X s)-matrix, which can be obtained in exact form; F;, E, are the
unit matrices which have dimension s and p correspondingly; Jp is the p-
dimensional Jordan matrix. Fulfilling a substitution

iz (1) = Q(¢, 75)gy(7;) (17)

and decomposing vector Izy(r;) according to structure of matrices S(t, 7;)
and H, i.e. applying representation IIxy(7;) = colon(Ilyy: (75), Hrya(7;)), we
obtain from the system of differential equations (15) the following system:

dIxy ()

o M, (t, 7)) gy1 (75) + R (t, 75), (18)
J
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dlxye(T;)
de

where Ry(t, Tj) = P(t, Tj)Tk(Tj) = colon(Rkil(t, Tj),Rkiz(t, Tj)), k € N,
vectors Ry 1(t,7;) and Ry o(t, 7;) have s and (n — s) dimension respectively.

Let us study a question on solvability of an algebra-differential system
(18), (19). Firstly we consider the system (19). In respect that vectors
Ixya(7j) and Ry (¢, 7;) have the following form

Jp == Hkyz(Tj) + Ry 2(t, 75), (19)

Miy2(75) = colon(Tleys+1(75), Mayst2(T5), - - - Miyn (7)),

Rk,z(t, Tj) = colon('rk,s.,.l(t, Tj), ‘i‘k,s_l.g(t, Tj), ceny Tk,n(t, Tj)),

and according to structure of matrix Jp, we can write algebraic-differential
system (19) in the coordinate form as follow:

Mxysra(Ty) Mxye+1(75) Tk,s+1(t, 75)

d Hkys+3(7'j ) iys+2 (TJ') Tk,s+2 (t= TJ')
= o = .. + ... (20)

I Tgya(r;) Mryn-1(75) Tkn-1(t,75)

0 i yn(75) Tkt T5)

The solution of system (20) can be easily got by recursion. Indeed, solving
the last equation of the system (20) we obtain:

Mgyn(Ts) = =T 0(t, 75). (21)

From the other equations that are algebraic in respect to unknown functions
we get:

p—i
d :
Meys+i(75) = ~Ts4i(t, 75) — E :E;'Erk,s+i+k(ta7'j)a i=1,...,p—1 (22)
k=1 'J

Thus, the problem of constructing boundary functions Ilzys(7;), k € N,
is solved.

Since the system (18) is a linear system of s ordinary differential equations
in respect to s unknown functions, matrix M,(t,7;) and vectors Ry 1(t,7;)
are continuous for all ¢ € [t;,¢;41), 7 € N, we can state that the system (18)
under given initial data has the unique solution for all ¢ € [¢;,¢j+1), j € N.

In order to find the unique solution of the system (18) we need to determi-
ne its initial data. Here we describe a procedure of definition of initial data
for the system (18). We can calculate initial values IIxy1(0), ¥ € N, for system
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(18) using formula (17). For that we find firstly initial data IIzz(0), k € N,
for the system (15).

By expanding vector-functions I;(z(t,€)) into series on small parameter
€ we obtain:

Li(z(t,€)) = > e¥[@;(t;) (ue(t) + Mia(1y)) + Jk(t,m3)], F€N, (23)

=(

where matrix ®,(t;) = (%%) is calculated at points (t;,ug(t;)), 7 € N;
vectors Ji(t,7;) are determined recursively by vectors u;(t) and ILz(7;),
i=0,...,k— L. In particular, J;(t, ;) = 0.

Taking into consideration condition (2) and formula (23), for system of
differential equations (15) we find (when k = 1}):

A-'L'lt:tj + Hlx(O) =P, (tj)[ul(tj) + Hl:c(())].
Whence we obtain initial data for solution IIjz(7;) in the following form
HliE(O) = (‘bj(tj) — E)_I[Al'lt:tj e Qj(tj)ul(tj)], ] = N. (24)

Analogously to previous step we find initial values IlIxz(0) when k =
2,3,.... We have:

Mez(0) = (@;(t;) — E) ™' [Azle=y, — 5(t5)u(ty) — Ju(t;, 0)]. (25)

To determine initial values Iy, (0), k € N, we use conditions (24), (25)
and formula (17). With this mater we decompose vector IIxz(0) and matrix
Q(t,7;) in accordance to structure of vector Ilxy(7;). Thus we obtain:

Ixz(0) = colon(Il,z;(0), Ixz2(0)) (26)
and
N o Q (taT') Q?(t’T')
Q(ta TJ) - ( Q;(t, T_:) Q4(t, 7’;) ) ’ (27)

where vectors IIzz1(0) and IIxz;(0) have s and n — s dimension respecti-
vely, and matrices Q1(t,7;), Q2(t,7;), Q3(t,75), Qa(t,7;) have dimensions
8X s, (n—38)XssX(n—s),(n—s)x(n—s) respectively.

Then, from (17) for ¢ = t; we have system of equations

Mz1(0) = Q1(t5,0) ey (0) + Qa(tj, 0)Mky2(0),
M22(0) = Q3(t;, 0)Ixy1(0) + Qa(t;, 0)xy2(0),
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whence we find initial values ITxy;(0), £ € N. As a result we obtain:
My (0) = (Q1 — Q207 'Q3) M [Ixz1(0) ~ Q2Qy 'Tiz2(0)).  (28)

Thus, terms ug(t), k = 0,1, ..., of the regular part of asymptotic expansion
(4) are determined by formulas (12), (13), and terms IIxz(7;),k =0,1,... ,of
the singular part of the asymptotic expansion (4) are determined by formulas
(21), (22) and formulas for solution of Cauchy problem (18), (28).

Thus the problem of constructing of asymptotic solution to the problem
(1), (2) is solved.

BOUNDARY FUNCTIONS ESTIMATION
Let us show that IIzz(r;), ¥ = 0,1,..., are indeed boundary functions
(under some special conditions).

Lemma 1. If eigen-values A;i(t,7;), ¢ = 1,...,s, of matriz M,(t, ;)
satisfy the following condition

Re Ai(t, 1) < —v <0, i=1,...,s, (29)

then there erist such constants Cy, > 0, ai > 0, that functions I, z(7;) satisfy
inequality
ez()lf < Coe™ 7, k

0,1,..., (30)
Jor 7; > 0.

Proof. By (17) vector-functions IIzz(7;), & = 0,1,..., are composed
from vectors Iy, (7;) and Hrya2(7;), k = 0,1, .... Therefore, formulas

Mgy ()]l < Mi 1677, ;>0

and
Mey2 ()l < My 2e™ %™, 13 >0,

with some positive values My 1, My 2, Bk, wk, k € N, directly imply the
formula (30).

It is easy to see that vector-function Ilgz(7;) = O satisfies the inequality
(30). Therefore, vector-functions Ipy;(7;) = 0 and Ilgya(r;) = O are also
satisfied the inequality (30).

Let us prove the validity of inequality (30) using the method of mathe-
matic induction. Examine the system of equation (18) when k = 1. We have:

dIlyyi(7;)

) = M,(t, 7j)ILiy1(75) + Ry 1(t, 75). (31)
Ty
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Assumption 2° implies that matrix M,(t,7;) and vector Ri(t,7;) are
continuous in some neighborhood of the point (t;, [Ixy1(0)). Therefore, sys-
tem (31) satisfies conditions of the Cauchy theorem of existences and uni-
queness of solution of ordinary differential equations.

Let by X(r;) be a fundamental matrix of system (31). This matrix satis-
fies the homogeneous matrix differential equation

dgj) = M,(t, )X (7})- (32)
7j

Solution of system (31) can be represented as follows
7
() = X('rj)X~1 (0)IL; 1 (0) + [ X ()X Y(s)Ry1(t,8)ds, (33)
0

where 1112 (0) are initial values, which can be found from formula (28) when
k = 1. If eigen-values A;(t,75), i = 1,...,s, of matrix M,(t,7;) in (18)
satisfies the inequality (29) then due to {18, p. 69] the following inequalities
for matrix X (7;) are hold

1 X(m)ll < Le™ ™, >0, 7;>0, (34)

“X(Tj)an(s)” < Le—’Y(Tj_S)) v >0, T > 0, (35)

where L > 0 is a constant.

Remark that the method [1,4,5,16] of constructing of matrices P(t, ;)
and Q(t, 7;) provides their continuously. Therefore these matrices have boun-
ded norms for all £ € [tp; 71, i.e.,

1P, )l < My, QG m)ll < M,

where M; > 0 and My > 0 are some constants. Therefore, for the vector-
function R;(f,7;) we have the following estimation:

| R(t, m)|| < | P(t, 75) Fi(m)|| < Ke™*™, 73 >0,

where K, w; are some positive constants.
Boundedness of vector norms Fi(7;), k € N, follows by assumption 20
and equality (11). In respect to structure of vector

Ry (t, Tj) = (Rl,l (tv Tj): Rl,z(t: Tj))a

we obtain, that for the vectors R; 1(t,7;) and R (f, 7;) are valid analogical
inequalities

1B (t )l < Kae™5,  [[Rya(t, )| < Kee™™, 7;>0,  (36)
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where w;, K, K2 are certain positive constants.
Then, according to inequalities (34)—(36), for the function (33) we find:

()l < 1X ()X Oy 0)]| +

fo K X(t)X Y (s)R1(t, s)ds

<

.
<LCpe™ 7 4+ LK1e™ 77 / ’ ef (w1 dg <
0

< LCee™ ™ + LK e 1T +
Y — w1 T w1
Here symbol Cp denotes norm of vector I1;%4;(0). Boundedness of the
vector II;y;(0) follows from assumption 7° and equality (28).

Thus, we obtain the following estimation for the vector Il y;(7;):

—w;rj

e y Y > wh.

IMys ()| < Crie7P™, 31 >0, 7;>0, j€EN, (37)

where C; 1 = max{LCy, LK;(y — wy)~!}, B are some constants.
Taking into account equalities (21), (22), by means of which vector-
functions II;yz(7;) are determined, we obtain:

n—s—i d*

IMge(m)ll = | _max |ristm)+ 3 —riavisr(t )],
- k=1 J

where 79,(t,7;), | = s +1,...,n, are coordinates of vector Ry 2(t, 7;). From
the second inequality in (36), for II;ya(7;) we have the following estimation:

n—8—1i

iy (ry)ll < Ko™ 3w < Cppe™,
k=0
where
n—s—1
Con=Kz Y wf, wi>0.

k=0

Thus, taking into account to the given inequalities for the vector-func-
tions II 4, (r;), Miya(7;), and estimation ||Q(¢, 75)l] < Mz, we obtain the
following inequality for vector-function ITyz(7;):

IThz(m)ll < Cre™™, 75 >0,

where Cl = ma.x(MQC’m; MQCg,l), Q] = min(ﬁ1;w1).
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At the second step, by k = 2, for functions Ilay; (1) we have the following
integral equation:

oyi(7;) = X (1) X 1 (0) 291 (0) + /ij X ()X Y(s)Ra1(t, s)ds ,

where

d
Ra(t, ) = Plt,7) ( Par) = Bult) = Tha(r) ).
J
Let us estimate vector Ro(t,7;). We have:

d
—TIl1z(7;)

12t )1 < WPl (IR + B0

) <

where ¢, €1, Ca, we are some positive constants. Boundedness of matrix B;(¢t)
follows from assumption 1°. Thus, analogously to mentioned above estimati-
on for vectors II;y;(m;) and Ilys(7;), we can obtain the inequalities for
vectors Iloy:(75) and Iya(7;) in the following form:

<C1e7 + Gaare” M < ceTWRT

”H2y1(TJ)” < 02,1 e—&Tja ﬁ2 > 0, Tj > 0,

IMaya(m;)l| < Cog €%, wy >0, 7;>0,

Thus,
IMpz(rj)l| < Cae™22%, ap >0, 7;>0.

Here Ca, Cs1, Cy 2 are some positive constants.

Assume that inequality (37) holds for function Iy, (7;) for all k € N.
Let us show that this inequality holds also for Ilg 1y1(T;).

Let us replace the system of differential equations (18) for functions
Hi+131(7;) by equivalent system of integral equations:

Mg r1yi(my) = =X (7)) X 1 (0) k4191 (0) +f0 X ()X (8)Rgs1,1(t, 8)ds,
where

14 191(0) = (Q1 — Q2Q7Q3) ™ k4121 (0) — Q2Q7 Tk 4122(0)],

and vectors 14121 (0) and Iz 122(0) are defined according to formula (25).
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Functions Fj.1(7;), as mentioned above polynomially depend on II;z(7;),
i =1,...,k. Therefore for norm of vector Ri41(t,7;) we have the following

estimation:
k+1
) <

3 By Tt

dr;
i=1 J

1Be1(8 )l < (1P, 7)) (I!Fk+1(fj)l| +

& ’ dllg.41-43(75)
<|PE T P ()l + D IBi)l - _ <

— | dTj

k+1
< G 4 O Z eI,
i=1
where 6';3 = C1Qk + C2Qk-1 + ... + CLQ].
Hence we obtain the inequality
HRkV+1(ta Tj)" < Ck+16—Wk+lTja Wrt+1 > 0, Ty > 0, (38)

where cgy1, wit1 > 0 are some constants.
So, taking into account inequalities (34), (35) and (38), we have the
following inequalities for functions Iy (7;), k € N:

g1 (1) € Cryre™Pe07, Bri1 >0, 75 >0, (39)

where (41 > 0 is constant. Thus, by method of mathematical induction,
the following inequality is valid

ey ()l < Che™™7, 7,0, jeN, keN, (40)

where C;>0, k € N, are some constants.
Let us establish an estimation for vector-functions IIxy2(7;), k¥ € N. Using
equalities (21), (22) for norm of vector-function Ilzyz(7;), k € N, we obtain:

n—s—i d*

Txye ()l = | Joax  ry ity T5) + Z —%Tkativk( 75)[, KEN
== .7
So, according to (38), we get:
My ()| < ce™* 7, wp >0, 7;>0, k,jeN (41)

Thus, taking into account estimations (39), (41) for vector-functions
Mieyi(7;) and Mpya(7;), k,5 € N, we conclude that for vector-functions
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Hry(;) = colon(Iky:(7;), Mrya(r;)), k,j € N, the following inequality is
valid B
IMey(7;)l| < Cre ™™, ap>0, 7;>0, k,j€N.

where 5&: > 0 is constant.
Finally, by formula (17) we obtain

IHez(r)|| < Cre™™, o >0, 7;>0, k,jeN.

Thus, inequality {30) is proved for all £k € N. Lemma 1 is completed.

ASYMPTOTIC ESTIMATION FOR SOLUTION
OF THE PROBLEM (1), (2)

Let us show that constructed above asymptotical solution of problem (1),
(2) is the asymptotical expansion for exact solution for all t € [to, T'.
Let us denote

om(t,e) = ek (uk(t) £y nkx(fj)) . (42)

k=0 t<t;

Theorem. Let the assumptions 1° — 10° and conditions of lemma 1 be
true. Then series (4) are the asymptotical series for solution x(t,e) of the
problem (1), (2) for all t € [ty; T}, i.e., for all m =0,1,..., there ezist such
constants M,,, that the following estimation s true

lz(t,€) — Xm(t, )| < Mme™, t€ [to,T]. (43)

Proof. Denote
2(t,e) = z(t,e) — T, (t,€). (44)

At first let us clarify the order of exactness by which function zn,(¢,¢)
satisfies the condition (2). We have:

Az|t=tj = A:c(t, 5)‘t=t,— — Azp(t, 6)|t=tj = Ij(x(t, 5))|t=t,- - Ij(:Em(t, 5))|t=tj-

By (23), values I;(z(t,¢)) can be written as follows:

Li(z(t,e)) = > e*[®(t;)(ux(t) + Mez(ry)) + Jilt, )] + O(€™*Y).
k=0
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So, in respect to (13), (12), (22), (23), (28) the next inequality follows:
\i((t, ) — L (@m(t,€)) lems, < Ce™2.

Now let us show that defined by formula (42) function z,,(¢,¢) satisfies
the equation (1) with accuracy O(e™t1), i.e.,

B(t, ) Z0E) = f(1, 01, )) + O™,

For that let us consider differential expressions

dz(t,€)
dat f(t,z(t,€)),

Liz(t,e)] = eB(t,¢€)

dzm(t,€)

Ly[zm(t,€)] = eB(t, ) o

— f(t, zm(t,€))

and their difference
Lia(t,)| - Imfom(t, )] = €B(€) Fa(t,€) — zm(t,6)]~

~(f (¢, z(t, g)) — f(t, Tm(t,€)))-

In respect to (10) and to relation z(t, &) = T, (¢, €)+O(e™), Lz(t,€)] =0,
we obtain
L[z (t, €)] = O(e™ 1),

Let us estimate ||z(t,e) — zm(t,€)l|. We have:

Bit, <) (dazg,t, &) da:nzi(tt,s))

€

] -

= ||f(t.2(t,€)) — £(t, zm(t,€)) + O™ )],

whence Ndz(t,e)  dzn(t,e)
€”B(t> E)h dt - dit -
< “ _‘g%“ Nt €) — zm(t, )| + Ke™t!, (45)

where the Jacobi matrix (g-[) is calculated at point (t,z + 0(x — zm)),

&

0 <8 <1; K>0is some constant.
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Denote
of _ K
9(t,¢) = llo(t,¢) — om(t, ), K = “-—“ Bl B= i
5z || 15l BGoN
In that way inequality (45) can be written as
s-qggt’—ﬂ < Kig(t,e) + Be™*L. (46)

Integrating (46) we have

t
g(t,e) < E_lL/ g(s,€)ds + w(t),

tJ
where
w(t) = e™B(t — t;) + £ g, €).
Then we obtain [4]:

t
g(t,e) <e L | W'(s)es Llt=9)gg
tj

whence
g(t,e) < Me™,

Thus, solution z(f,e) of the problem (1), (2) satisfies the asymptotic
estimation for all ¢t € [t;,%;41):

|Z(t,€) — Zm(t, €)|| < Me™. (47)

Taking into account that solution z(t, €) is continuous from left at points
of pulses influences we have that inequality (47) is valid for all t € [to, T7.
Consequently estimation (43) is true. Therefore the theorem is proved.

CONCLUSION

This paper deals with the problem of constructing of asymptotical solution
for degenerative singular perturbed non-linear system of differential equa-
tions (1) with pulses (2). Algorithm of constructing asymptotical solution
is proposed. It is also proved the asymptotic estimation for constructed
asymptotic solution of the problem (1), (2).
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ACUMTOTHNYHI PO3B’A3KN CUHI'VIIAPHO 3BYPEHHUX
CUCTEM JNOPEPEHIIAJIbBHUX PIBHSIHb 3
BUPOJAZKEHHSsMU TA IMITIYJIbCAMM

Borodumup IOTOPOYA, Basepiti CAMOHJIEHKO

KuiBcekuit HanionabHER yHiBepcuter iMeni Tapaca IlleBdenka,
Bys. BonogmMmupceka, 64, Kunis 01033

Jocigkeno 3agaqy Opo NMoOYIOBYy aCHMIOTOTHYHHX PO3B’SI3KiB CHHIY-
napHo 36ypeHol HeNmiHilHOT BUPOAXKEHO! cHCTeMH AudepeHiliaibHUX PIBHAHD
3 IMIOYJABCHOK mier0 y iKCOBaHI MOMEHTH 4acy. SallpONOHOBAHO AJTOPHTM
no6yA0BH aCHMIITOTHYHOI'O PO3B’A3KY i€l 3a4a4i i JOBEIEHO AaCUMIITOTHYHY
OIIHKY AJISl HBOTO.



