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In the paper, an estimation of a measure of algebraic independence
is proved for values of various algebraic points of the Jacobi elliptic
function sn(z).

1. INTRODUCTION

Let p(z) be the Weierstrass elliptic function with algebraic invariants go, g3
and with complex multiplication over field Q(7), sn(z) be a Jacobi elliptic
function, s be an elliptic module sn(z), » be an algebraic number, s # 0; 1.
In {19,25], an elliptic analog of the Lindemann theorem is proved.

Theorem 1. Let a1,...,q; be algebraic numbers linearly independent
over Q(7). Then the numbers p(ay), ..., p(ax) are algebraically independent
over QQ.

We refer to [3,23] for some information on arithmetic properties of num-
bers related to elliptic functions.

From relations between p(z) and sn(z) and the proof of Theorem 1 in [16]
an analog of the Lindemann theorem follows for sn(z).

Theorem 2. If oy, ...,a, are algebraic numbers, linearly independent
over Q, then at least [n/2] of sn(01), . ..,sn(ay) are algebraically independent
over QQ.
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An estimation of a measure of algebraic independence of values at alge-
braic points of an elliptic Weierstrass function is announced in [2,12,26], and
also follows from published in [5] results. An estimation proved in [15, 16),
is best of known. In this paper we obtained an estimation of a measure of
algebraic independence of the values at algebraic points of the Jacobi elliptic
function sn(z), which corresponds to an estimation in [16].

Theorem 3. Let sn(z) be the Jacobi elliptic function, 3¢ be an algebraic
number (»x # 0;1); aq,...,an be algebraic numbers linearly independent
over Q; B1,..., 3k numbers such that sn(o),...,sn{ay,) be algebraic over
Q(B1,-..,0%). Then for any polynomial A € Zlz:,...,xx), A £ 0, whose
degree does not exceed D and the absolute value of its coefficients does not
exceed H, the tnequality

1A(By, ..., B)) = H™D* (1)

holds, where H and D are positive numbers such that
InlnH > c;D*In(D+1), D>1.

We note that ¢, cg,... are positive constants depending only on 3 and
ay,...,0.

Theorem 2 implies k > [n/2]. For & = [n/2] an analogous result was
proved in [6]. Similar estimations can be obtained for an other Jacobi elliptic
functions.

In section 2 we include statements needed for the proof of Theorem 3.
In section 3 Theorem 4 is proved, from which the proof of estimation (1)
follows.

2. AUXILIARY STATEMENTS

The proof of Theorem 3 is based on Nesterenko’s method explained in [9-
17]. This method generalizes, on the base of algebraic technique, Gel’fond’s
method of the proof of algebraic independence.

Let us remind that the ideal I of the ring of polynomials is said to be
unmixed, if all its primary components have identical dimension, equal to
the dimension of an ideal I. Under the dimension dim I homogeneous ideal [
we understand its projective dimension (see, for example, [27]). We use the
notations deg I and h(I) for degree and logarithmic height of the ideal 1.

For any ¥ = (71,.-.,Ym) € C™ we denote 5| = maxigigm [v;!.

Let K = Q(5,04,...,0,), K[Z] be the ring of polynomials of variables
Zq,...,Zm over K. For any homogeneous unmixed ideal I, I C K[Z], and
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nonzero point 7 € C™*! one can define the magnitude of the ideal I at

the point ¥, denoted |I(7)|, analogous to the absolute value of |P(¥)| for a
polynomial P.

Lemma 1. Let I be an unmized, homogeneous ideal of the ring K[T) with
dim I > 0. Suppose that I = I;N---N 1, is the reduced primary decomposition
with p; = \/I_ and k; the exponent of I;. Let 7€ C™1, 7 #0. Then

1) Z kjdegp,; = degI;
iz
#) 35 kihley) < ML)+ deg

3) Zk Inlp;(F) < In|IF)| +m3degI.

The proof of Lemma 1 is similar to the proof of Proposition 1.2 in [17].

For any polynomial P with integer coefficients a; we use the notation
deg P for the degree of the polynomial P, |P| = max |a;|, h(P) the logarith-
mic height of the polynomial P, |P |5 = |P(F)|-{P|™1 - [5|~9e8F (see, for
example, [17]).

For any two nonzero elements ¥ € C™*! and ¥ € C™*1, we denote the
projective distance between these points by

F—g | = .y =119t
701 = (e 35 - 7,5 )

Lemma 2. Let p C K[Z] be a homogeneous prime ideal with dimp > 0
Suppose that Q@ € K[Z] is a homogeneous polynomial with Q & p. If r =
1+dimp > 2, then there exists a homogeneous unmized ideal J C K([Z] such
that its zeros coincide with those of the ideal (p,Q), dimJ = dimp — 1 and

1) degJ < degp -deg@;
2) h(J) < h(p)degQ + h(Q) degp + m(r + 1)degp - deg Q;

3) for any point ¥ € C™*! and p = min [y — 9 |, where the minimum is
taken over on all nontrivial zeros ¥ € C™ 1! of the ideal p, we have

In|J(F)| < Ind + h(Q)degp + h(p)degQ + 1lm?degp-deg@, (2)

where

6={Kﬂm#p<iQh
P 2> 1Q Iy
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Inegquality (2) holds for r = 1, if in this case we formally assume |J(F)| = 1.

The proof of Lemma 2 is similar to the proof of Proposition 1.4 [17].

Connection between the magnitude |I(¥)| and the distance the point ¥
to the variety of zeros of a homogeneous unmixed ideal I is indicated in the
following statement.

Lemma 3. Let I C K[Z] be a homogeneous unmized ideal, r = 1 +dim/,
r = 1. Then for any nonzero point ¥ € C™*! there exists a zero 9 € C™*!
of the ideal I such that

1
degl-ln [¥~0 | < = (In|I(7)| + A1) + 4m3 deg I.

The proof of Lemma 3 is similar to that of Proposition 1.5 [17].

_ Lemma 4. Let Q be a homogeneous polynomial of the ring Kz and 7,
9 € C™*L are nonzero points and Q(9) = 0. Then

Q< -3 |- elm-Deee,

The proof of Lemma 4 is similar to the proof of Corollary 1 from Lem-
ma 1.11 [17].

The definitions of the above introduced notions as well as complete
formulations, and the proofs of necessary properties of the ideals can be
found in [17]). The definition of the basic concepts related to the measure of
algebraic independence, and also many auxiliary statements can be found,
for example, in [3,18,22].

Further we shall adhere to standard notations in the theory of Weierstrass
and Jacobi functions (see, for example, [4,24]). Let us remind some proper-
ties of the Jacobi elliptic functions. Let sn(z) be the elliptic Jacobi functi-
on, its elliptic module s be an algebraic number, 3 # 0;1. We denote by
4K and 2:K’ its fundamental periods, o, ..., a, algebraic numbers linearly
independent over (. We denote

wo =1, woj_1 =sn(ay), wyj =sn'(q;), 1 < j<n; m=2n.

Lemma 5. Let [ = (ly,...,ln) € Z" 1 # 0. Then there exists homo-
geneous polynomials Sy, Ty, Uy € Z[#*](T] such that the following conditions
are salisfied:

1) the total degree is at most c3(I3 + -+ + [2);
2) the size is at most exp(c3(I? + --- +12))
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and

sn(liog + ... + lnoy) = T3(w) /U(@),

s’ (i + ... + lnay) = S5(@)/Us(@).
In addition, the inequality
Ui(@)] > exp(—es(l +--- +13))
holds.

The proof of Lemma. 5 is similar to the proof of Lemma 7.2 [1] and Lemma
1 [8].
Let A be a two-dimensional lattice in C and 9 C C. A number ¢« is said

to be M-admissible for A, if a is congruent modulo A to some point of the
set M.

Lemma 6. Let ay,...,a, be compler numbers linearly independent over
Q modulo the lattice A. In the complex plane there is a compact set M,
not containing points of A, with the property that for any real numbers L1,
Ly 2 Lo, among the points liay + ++- + lpop, 0 < 1 < Ly, l; € Z, there
are not less than —;—L? of points being M-admissible. Here, the set M and the
boundary of Lo depends only on A and oy, ..., ay.

The proof of Lemma 6 is similar to that of Lemma 5 [20].

We shall apply Lemma 6, assuming that the numbers a;,..., oy, satisfy
the conditions of Theorem 3 and A is the lattice of half-periods of sn(z), and
further the set 9 is defined for these numbers and lattices.

Lemma 7. The functions

o((z + iKY /\Ve1 —e3), o{((z+iK')/\e1 — e3)sn(z)

are entire and for an arbitrary Mg > 1 we have

2
|0 ((2 + iK'} //e1 = €3) sn(2) |zt < €4 0

. M2
lo((z +iK")/Ver — e3)l|zj<mo < €4 °-

If & is the distance from zy to the nearest pole of sn(z) and |20| < Mo,
_ A2
then |o((z + iK’)/e1 = €3)] > bcg 0.
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The proof of Lemma 7 is similar to that of Lemma 7.1 [7].

Lemma 8. Let Ry, R» € R, 8 < 4R; < Ry, f(z) be a function analytic
in the disk |2| < Ry; Let E be a set from N? of points belonging to the disk
|z| € R1 and distance between any pair points is at least ¢, 0 < € < 1. Then

4R N2s
IF (< < 21f(2)j214R, (R2 ) +
N2§ (s)
+2NR]! (33R1) Al
eN z€E, 0<s<S | 8!

The proof of Lemma 8 can be found in [21].

3. PROOF OF THE THEOREM 3

In this section Theorem 3 will be deduced from the following statement.

Theorem 4. For each integer r, 1 £ r < k, there exist constants p, 2
0,7 2 1 such that for any numbers D and H satisfying the inequality

InlnH >~D*In(D+1), D3>1,

and for any homogeneous unmized ideal I C K|Z) with the conditions dim I =
r—1, degl < DI™"* B(I) < D™"t*In H the inequality

In |I(@)| > —pr (D) + deg IIn H)D™ 1

holds.

We shall show how Theorem 4 can be derived from Theorem 3.
For any polynomial B € Z{z1,z3,...,Z2,-1] such that

B(Sn(a1)1 RN Sn(an)) # 0,

we denote by

deg B 1 I3 T2n—1
C(.’EO,SBl,(E;}, -y L2n-1 ) = Iy B (330 CL‘() rery o ) .
Then
C(1,sn(a1),.-.,sn{ay)) = B(sn(ai),...,sn{ay)). (3)

Let sn(ay),...,sn(ax) be algebraically independent. Then there are po-
lynomials Rpii, @Q; € Klz1,...,2m], ¢ =1,...,n—k, 5 =1,...,n, such
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that Rgyi(sn{oa),...,sn(ox),sn(ag4i)) = 0 and @Q;(sn(ey),sn'(e;)) = 0.
The ideal J, generated by homogeneous polynomials corresponding to Rgy;
and @;, has dimension k. Let p be a homogeneous prime ideal generated by
all homogeneous polynomials in the ring K[z] that vanish at @. Then J C p
and from the assumption of Theorem 4 it follows that dimp = k.

We denote by J the homogeneous unmixed ideal in the ring K[Z], which
is constructed for p and C in accordance with Lemma 2. Then dimJ =
dimp—-1=k—1, degJ < cgdegC, h{J) < 07(h(C) + degC). In addition,

In|J(@)| < In||C|lz + es(R(C) + deg C). (4)

Applying Theorem 4 to the ideal J with r = k and taking into account (3),
from (4) we obtain the inequality

In|B(sn(a1),...,sn{ay))| > —co(DR(J) + deg J In H)D* 1. (5)

It follows from the assumptions of Theorem 3 that all numbers 54, ..., G
are algebraic over the field Q(sn{a1),...,sn(ay)). Then for some integer
algebraic over the ring Qfsn(ey),...,sn(ay,)] number d all numbers dg; are
algebraic integers over Q[sn(a),...,sn(ay)]. Define

B(sn(a1),. --,sn(an)) = Norm(d*8 4 A(By, ..., Br)). (6)

Since deg B € cijpdeg A, In H(B) < c¢;;1n H(A), we obtain the estima-
tion of Theorem 3 taking into account (5) and (6).

We shall prove Theorem 4 by induction on 7. Let v , 1 < 79 < k, be
the least integer for which the assertion of Theorem 4 is no longer true. We
choose and fix a sufficiently large integer number A.

Lemma 9. The set of numbers D, for which there ezists a prime homoge-
neous ideal p in ring K[Z] with
InnH >y, DfIn(D+1), D>1,
pNZ=(0), dimp=rg—1, degp< D™ p(p)<2D ™ nH,
In|p(@)| < — AB¥*+8+4(Dp(p) + degpIn H) D™
s unbounded.

Indeed, otherwise, the inequality
In|p@)| > —c12(Dh(p) + degpln H) D™ (7)

would hold with a certain positive constant ¢ for all homogeneous prime
ideals p ¢ K[Z], dimp = rg — 1.
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Applying now Lemma 1 to an arbitrary homogeneous unmixed ideal I C
K{Z] of dimension ry — 1, taking into account (7) we obtain

In|I(@)| = —c13(Dh(I) + deg I ln H)D™ 1,

But it contradicts the assumption that the assertion of Theorem 4 does not
hold for the ideals of dimension r — 1 and proves Lemma 9.

Let now H be sufficiently large, and let a number D and prime homoge-
neous ideal p of dimension r — 1 satisfy the conditions of Lemma 9.Let us
define the number M by the relation

AD*M In M = min(A¥*+85+4(Dh(p) + deg pln H)D" ", %111(1 ), (8)

where p is defined in Lemma 2. Using Lemma 3 and (8), we have
MInM > InH(nhH)™L (9)

From Lemma 4 and (8) we obtain:

Lemma 10. Let a homogeneous polynomial P € K[T] be contained in the
ideal p and satisfies the inequality

h(P) + (2m + 1)deg P < AD*M In M.
Then

|P(@)|[@| %€ P < exp (-—)\D"M In M) .

From Lemma 5, Lemma 10 and (9) we obtain:
Lemma 11. If I € Z™\{0}, |l;| < A*+1DV2, then Uy(7) ¢ p.

Using Lemma 2, Lemma 9, (8), (9) and the inductive assumption, we
obtain the following estimation:

Lemma 12. Let a homogeneous polynomial P € K[Z] be not contained
in the tideal p and also satisfy the ineguality

deg P < MH3D. h(P) < M5 H.

Then

|P(@)|||~ 98 F > exp (-Bl;-wkM In M) .
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Having applied Lemma 12 to each basis ideal, we obtain the following
statement.

Lemma 13. Let J be the ideal in K[Z] generated by all homogeneous
polynomials P € K[Z] such that P(W) = 0. Then J C p.

We denote

L= [A4’°D1/2] Ko= [D"’M] Ky =2, S = [AI“SkzM] . (10)

Lemma 14. There ezist homogeneous polynomials A; € K[|, k =
(ko, k1), 0 < kg < Ky, 0 < k1 < Ky, with

1) deg Ap < A%+H4D, In H(Az) < 4N8 M In M;
2) at least one of these polynomials is not contained in p;
3) if

Ko—~-1Ki~1

Fz)= Y Y Az@)2sn®(2),

ko=0 k1=0

then for all numbers 5,0 < s £ 8, and all MM-admissible points [y + -+ +
lnom, 1; € Z, 0 < lj < L, the inequality

1
IFO (101 4 - + lnom)] < exp (—-Q-ADlen M) (11)

holds.

The proof of Lemma 14 is similar to that of Lemma 10 in [16]. By
analogy with [1] let us define two polynomials Py € Z[»?|[t1,12,13,t4], P €
Z{5¢%|[t1, t2] so that

sn(z 4+ w) = Py(sn z,sn’ z,snw,sn’ w)P; '(snz,snw)

and deg P; = 2, deg P, = 4. Then there exist polynomials Gy ; € Z[?][t1, £2]
such that deg,, Gy lt1,t2] < 1 and

d

8
Giri(ti,te) = (3“5) (Pf(t1,t2, snw, sn’ w)Py(t1,snw))w=o,
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where = stands for the congruence modulo t3 — (1 — t3)(1 ~ 52t?) in the ring
Z[5%][t1, t2]. We obtain

Foe =3 () (;f;) [P (sn(e), pw))]_ x

t=0
{5 Lo t[(3) st}

For all integer numbers s,11,...1,, 0 < s < 5, 0 < l; < L, we denote

R, (®) = fxfsmz[() t e+ e

ko=0 k1=0

x UK (1L, )G o bk (TH(1, B) /UKL, B), S3(1, F) /UR(1, ﬂ)] )

where Z = (Z1,...%m), polynomials Gy (z,y) are defined for sn(z) in the
same way as in [16]. Applying to the system
RSJ(E)=O,0€S<S,0€lj<L,j=1,...,n, (12)

Ziegel’s Lemma, (see, for example, [22]), we obtain exist that there polynomi-
als, not of all equal to zero, Bi(Z) € K[Z] such, that

deg By < A+D, In H(B) < 3\ MIn M.

Like in [16], let ®p be the dehomogenization of the ideal p. We denote by the
letter u the least integer number such that
1) there exists a vector

U= (U1, .., Un) €L u; 2 0,u1 + -+ + Uy, = u;
2) there exists indices kg, kT such that dzBgg kr € “p, where
m T
1 /01\™
=T—(=] .
b g u;! (8:1:,-)

Then from (12) it follows that GzR, (%) € p.
Let Az(T) be the homogenization of Ou Bk, i, (Z). We denote

%1%114%(5)2[() t (l1a1+ A Lpay )i x

ko=0 k1=0
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<UL 2)Gr o (T V), SH@) U1

As BgRSJ(?E) € %p, then QSJ(T) € p and, using Lemma 10, we obtain the
estimation

Q,1(@)| < exp (- ADM1n2t).

From this estimation similar by to [16] the estimation of Lemma 14follows.
We define

G(2) = o((z + iK'}/ Ver — e3)F (2).

From properties of sn(z), using Lemma 7, Lemma 8, (10) and (11), we
obtain the following statement.

Lemma 15. In the disk |2| < A**+2DY2 the inequality
IG(2)] € exp (—ZAD"Mln M)

holds.
Using Lemmas 5, 6, 7, 9, 12, 13, 15 we obtain:
Lemma 16. For all numbers s, ly,...,l, such that 0 <8< S5,0<]; <

MEHIDL/2 gnd the point lyaq + - - - + lpoy, 18 M-admissible, we have

IF(S) (hhay + -+ lnas)| < exp (—%AD"Mln M) :

Let R be a quotient-ring K{z]/%p, 7; be the images of z;, 1 <7 < m,
n=m,..-.,m), L be the field of quotients R. It follows from Lemma 11
that Ui(ﬁ) & p. We define EI = (Ef,l’ 62’2, 61’3) as follows:

& = (hon +++ + lnan, Ty@/Ui(@), Sim/Ui®), &e L2

As the point (sn(li1+- - ~+lnan), sn'(har+- - +lnon)), I=(l,...,ln) €
Z", 1+# 0, lays on the curve 3% = (1 — z%)(1 — »2z?), the equality

V2@)S2@) = (V3@) - TA@)(VX@) - AT2@))

holds. From here and from Lemma 13 it follows that the two last coordinates
of the points &; satisfy the equation &2, = (1 — &,)(1 — »°€],).
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Lemma 17. Let §; = (£i1,&i2,&i3), 1 € ¢ € Na, be points with distinct
first coordinates, R € L[z,z], deg, R < L2, deg, R < L3. Then

2
) “ords R < (4Lg + 2)Ly + 2N Ls.

The proof of Lemma 17 is similar to that of Lemma 16 [16].

Let
I \ 9
Duaz+y55+(2x2x —(1+J{2)5L‘)ay

be the differential operator in the ring L[z, z,y]. Using Lemmas 5 and 16,
we obtain:

Lemma 18. For each s, I1,...,lp, 0 < 5 < 8,0 < I < AFIDY2 such
that the point lioy + -+« + I is M-admaissible, the equality

DSF(Z) lllal+“‘+lnan = 0
holds.

In order to complete the proof of Theorem 4 is suffices to reduce an
inconsistency the estimations in Lemmas 17and 18. For the polynomial F
constructed in Lemma 14, according to Lemma 18we have

Zord— )\2"+1D"’M

According to Lemma, 17 this sum does not exceed the magnitude 6A2D"/2 M.
The obtained contradiction for n > 1 completes the proof of Theorem 4.
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ITPO MIPY AJITEBPUYHOI HE3AJIEXKHOCTI 3HAYEHB
EJINITUYHUX ®YHKIIN 9KOBI. I

HApocaae XOJISIBKA

JIbBiBCHKHUiT HanioHanbHU#M yHiBepcuTeT iMeni Ipana Ppanka,
BYJI. YHiBEepCHTeTCBKa, 1, JIpBiB 79000

VY pobori oTpuMaHO OMIHKY MipH ajareOpHYHOI HE3aJIE2KHOCTI 3HAYEHD Y
pisuux anreOpuyHKX TOuKax einTuyHOl GyHKuUH Hxobi sn(z).



