ON A MEASURE OF ALGEBRAIC INDEPENDENCE OF VALUES OF JACOBI ELLIPTIC FUNCTIONS. I

© 2006 Yaroslav KHOLYAVKA

Ivan Franko Lviv National University, 1 Universytetska Str., Lviv 79000, Ukraine

Received June 17, 2006.

In the paper, an estimation of a measure of algebraic independence is proved for values of various algebraic points of the Jacobi elliptic function $\operatorname{sn}(z)$.

1. INTRODUCTION

Let $\wp(z)$ be the Weierstrass elliptic function with algebraic invariants g_2, g_3 and with complex multiplication over field $\mathbb{Q}(\tau)$, $\operatorname{sn}(z)$ be a Jacobi elliptic function, \varkappa be an elliptic module $\operatorname{sn}(z)$, \varkappa be an algebraic number, $\varkappa \neq 0$; 1. In [19,25], an elliptic analog of the Lindemann theorem is proved.

Theorem 1. Let $\alpha_1, \ldots, \alpha_k$ be algebraic numbers linearly independent over $\mathbb{Q}(\tau)$. Then the numbers $\wp(\alpha_1), \ldots, \wp(\alpha_k)$ are algebraically independent over \mathbb{Q} .

We refer to [3,23] for some information on arithmetic properties of numbers related to elliptic functions.

From relations between $\wp(z)$ and $\operatorname{sn}(z)$ and the proof of Theorem 1 in [16] an analog of the Lindemann theorem follows for $\operatorname{sn}(z)$.

Theorem 2. If $\alpha_1, \ldots, \alpha_n$ are algebraic numbers, linearly independent over \mathbb{Q} , then at least [n/2] of $\operatorname{sn}(\alpha_1), \ldots, \operatorname{sn}(\alpha_n)$ are algebraically independent over \mathbb{Q} .

An estimation of a measure of algebraic independence of values at algebraic points of an elliptic Weierstrass function is announced in [2,12,26], and also follows from published in [5] results. An estimation proved in [15,16], is best of known. In this paper we obtained an estimation of a measure of algebraic independence of the values at algebraic points of the Jacobi elliptic function $\operatorname{sn}(z)$, which corresponds to an estimation in [16].

Theorem 3. Let $\operatorname{sn}(z)$ be the Jacobi elliptic function, \varkappa be an algebraic number $(\varkappa \neq 0; 1)$; $\alpha_1, \ldots, \alpha_n$ be algebraic numbers linearly independent over \mathbb{Q} ; β_1, \ldots, β_k numbers such that $\operatorname{sn}(\alpha_1), \ldots, \operatorname{sn}(\alpha_n)$ be algebraic over $\mathbb{Q}(\beta_1, \ldots, \beta_k)$. Then for any polynomial $A \in \mathbb{Z}[x_1, \ldots, x_k]$, $A \not\equiv 0$, whose degree does not exceed D and the absolute value of its coefficients does not exceed H, the inequality

$$|A(\beta_1, \dots, \beta_k)| \geqslant H^{-c_1 D^k} \tag{1}$$

holds, where H and D are positive numbers such that

$$ln ln H \geqslant c_2 D^k ln(D+1), \quad D \geqslant 1.$$

We note that c_1, c_2, \ldots are positive constants depending only on \varkappa and $\alpha_1, \ldots, \alpha_k$.

Theorem 2 implies $k \ge \lfloor n/2 \rfloor$. For $k = \lfloor n/2 \rfloor$ an analogous result was proved in [6]. Similar estimations can be obtained for an other Jacobi elliptic functions.

In section 2 we include statements needed for the proof of Theorem 3. In section 3 Theorem 4 is proved, from which the proof of estimation (1) follows.

2. AUXILIARY STATEMENTS

The proof of Theorem 3 is based on Nesterenko's method explained in [9–17]. This method generalizes, on the base of algebraic technique, Gel'fond's method of the proof of algebraic independence.

Let us remind that the ideal I of the ring of polynomials is said to be unmixed, if all its primary components have identical dimension, equal to the dimension of an ideal I. Under the dimension dim I homogeneous ideal I we understand its projective dimension (see, for example, [27]). We use the notations deg I and h(I) for degree and logarithmic height of the ideal I.

For any $\overline{\gamma} = (\gamma_1, \ldots, \gamma_m) \in \mathbb{C}^m$ we denote $|\overline{\gamma}| = \max_{1 \leq j \leq m} |\gamma_j|$.

Let $\mathbb{K} = \mathbb{Q}(\varkappa, \alpha_1, \ldots, \alpha_n)$, $\mathbb{K}[\overline{x}]$ be the ring of polynomials of variables x_0, \ldots, x_m over \mathbb{K} . For any homogeneous unmixed ideal $I, I \subset \mathbb{K}[\overline{x}]$, and

nonzero point $\overline{\gamma} \in \mathbb{C}^{m+1}$ one can define the magnitude of the ideal I at the point $\overline{\gamma}$, denoted $|I(\overline{\gamma})|$, analogous to the absolute value of $|P(\overline{\gamma})|$ for a polynomial P.

Lemma 1. Let I be an unmixed, homogeneous ideal of the ring $\mathbb{K}[\overline{x}]$ with $\dim I \geq 0$. Suppose that $I = I_1 \cap \cdots \cap I_s$ is the reduced primary decomposition with $\mathfrak{p}_j = \sqrt{I_j}$ and k_j the exponent of I_j . Let $\overline{\gamma} \in \mathbb{C}^{m+1}$, $\overline{\gamma} \neq 0$. Then

1)
$$\sum_{j=1}^{s} k_j \deg \mathfrak{p}_j = \deg I;$$

2)
$$\sum_{j=1}^{s} k_j h(\mathfrak{p}_j) \leqslant h(I) + m^2 \deg I;$$

3)
$$\sum_{j=1}^{s} k_j \ln |\mathfrak{p}_j(\overline{\gamma})| \leq \ln |I(\overline{\gamma})| + m^3 \deg I.$$

The proof of Lemma 1 is similar to the proof of Proposition 1.2 in [17].

For any polynomial P with integer coefficients a_i we use the notation $\deg P$ for the degree of the polynomial P, $|P| = \max |a_i|$, h(P) the logarithmic height of the polynomial P, $|P|_{\overline{\gamma}} = |P(\overline{\gamma})| \cdot |P|^{-1} \cdot |\overline{\gamma}|^{-\deg P}$ (see, for example, [17]).

For any two nonzero elements $\overline{\gamma} \in \mathbb{C}^{m+1}$ and $\overline{\vartheta} \in \mathbb{C}^{m+1}$, we denote the projective distance between these points by

$$|\overline{\gamma} - \overline{\vartheta}| = \left(\max_{0 \leqslant i < j \leqslant m} |\overline{\gamma}_i \overline{\vartheta}_j - \overline{\gamma}_j \overline{\vartheta}_i| \right) |\overline{\gamma}|^{-1} |\overline{\vartheta}|^{-1}.$$

Lemma 2. Let $\mathfrak{p} \subset \mathbb{K}[\overline{x}]$ be a homogeneous prime ideal with $\dim \mathfrak{p} \geqslant 0$. Suppose that $Q \in \mathbb{K}[\overline{x}]$ is a homogeneous polynomial with $Q \notin \mathfrak{p}$. If $r = 1 + \dim \mathfrak{p} \geqslant 2$, then there exists a homogeneous unmixed ideal $J \subset \mathbb{K}[\overline{x}]$ such that its zeros coincide with those of the ideal (\mathfrak{p}, Q) , $\dim J = \dim \mathfrak{p} - 1$ and

- 1) $\deg J \leq \deg \mathfrak{p} \cdot \deg Q$;
- 2) $h(J) \leq h(\mathfrak{p}) \deg Q + h(Q) \deg \mathfrak{p} + m(r+1) \deg \mathfrak{p} \cdot \deg Q$;
- 3) for any point $\overline{\gamma} \in \mathbb{C}^{m+1}$ and $\rho = \min |\overline{\gamma} \overline{\vartheta}|$, where the minimum is taken over on all nontrivial zeros $\overline{\vartheta} \in \mathbb{C}^{m+1}$ of the ideal \mathfrak{p} , we have

$$\ln|J(\overline{\gamma})| \le \ln \delta + h(Q) \deg \mathfrak{p} + h(\mathfrak{p}) \deg Q + 11m^2 \deg \mathfrak{p} \cdot \deg Q, \qquad (2)$$
where

$$\delta = \begin{cases} |Q|_{\overline{\gamma}}, & \text{if } \rho < |Q|_{\overline{\gamma}}, \\ |\mathfrak{p}(\overline{\gamma})|, & \text{if } \rho \geqslant |Q|_{\overline{\gamma}}. \end{cases}$$

Inequality (2) holds for r=1, if in this case we formally assume $|J(\overline{\gamma})|=1$.

The proof of Lemma 2 is similar to the proof of Proposition 1.4 [17].

Connection between the magnitude $|I(\overline{\gamma})|$ and the distance the point $\overline{\gamma}$ to the variety of zeros of a homogeneous unmixed ideal I is indicated in the following statement.

Lemma 3. Let $I \subset \mathbb{K}[\overline{x}]$ be a homogeneous unmixed ideal, $r = 1 + \dim I$, $r \geqslant 1$. Then for any nonzero point $\overline{\gamma} \in \mathbb{C}^{m+1}$ there exists a zero $\overline{\vartheta} \in \mathbb{C}^{m+1}$ of the ideal I such that

$$\deg I \cdot \ln |\overline{\gamma} - \overline{\vartheta}| \leqslant \frac{1}{r} (\ln |I(\overline{\gamma})| + h(I)) + 4m^3 \deg I.$$

The proof of Lemma 3 is similar to that of Proposition 1.5 [17].

Lemma 4. Let Q be a homogeneous polynomial of the ring $\mathbb{K}[\overline{x}]$ and $\overline{\gamma}$, $\overline{\vartheta} \in \mathbb{C}^{m+1}$ are nonzero points and $Q(\overline{\vartheta}) = 0$. Then

$$|Q|_{\overline{\gamma}} \leqslant |\overline{\gamma} - \overline{\vartheta}| \cdot e^{(2m-1)\deg Q}.$$

The proof of Lemma 4 is similar to the proof of Corollary 1 from Lemma 1.11 [17].

The definitions of the above introduced notions as well as complete formulations, and the proofs of necessary properties of the ideals can be found in [17]. The definition of the basic concepts related to the measure of algebraic independence, and also many auxiliary statements can be found, for example, in [3,18,22].

Further we shall adhere to standard notations in the theory of Weierstrass and Jacobi functions (see, for example, [4,24]). Let us remind some properties of the Jacobi elliptic functions. Let $\operatorname{sn}(z)$ be the elliptic Jacobi function, its elliptic module \varkappa be an algebraic number, $\varkappa \neq 0$; 1. We denote by 4K and 2iK' its fundamental periods, $\alpha_1, \ldots, \alpha_n$ algebraic numbers linearly independent over \mathbb{Q} . We denote

$$\omega_0 = 1, \ \omega_{2j-1} = \operatorname{sn}(\alpha_j), \ \omega_{2j} = \operatorname{sn}'(\alpha_j), \ 1 \leqslant j \leqslant n; \ m = 2n.$$

Lemma 5. Let $\bar{l} = (l_1, \ldots, l_n) \in \mathbb{Z}^n$, $\bar{l} \neq 0$. Then there exists homogeneous polynomials $S_{\bar{l}}$, $T_{\bar{l}}$, $U_{\bar{l}} \in \mathbb{Z}[\varkappa^2][\bar{x}]$ such that the following conditions are satisfied:

- 1) the total degree is at most $c_3(l_1^2 + \cdots + l_n^2)$;
- 2) the size is at most $\exp(c_3(l_1^2 + \cdots + l_n^2))$

and

$$\operatorname{sn}(l_1\alpha_1 + \dots + l_n\alpha_n) = T_{\overline{l}}(\overline{\omega})/U_{\overline{l}}(\overline{\omega}),$$

$$\operatorname{sn}'(l_1\alpha_1 + \ldots + l_n\alpha_n) = S_{\overline{l}}(\overline{\omega})/U_{\overline{l}}(\overline{\omega}).$$

In addition, the inequality

$$|U_{\overline{l}}(\overline{\omega})| \geqslant \exp(-c_3(l_1^2 + \dots + l_n^2))$$

holds.

The proof of Lemma 5 is similar to the proof of Lemma 7.2 [1] and Lemma 1 [8].

Let Λ be a two-dimensional lattice in $\mathbb C$ and $\mathfrak M \subset \mathbb C$. A number α is said to be $\mathfrak M$ -admissible for Λ , if α is congruent modulo Λ to some point of the set $\mathfrak M$.

Lemma 6. Let $\alpha_1, \ldots, \alpha_n$ be complex numbers linearly independent over \mathbb{Q} modulo the lattice Λ . In the complex plane there is a compact set \mathfrak{M} , not containing points of Λ , with the property that for any real numbers L_1 , $L_1 \geq L_0$, among the points $l_1\alpha_1 + \cdots + l_n\alpha_n$, $0 \leq l_j < L_1$, $l_j \in \mathbb{Z}$, there are not less than $\frac{7}{8}L_1^n$ of points being \mathfrak{M} -admissible. Here, the set \mathfrak{M} and the boundary of L_0 depends only on Λ and $\alpha_1, \ldots, \alpha_n$.

The proof of Lemma 6 is similar to that of Lemma 5 [20].

We shall apply Lemma 6, assuming that the numbers $\alpha_1, \ldots, \alpha_n$ satisfy the conditions of Theorem 3 and Λ is the lattice of half-periods of $\operatorname{sn}(z)$, and further the set \mathfrak{M} is defined for these numbers and lattices.

Lemma 7. The functions

$$\sigma((z+iK')/\sqrt{e_1-e_3}), \quad \sigma((z+iK')/\sqrt{e_1-e_3})\operatorname{sn}(z)$$

are entire and for an arbitrary $M_0 > 1$ we have

$$|\sigma((z+iK')/\sqrt{e_1-e_3})\operatorname{sn}(z)|_{|z|\leqslant M_0}\leqslant c_4^{M_0^2},$$

$$|\sigma((z+iK')/\sqrt{e_1-e_3})|_{|z|\leqslant M_0}\leqslant c_4^{M_0^2}.$$

If δ is the distance from z_0 to the nearest pole of $\operatorname{sn}(z)$ and $|z_0| \leq M_0$, then $|\sigma((z+iK')/\sqrt{e_1-e_3})| \geq \delta c_5^{-M_0^2}$.

The proof of Lemma 7 is similar to that of Lemma 7.1 [7].

Lemma 8. Let R_1 , $R_2 \in \mathbb{R}$, $8 < 4R_1 < R_2$, f(z) be a function analytic in the disk $|z| \leq R_2$; Let E be a set from N^2 of points belonging to the disk $|z| \leq R_1$ and distance between any pair points is at least ε , $0 < \varepsilon < 1$. Then

$$|f(z)|_{|z| \leqslant R_1} \leqslant 2|f(z)|_{|z| \leqslant R_2} \left(\frac{4R_1}{R_2}\right)^{N^2S} + \\ + 2NR_1^{-1} \left(\frac{33R_1}{\epsilon N}\right)^{N^2S} \max_{x \in E, \ 0 \leqslant s \leqslant S} \left|\frac{f^{(s)}(x)}{s!}\right|.$$

The proof of Lemma 8 can be found in [21].

3. PROOF OF THE THEOREM 3

In this section Theorem 3 will be deduced from the following statement.

Theorem 4. For each integer r, $1 \le r \le k$, there exist constants $\mu_r \ge 0$, $\gamma_r \ge 1$ such that for any numbers D and H satisfying the inequality

$$\ln \ln H \geqslant \gamma_r D^k \ln(D+1), \quad D \geqslant 1,$$

and for any homogeneous unmixed ideal $I \subset \mathbb{K}[\overline{x}]$ with the conditions dim I = r - 1, deg $I \leq D^{1-r+k}$, $h(I) \leq D^{-r+k} \ln H$ the inequality

$$\ln |I(\overline{\omega})| \geqslant -\mu_r(Dh(I) + \deg I \ln H)D^{r-1}$$

holds.

We shall show how Theorem 4 can be derived from Theorem 3. For any polynomial $B \in \mathbb{Z}[x_1, x_3, \dots, x_{2n-1}]$ such that

$$B(\operatorname{sn}(\alpha_1),\ldots,\operatorname{sn}(\alpha_n))\neq 0,$$

we denote by

$$C(x_0, x_1, x_3, \dots, x_{2n-1}) = x_0^{\deg B} B\left(\frac{x_1}{x_0}, \frac{x_3}{x_0}, \dots, \frac{x_{2n-1}}{x_0}\right).$$

Then

$$C(1,\operatorname{sn}(\alpha_1),\ldots,\operatorname{sn}(\alpha_n))=B(\operatorname{sn}(\alpha_1),\ldots,\operatorname{sn}(\alpha_n)). \tag{3}$$

Let $\operatorname{sn}(\alpha_1), \ldots, \operatorname{sn}(\alpha_k)$ be algebraically independent. Then there are polynomials $R_{k+i}, Q_j \in \mathbb{K}[x_1, \ldots, x_m], i = 1, \ldots, n-k, j = 1, \ldots, n$, such

that $R_{k+i}(\operatorname{sn}(\alpha_1), \ldots, \operatorname{sn}(\alpha_k), \operatorname{sn}(\alpha_{k+i})) = 0$ and $Q_j(\operatorname{sn}(\alpha_j), \operatorname{sn}'(\alpha_j)) = 0$. The ideal \mathfrak{J} , generated by homogeneous polynomials corresponding to R_{k+i} and Q_j , has dimension k. Let \mathfrak{p} be a homogeneous prime ideal generated by all homogeneous polynomials in the ring $\mathbb{K}[\overline{x}]$ that vanish at $\overline{\omega}$. Then $\mathfrak{J} \subset \mathfrak{p}$ and from the assumption of Theorem 4 it follows that $\dim \mathfrak{p} = k$.

We denote by J the homogeneous unmixed ideal in the ring $\mathbb{K}[\overline{x}]$, which is constructed for \mathfrak{p} and C in accordance with Lemma 2. Then dim $J = \dim \mathfrak{p} - 1 = k - 1$, $\deg J \leq c_6 \deg C$, $h(J) \leq c_7(h(C) + \deg C)$. In addition,

$$\ln|J(\overline{\omega})| \leq \ln||C||_{\overline{\omega}} + c_8(h(C) + \deg C). \tag{4}$$

Applying Theorem 4 to the ideal J with r = k and taking into account (3), from (4) we obtain the inequality

$$\ln |B(\operatorname{sn}(\alpha_1), \dots, \operatorname{sn}(\alpha_n))| \geqslant -c_9(Dh(J) + \deg J \ln H)D^{k-1}.$$
 (5)

It follows from the assumptions of Theorem 3 that all numbers β_1, \ldots, β_k are algebraic over the field $\mathbb{Q}(\operatorname{sn}(\alpha_1), \ldots, \operatorname{sn}(\alpha_n))$. Then for some integer algebraic over the ring $\mathbb{Q}[\operatorname{sn}(\alpha_1), \ldots, \operatorname{sn}(\alpha_n)]$ number d all numbers $d\beta_i$ are algebraic integers over $\mathbb{Q}[\operatorname{sn}(\alpha_1), \ldots, \operatorname{sn}(\alpha_n)]$. Define

$$B(\operatorname{sn}(\alpha_1), \dots, \operatorname{sn}(\alpha_n)) = \operatorname{Norm}(d^{\operatorname{deg} A} A(\beta_1, \dots, \beta_k)). \tag{6}$$

Since $\deg B \leqslant c_{10} \deg A$, $\ln H(B) \leqslant c_{11} \ln H(A)$, we obtain the estimation of Theorem 3 taking into account (5) and (6).

We shall prove Theorem 4 by induction on r. Let r_0 , $1 \le r_0 \le k$, be the least integer for which the assertion of Theorem 4 is no longer true. We choose and fix a sufficiently large integer number λ .

Lemma 9. The set of numbers D, for which there exists a prime homogeneous ideal \mathfrak{p} in ring $\mathbb{K}[\overline{x}]$ with

$$\ln \ln H \geqslant \gamma_{r_0} D^k \ln(D+1), \quad D \geqslant 1,$$

$$\mathfrak{p} \cap \mathbb{Z} = (0), \quad \dim \mathfrak{p} = r_0 - 1, \quad \deg \mathfrak{p} \leqslant D^{1-r_0+k}, \quad h(\mathfrak{p}) \leqslant 2D^{-r_0+k} \ln H,$$

$$\ln |\mathfrak{p}(\overline{\omega})| < -\lambda^{8k^2 + 8k + 4} (Dh(\mathfrak{p}) + \deg \mathfrak{p} \ln H) D^{r_0 - 1}$$

is unbounded.

Indeed, otherwise, the inequality

$$\ln|\mathfrak{p}(\overline{\omega})| \geqslant -c_{12}(Dh(\mathfrak{p}) + \deg \mathfrak{p} \ln H)D^{r_0 - 1} \tag{7}$$

would hold with a certain positive constant c_{12} for all homogeneous prime ideals $\mathfrak{p} \subset \mathbb{K}[\overline{x}]$, dim $\mathfrak{p} = r_0 - 1$.

Applying now Lemma 1 to an arbitrary homogeneous unmixed ideal $I \subset \mathbb{K}[\overline{x}]$ of dimension $r_0 - 1$, taking into account (7) we obtain

$$\ln |I(\overline{\omega})| \geqslant -c_{13}(Dh(I) + \deg I \ln H)D^{r_0-1}.$$

But it contradicts the assumption that the assertion of Theorem 4 does not hold for the ideals of dimension r-1 and proves Lemma 9.

Let now H be sufficiently large, and let a number D and prime homogeneous ideal $\mathfrak p$ of dimension r-1 satisfy the conditions of Lemma 9.Let us define the number M by the relation

$$\lambda D^{k} M \ln M = \min(\lambda^{8k^{2} + 8k + 4} (Dh(\mathfrak{p}) + \deg \mathfrak{p} \ln H) D^{r-1}, \ \frac{1}{2} \ln(1/\rho)), \quad (8)$$

where ρ is defined in Lemma 2. Using Lemma 3 and (8), we have

$$M \ln M \geqslant \ln H (\ln \ln H)^{-1}. \tag{9}$$

From Lemma 4 and (8) we obtain:

Lemma 10. Let a homogeneous polynomial $P \in \mathbb{K}[\overline{x}]$ be contained in the ideal \mathfrak{p} and satisfies the inequality

$$h(P) + (2m+1) \operatorname{deg} P \leq \lambda D^k M \ln M.$$

Then

$$|P(\overline{\omega})||\overline{\omega}|^{-\deg P} \leqslant \exp\left(-\lambda D^k M \ln M\right).$$

From Lemma 5, Lemma 10 and (9) we obtain:

Lemma 11. If
$$\overline{l} \in \mathbb{Z}^n \setminus \{0\}$$
, $|l_j| \leq \lambda^{4k+1} D^{1/2}$, then $U_{\overline{l}}(\overline{x}) \notin \mathfrak{p}$.

Using Lemma 2, Lemma 9, (8), (9) and the inductive assumption, we obtain the following estimation:

Lemma 12. Let a homogeneous polynomial $P \in \mathbb{K}[\overline{x}]$ be not contained in the ideal \mathfrak{p} and also satisfy the inequality

$$\deg P \leqslant \lambda^{8k+5}D$$
, $h(P) \leqslant \lambda^{8k+5}\ln H$.

Then

$$|P(\overline{\omega})||\overline{\omega}|^{-\deg P} \geqslant \exp\left(-\frac{1}{4}\lambda D^k M \ln M\right).$$

Having applied Lemma 12 to each basis ideal, we obtain the following statement.

Lemma 13. Let \Im be the ideal in $\mathbb{K}[\overline{x}]$ generated by all homogeneous polynomials $P \in \mathbb{K}[\overline{x}]$ such that $P(\overline{\omega}) = 0$. Then $\Im \subset \mathfrak{p}$.

We denote

$$L = \left[\lambda^{4k} D^{1/2}\right], K_0 = \left[D^k M\right], K_1 = \lambda^2, S = \left[\lambda^{1-8k^2} M\right].$$
 (10)

Lemma 14. There exist homogeneous polynomials $A_{\overline{k}} \in \mathbb{K}[\overline{x}], \overline{k} = (k_0, k_1), 0 \leq k_0 < K_0, 0 \leq k_1 < K_1, \text{ with}$

- 1) $\deg A_{\overline{k}} \leqslant \lambda^{8k+4} D$, $\ln H(A_{\overline{k}}) \leqslant 4\lambda^{1-8k^2} M \ln M$;
- 2) at least one of these polynomials is not contained in p;
- 3) if

$$F(z) = \sum_{k_0=0}^{K_0-1} \sum_{k_1=0}^{K_1-1} A_{\overline{k}}(\overline{\omega}) z^{k_0} \operatorname{sn}^{k_1}(z),$$

then for all numbers $s, 0 \leq s \leq S$, and all \mathfrak{M} -admissible points $l_1\alpha_1 + \cdots + l_n\alpha_n$, $l_j \in \mathbb{Z}$, $0 \leq l_j < L$, the inequality

$$|F^{(s)}(l_1\alpha_1 + \dots + l_n\alpha_n)| \leqslant \exp\left(-\frac{1}{2}\lambda D^k M \ln M\right)$$
 (11)

holds.

The proof of Lemma 14 is similar to that of Lemma 10 in [16]. By analogy with [1] let us define two polynomials $P_1 \in \mathbb{Z}[\varkappa^2][t_1, t_2, t_3, t_4], P_2 \in \mathbb{Z}[\varkappa^2][t_1, t_2]$ so that

$$\operatorname{sn}(z+w) = P_1(\operatorname{sn} z, \operatorname{sn}' z, \operatorname{sn} w, \operatorname{sn}' w) P_2^{-1}(\operatorname{sn} z, \operatorname{sn} w)$$

and deg $P_1=2$, deg $P_2=4$. Then there exist polynomials $G_{t,k,l}\in\mathbb{Z}[\varkappa^2][t_1,t_2]$ such that $\deg_{t_2}G_{t,k,l}[t_1,t_2]\leqslant 1$ and

$$G_{t,k,l}(t_1,t_2) \equiv \left(\frac{d}{dw}\right)^s (P_1^k(t_1,t_2,\operatorname{sn} w,\operatorname{sn}' w)P_2^l(t_1,\operatorname{sn} w))_{w=0},$$

where \equiv stands for the congruence modulo $t_2^2-(1-t_1^2)(1-\varkappa^2t_1^2)$ in the ring $\mathbb{Z}[\varkappa^2][t_1,t_2]$. We obtain

$$F^{(s)}(z) = \sum_{t=0}^{s} \binom{s}{t} \left(\frac{d}{dw}\right)^{s-t} \left[P_2^{-K_1}(\operatorname{sn}(z), \varphi(w))\right]_{w=0} \times$$

$$\times \left\{ \sum_{k_0=0}^{K_0-1} \sum_{k_1=0}^{K_1-1} A_{\overline{k}}(\overline{\omega}) \sum_{i=0}^{t} \left[\binom{k_0}{i} \frac{t!}{(t-i)!} z^{k_0-i} G_{t-i,k_1,K_1-k_1}(\operatorname{sn}(z),\operatorname{sn}'(z)) \right] \right\}.$$

For all integer numbers $s, l_1, \ldots l_n, \ 0 \leq s < S, \ 0 \leq l_j < L$, we denote

$$\begin{split} R_{s,\overline{l}}(\widetilde{x}) &= \sum_{k_0=0}^{K_0-1} \sum_{k_1=0}^{K_1-1} B_{\overline{k}}(\widetilde{x}) \sum_{i=0}^{t} \left[\binom{k_0}{i} \frac{t!}{(t-i)!} (l_1 \alpha_1 + \ldots + l_n \alpha_n)^{k_0-i} \times \right. \\ & \times U_{\overline{l}}^{10K_1}(1,\widetilde{x}) G_{t-i,k_1,K_1-k_1}(T_{\overline{l}}(1,\widetilde{x})/U_{\overline{l}}(1,\widetilde{x}), S_{\overline{l}}(1,\widetilde{x})/U_{\overline{l}}(1,\widetilde{x})) \right], \end{split}$$

where $\tilde{x} = (x_1, \dots x_m)$, polynomials $G_{t,k,l}(x,y)$ are defined for $\operatorname{sn}(z)$ in the same way as in [16]. Applying to the system

$$R_{s,\bar{l}}(\widetilde{x}) = 0, \ 0 \le s < S, \ 0 \le l_j < L, \ j = 1, \dots, n,$$
 (12)

Ziegel's Lemma (see, for example, [22]), we obtain exist that there polynomials, not of all equal to zero, $B_{\overline{k}}(\widetilde{x}) \in \mathbb{K}[\widetilde{x}]$ such, that

$$\deg B_{\overline{k}} \leqslant \lambda^{8k+4} D, \ \ln H(B_{\overline{k}}) \leqslant 3\lambda^{1-8k^2} M \ln M.$$

Like in [16], let ${}^a\mathfrak{p}$ be the dehomogenization of the ideal \mathfrak{p} . We denote by the letter u the least integer number such that

1) there exists a vector

$$\overline{u} = (u_1, \ldots, u_m) \in \mathbb{Z}^m, u_i \geqslant 0, u_1 + \cdots + u_m = u;$$

2) there exists indices k_0^*, k_1^* such that $\delta_{\overline{u}}B_{k_0^*,k_1^*} \notin {}^a\mathfrak{p}$, where

$$\delta_{\overline{u}} = \prod_{i=1}^{m} \frac{1}{u_i!} \left(\frac{\partial}{\partial x_i} \right)^{u_i}.$$

Then from (12) it follows that $\partial_{\overline{u}}R_{s,\overline{l}}(\widetilde{x}) \in {}^{a}\mathfrak{p}$.

Let $A_{\overline{k}}(\overline{x})$ be the homogenization of $\partial_{\overline{u}}B_{k_0,k_1}(\widetilde{x})$. We denote

$$Q_{s,\overline{l}}(\overline{x}) = \sum_{k_0=0}^{K_0-1} \sum_{k_1=0}^{K_1-1} A_{\overline{k}}(\overline{x}) \sum_{i=0}^{t} \left[\binom{k_0}{i} \frac{t!}{(t-i)!} (l_1 \alpha_1 + \dots + l_n \alpha_n)^{k_0-i} \times \right]$$

$$\times U_{\overline{l}}^{10K_1}(\overline{x})G_{t-i,k_1,K_1-k_1}(T_{\overline{l}}(\overline{x})/U_{\overline{l}}(\overline{x}),S_{\overline{l}}(\overline{x})/U_{\overline{l}}(\overline{x}))\bigg].$$

As $\partial_{\overline{u}}R_{s,\overline{l}}(\widetilde{x}) \in {}^{a}\mathfrak{p}$, then $Q_{s,\overline{l}}(\overline{x}) \in \mathfrak{p}$ and, using Lemma 10, we obtain the estimation

$$|Q_{s,\overline{l}}(\overline{\omega})| < \exp\left(-\frac{2}{3}\lambda D^k M \ln M\right).$$

From this estimation similar by to [16] the estimation of Lemma 14follows. We define

$$G(z) = \sigma((z + iK')/\sqrt{e_1 - e_3})F(z).$$

From properties of sn(z), using Lemma 7, Lemma 8, (10) and (11), we obtain the following statement.

Lemma 15. In the disk $|z| \leq \lambda^{4k+2}D^{1/2}$ the inequality

$$|G(z)| \le \exp\left(-\frac{3}{8}\lambda D^k M \ln M\right)$$

holds.

Using Lemmas 5, 6, 7, 9, 12, 13, 15 we obtain:

Lemma 16. For all numbers s, l_1, \ldots, l_n such that $0 \le s \le S$, $0 \le l_j \le \lambda^{4k+1}D^{1/2}$ and the point $l_1\alpha_1 + \cdots + l_n\alpha_n$ is \mathfrak{M} -admissible, we have

$$|F^{(s)}(l_1\alpha_1+\cdots+l_n\alpha_n)| \leq \exp\left(-\frac{1}{3}\lambda D^k M \ln M\right).$$

Let \mathcal{R} be a quotient-ring $\mathbb{K}[\widetilde{x}]/^a\mathfrak{p}$, η_i be the images of x_i , $1 \leq i \leq m$, $\eta = (\eta_1, \ldots, \eta_m)$, \mathcal{L} be the field of quotients \mathcal{R} . It follows from Lemma 11 that $U_{\overline{l}}(\overline{\eta}) \notin \mathfrak{p}$. We define $\overline{\xi}_{\overline{l}} = (\overline{\xi}_{\overline{l},1}, \overline{\xi}_{\overline{l},2}, \overline{\xi}_{\overline{l},3})$ as follows:

$$\overline{\xi}_{\overline{l}} = (l_1 \alpha_1 + \dots + l_n \alpha_n, \ T_{\overline{l}}(\overline{\eta}) / U_{\overline{l}}(\overline{\eta}), \ S_{\overline{l}}(\overline{\eta}) / U_{\overline{l}}(\overline{\eta})), \quad \overline{\xi}_{\overline{l}} \in \mathcal{L}^3.$$

As the point $(\operatorname{sn}(l_1\alpha_1+\cdots+l_n\alpha_n), \operatorname{sn}'(l_1\alpha_1+\cdots+l_n\alpha_n)), \bar{l}=(l_1,\ldots,l_n) \in \mathbb{Z}^n, \bar{l}\neq 0$, lays on the curve $y^2=(1-x^2)(1-\varkappa^2x^2)$, the equality

$$U_{\overline{l}}^2(\overline{\omega})S_{\overline{l}}^2(\overline{\omega}) = (U_{\overline{l}}^2(\overline{\omega}) - T_{\overline{l}}^2(\overline{\omega}))(U_{\overline{l}}^2(\overline{\omega}) - \varkappa^2 T_{\overline{l}}^2(\overline{\omega}))$$

holds. From here and from Lemma 13 it follows that the two last coordinates of the points $\bar{\xi}_{\bar{l}}$ satisfy the equation $\xi_{\bar{l},3}^2 = (1 - \xi_{\bar{l},2}^2)(1 - \varkappa^2 \xi_{\bar{l},2}^2)$.

Lemma 17. Let $\overline{\xi}_i = (\xi_{i1}, \xi_{i2}, \xi_{i3}), \ 1 \leqslant i \leqslant N_2$, be points with distinct first coordinates, $R \in \mathcal{L}[z, x], \deg_z R \leqslant L_2, \deg_x R \leqslant L_3$. Then

$$\sum_{i=1}^{N_2} \operatorname{ord}_{\bar{\xi}_i} R \leqslant (4L_3 + 2)L_2 + 2N_2L_3.$$

The proof of Lemma 17 is similar to that of Lemma 16 [16]. Let

$$\mathcal{D} = \frac{\partial}{\partial z} + y \frac{\partial}{\partial x} + (2\varkappa^2 x^3 - (1 + \varkappa^2)x) \frac{\partial}{\partial y}$$

be the differential operator in the ring $\mathcal{L}[z,x,y]$. Using Lemmas 5 and 16, we obtain:

Lemma 18. For each $s, l_1, \ldots, l_n, 0 \le s \le S, 0 \le l_j \le \lambda^{2n+1} D^{1/2}$, such that the point $l_1\alpha_1 + \cdots + l_n\alpha_n$ is \mathfrak{M} -admissible, the equality

$$\mathcal{D}^s F(z)|_{l_1\alpha_1+\cdots+l_n\alpha_n}=0$$

holds.

In order to complete the proof of Theorem 4 is suffices to reduce an inconsistency the estimations in Lemmas 17 and 18. For the polynomial F constructed in Lemma 14, according to Lemma 18 we have

$$\sum \operatorname{ord}_{\overline{\xi}_i} F \geqslant \frac{1}{2} \lambda^{2k+1} D^k M.$$

According to Lemma 17 this sum does not exceed the magnitude $6\lambda^2 D^{n/2}M$. The obtained contradiction for n > 1 completes the proof of Theorem 4.

- [1] Chudnovsky G. V. Algebraic independence of the values of elliptic functions at algebraic points; Elliptic analogue of the Lindemann-Weierschtrass theorem //Inventiones Math., 61 (1980). P. 267-290.
- [2] Chudnovsky G.V. Contributions to the theory of transcendental numbers. AMS Math. surveys and Monographs. Springer, 1984.
- [3] Fel'dman N.I., Nesterenko Yu. V. Transcendental Numbers. Springer, 1998.
- [4] Hurwitz A., Courant R. Allgemeine Funktionentheorie und elliptishe funktionen. Springer, 1964.
- [5] Jabbouri E.M. Mesures d'independance algebrique de valeurs de fonctions elliptiques et abeliennes // C.R. Acad. Sc. Paris, 303 (Ser. 1, No. 9) (1986).

- [6] Kholyavka Ya.M. On a measure of algebraic independence of values of Jacobi elliptic functions // FPM, 11 (No. 6) (209-219).
- [7] Masser D. Elliptic functions and transcendence. Lect. Notes Math., 437, Springer, 1975.
- [8] Masser D. W., Wüstholz G. Fields of large transcendence degree generated by values of elliptic functions // Inventiones Math., 72 (1983). P. 407-464.
- [9] Nesterenko Yu. V. Estimates for the orders of zeros of functions of a certain class and applications in the theory of transcendental numbers // Izv. Acad. Nauk. SSSR, Ser. Mat., 41(2) (1977). P. 253–284. English transl.: Math. USSR, Izv., 11. P. 239–270.
- [10] Nesterenko Yu. V. Estimates for the characteristic function of a prime ideal // Mat. Sb., 123 (165, No. 1) (1984). P. 11–34. English transl.: Math. USSR, Sb., 51. P. 9–32.
- [11] Nesterenko Yu. V. On algebraic independence of algebraic powers of algebraic numbers // Mat. Sb., 123 (165, No. 4) (1984). P. 435–459. English transl.: Math. USSR, Sb., 51. P. 429–454.
- [12] Nesterenko Yu. V. On the measure of algebraic independence of the values of an elliptic function at algebraic points // Usp. Mat. Nauk., 40 (4) (1985). –
 P. 221–222. English transl.: Russ. Math. Surv., 40 (4). P. 237–238.
- [13] Nesterenko Yu. V. On a measure of the algebraic independence of the values of certain functions // Mat. Sb., 128 (170, No. 4) (1985). P. 545–568. English transl.: Math. USSR, Sb., 56. P. 545–567.
- [14] Nesterenko Yu. V. Transcendence degree of some fields generated by values of the exponential function // Mat. Zametki, 46 (3) (1989). P. 40–49. English transl.: Math. Notes, 46. P. 706–711.
- [15] Nesterenko Yu.V. On a measure of algebraic independence of the values of elliptic functions // in Diophantine Approximations and Transcendental Numbers: Proceedings of the Colloquium C.I.R.M. Lumini, 1990. Ed. P. Philippon (Berlin-New York: Walter de Gruyter, 1992), pp. 239–248.
- [16] Nesterenko Yu. V. On the algebraic independence measure of the values of elliptic functions // Izv. Russ. Acad. Sci., Ser. Mat., 59 (4) (1995). P. 155–178.
- [17] Nesterenko Yu. V. On a measure of the algebraic independence of the values of Ramanujan functions // Proc. V.A.Steklov Inst. Math., 218 (1997). P. 299-334.
- [18] Nesterenko Yu. V., Philippon P. (Eds.) Introduction to Algebraic Independence Theory. – Lecture Notes in Math., 1752 (Springer, 2001).
- [19] Philippon P. Varietes abeliennes et independance algebrique // Inventiones Math., 72 (1983). P. 389-405.

- [20] Ramachandra K. Contributions to the theory of transcendental numbers. II // Acta Arithmetica, V(XIV) (1968). P. 73–88.
- [21] Reyssat E. Approximation algebrique de nombres lies aux fonctions elliptique et exp // Bull. Soc. Math. France, 1 (1980). P. 47–79.
- [22] Shidlovskij A.B. Transcendental Numbers. (Walter de Grueter, Berlin New York, 1987).
- [23] Waldschmidt M. Elliptic functions and transcendence // http://www.math.jussieu.fr/~miw/
- [24] Whittaker E.T., Watson G. N. A Course of Modern Analysis (Cambridge, 1927).
- [25] Wüstholz G. Über das abelsche Analogon des Lindemannschen Satzes // Inventiones Math., 72 (1983). P. 363–388.
- [26] Wüstholz G. Recent progress in transcendence theory // Lecture Notes in Math., 1068 (1984). P. 280–296.
- [27] Zariski O., Samuel P. Commutative Algebra. Springer, New-York, 1968, Vol.1&2.

ПРО МІРУ АЛГЕБРИЧНОЇ НЕЗАЛЕЖНОСТІ ЗНАЧЕНЬ ЕЛІПТИЧНИХ ФУНКЦІЙ ЯКОБІ. І

Ярослав ХОЛЯВКА

Львівський національний університет імені Івана Франка, вул. Університетська, 1, Львів 79000

У роботі отримано оцінку міри алгебричної незалежності значень у різних алгебричних точках еліптичної функції Якобі $\operatorname{sn}(z)$.