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The complete description of nonperiodic groups with normal infini-
te cyclic subgroups is obtained, and it is observed that such groups are
just all nonperiodic groups with the minimal condition for nonnormal
cyclic subgroups.

The complete description of finite groups with normal cyclic subgroups
was obtained in 1897 by R.Dedekind [1]. Further, the complete description
of arbitrary groups in which all cyclic subgroups are normal was obtained in
1933 by R.Baer [2]. According to R.Baer’s Theorem [2], nonperiodic groups
with normal cyclic subgroups are just nonperiodic abelian groups. Simple
examples show that nonperiodic groups with normal infinite cyclic subgroups
are not necessarily abelian. The following Theorem, which is the main result
of the present paper, completely describes nonperiodic groups with normal
infinite cyclic subgroups and establishes that the class of all such groups is
just the class of all groups in which almost all infinite cyclic subgroups are
normal. Moreover, by Theorem, a nonperiodic group satisfies the minimal
condition for nonnormal cyclic subgroups iff all its infinite cyclic subgroups
are normal. Note that the complete description of infinite groups in which
almost all cyclic subgroups are normal was obtained by the author of the
present paper in [3].

Below Z* = NU {0}. All other notations used in the present paper are
standard.

Theorem. Let G be a nonperiodic group. Then the following statements
are equivalent:
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(i) All infinite cyclic subgroups of G are normal in it.

(ii) Almost all infinite cyclic subgroups of G are normal in it.

(iii) Almost all subgroups of each cyclic subgroup of G are normal in G.
(iv) G satisfies the minimal condition for nonnormal cyclic subgroups.
(v) All torsion-free subgroups of G are normal in .

(vi) Bither G is abelian, or for some normal abelian subgroup A of G and
some element b of G the following hold:

G : Al =2, (1)
G = A{b), (2)
ab =a1, (3)

where a s any element of A, and

bt =1. (4)

Further, if in the statement (vi) G is not abelian, then for any u € G\ A,

u? = b ' (5)

and
[(u)] = [ (B}, (6)

and
Z(G)={a:a€ A and a® = 1}. (7)

Remark 1. Remind that by definition a group satisfies the minimal
condition for certain subgroups if it has no infinite strictly descending chains
of these subgroups.

Remark 2. In connection with the statement (iv) of Theorem, note
that the minimal condition for nonnormal cyclic subgroups is, obviously,
equivalent to the minimal condition for nonnormal infinite cyclic subgroups,
and, clearly, all periodic groups satisfy this condition.

Preface the proof of Theorem with the following Proposition.

Lemma 1. Let G be a nonperiodic group in which all infinite cyclic
subgroups are normal. Then for every infinite cyclic subgroups (g) and (h),
the following relation is fulfilled

Cal(9)) = Ca({h))- (8)
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Preface the proof of Lemma 1 with the following remark.

Remark 3. Remind the following. For an infinite cyclic subgroup (v) of
the group G the relations

Z(G) P (v) <G

imply the relations
|G : Ce({v))| =2

and
v =v! (9)

where b is any element from G\Cg((v)).

Proof of Lemma 1. Assume that (8) is false. Let, for instance,
Co({gM\Ca((h) # 2.
Take b € C({g))\Cg({h}). Then for any u € (g) and v € (h),
v’ =wu and v® = v~} (10)

(see (9)). In view of (10), for w € {g) N (h), v’ = w = w71, ie. w? = 1.
Consequently, w = 1. Thus

(@ N}y =1. (11)
Since
{9),(h) 2G, (12)
with regard to (11),
(g, = 1, (13)

Because of (gh) < G, by virtue of (12) and (13), either
(gh)? = gh = g°h® = gh™! (14)
or
(gh)’ = (gh)y ' = h7lg7t = g7th™! = g®hP = gh™. (15)

Thus, with regard to (14) and (15), either gh = gh™! or g7lA™! = gh™'.
Consequently, h = A1 or g~! = g, which is a contradiction. So (8) is valid.
Lemma is proven.

Proof of Theorem. Obviously, (i) — (ii) — (iii) — (iv) and (v) — (i)
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(i) — (v). Indeed, any nonidentity torsion-free subgroup of G is covered
by its infinite cyclic subgroups and, at the same time, is normal in G.

Thus (i) < (v).

Take any infinite cyclic subgroup (g) of G.

(iv) — (). Since (g*) 2 (¢*""), k € Z*, and (¢*) 2 (¢*"), k € 27,
for some j,l € Z*, we have

(97),(¢%) 2G. (16)
Further, there exist m,n € Z, such that 27m + 3'n = 1. Then

(9) = (g™ (g®™). (17)
In view of (16), ‘

(9”™), (8" 2G. (18)

So, with regard to (17) and (18), {g) < G.

Thus (i) « (ii) « (iii) © (iv) < (v).

(i) — (vi). Let G be not abelian. Put A = Cg((g)). Take any a € A. If
a is of infinite order, then, by Lemma 1,

Ca({a)) = A. (19)

By virtue of (19), a € Z(A). Assume that a is of finite order. Since g € Z(A),
we have
(ga)/{@ = gl@lgial = gl (20)

Inasmuch as g is of infinite order, with regard to (20), ga is of infinite order
too. Consequently, ga € Z(A) (see above). So a = g~ !(ga) € Z(A). Thus A
is abelian. Therefore A # G. Consequently, (1) is true (see Remark 3).
Take b € G\ A. Then, with regard to (1), (2) is correct.
If a is of infinite order, then, with regard to (19), (3) is fulfilled (see
Remark 3). Let a be of finite order. Since ¢ and ga are of infinite order,
g° = ¢! and (ga)® = (ga)~!. So, because of A is abelian,

o® = g7"(ga)’ = g(ga) ™ = ga~'g7 =a.
Thus (3) is valid.
In consequence of (1), b € A. Therefore, by proven above, 6% = b~2. So
b2 = 4% = b2, ji.e. b* = 1. Thus (4) is valid.
Further, if © € G\A4, then for some a € A, u = ba (see (1) and (2)).
Then, with regard to (3), u? = b%aba = b?. Thus (5) is correct. Therefore,
obviously, (6) is valid.
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Since A is abelian, AZ(G) is abelian too. Consequently, |G : AZ(G)| # 1.
Therefore, with regard to (1),

1#4|G:AZ(GQ)| L |G: Al =2.
Consequently, |G : AZ(G)| = |G : 4], i.e.
Z(G) C A. (21)
Take any a € Z(G). Then, with regard to (21),
®=al=¢q (22)

(see (3)), i.e. a®> = 1.

Ifa®? = 1 and a € A, then, with regard to (3), (22) are fulfilled. Therefore,
since A is abelian and (2) and (22) hold, a € Z(G). Thus (7) is valid.

(vi) — (i). If G is abelian, then (i) is valid. Let G be not abelian. Since
all elements from G\ A are of finite order (see (6) and (4)),

(9) C A. (23)

So g® = g7 (see (3)), and, at the same time,

(b) € Ne((g))- (24)

Since A is abelian, with regard to (23),

A € Ng({g))- (25)

In consequence of (2), (24) and (25), {g) < G.
Theorem is proven.

Remind that, by definition, I H-groups are just infinite nonabelian groups
possessing infinite abelian subgroups, in which all such subgroups are normal
(S.N. Chernikov; see, for instance, Definition 4.1 [4]).

Corollary 1 (S.N.Chernikov; see, for instance, [4], Theorem 4.6). The
nonabelian group G containing elements of infinite order is an I1H-group iff
its centre is finite and it has some abelian normal subgroup A of indez 2 and
some cyclic subgroups (b} of order 2 or {4, such that

G = Alb) anda® =a7?,

where a is any element of A.
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An infinite nonabelian group satisfying the minimal condition for nonnor-
mal abelian subgroups is called an I-group (S.N. Chernikov; see, for instance,

[4], Definition 4.2). Clearly, the class of all I H-groups is a subclass of the
class of all I-groups.

Corollary 2 (S.N. Chernikov; see, for instance, [4], Theorem 4.10). Each
nonperiodic I-group G is an I H-group.

Proof of Corollaries 1 and 2. Take G from Corollary 2. Then G sa-
tisfies the minimal condition for nonnormal cyclic subgroups. Therefore, in
view of Theorem, all infinite cyclic subgroups of G are normal in it, there
exist A and (b) such as in Corollary 1 and Z(G) is an elementary abelian
2-subgroup of A.

Suppose that Z(G) is infinite. Since (b)Z(G)/(b) is infinite elementary
abelian, obviously, there exists some infinite descending chain

A1/(b) D Ag/{b) D ... D Ar/(b) D Agy1/(b) D ...
of subgroups of (b)Z(G)/(b). Then for some k € N,
A, 4G. (26)
Take any infinite cyclic subgroup (u) of A. Then
(w) 4G (27)

and for each a € {u), a® = a™!. So (u) N Cg({b)) = 1. Hence, because of
be A,

(uy NA, = 1. (28)

In consequence of (26)—(28), [{u), Ax] = 1. At the same time, [(u), (b)] = 1,
which is a contradiction. Thus Z(G) is finite.

Take any infinite abelian subgroup 7" of G. If T &€ A, then, because of
|G : A| =2, G =TA. Therefore TN A C Z(G). But T'N A is infinite, which
is a contradiction. Thus T C A.

Take any a € T. Then, because of A is abelian and a € A and G = A(b),
we have G = Cg((a)){b). Also (b) € Ng({a)). So (a) 9 G. Therefore T 4G.
Thus G is an TH-group.

Corollaries are proven.

The next proposition is directly connected with Theorem (see the state-
ment (vi)).
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Lemma 2. Let A be an abelian group and c be its element of order < 2.
Then there exists some group G such that

B <G, AQG=A®d) and AN = (o), (29)

G:Al=2, (B =2/ (=4or2) (30)

and for any a € A, (3) is fulfilled.

Further, if some group G* = A*(b)* is the same as G above and also
there exists some isomorphism o of A onto A* with c¥ = c*, then G = G*.
Moreover, the mapping: ab® — a®b**, o € A and k = 0,1, is an isomorphism

of G onto G*.

Proof. Let F = A X (u) where |[{u)| = 2|{c)| and for every a € A4, a% =
a~!. Put G = F/(cu?) and b = u{cu?)(€ G). Identify naturally A{cu®)/(cu?)
with A. It is easy to see that (29), (30) and (3) are fulfilled.

Proof of the last assertion of the present lemma is obvious.

Lemma is proven.
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IPYIIN 3 HOPMAJIBHUMUW HECKIHYEHHNMMN
IMKJ/ITYHYIMMU NNILATPYIIAMHAT

Muxoaa YEPHIKOB

Iacturyr maremaruku HAH Ykpainu,
Bys1. Tepemenkisceka 3, Kuis 01601

OTpEMaHO NOBHHI ONKC HENEPIOAMYHHX TPyl 13 HOPMAJIBHUMH HECKiH-
YeHHHMH [EKJIIYHEMHA DiArpynaMi i AoBeJeHo, M0 BCI Taki rpymnu € Hemepio-
JUYHAMY TPYIaMM 3 YMOBOKO MiHIMAJIBHOCTI 11 HEHOPMAJbHAX UUKJIIYHHX
HiATPYIL.



