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In this paper, by using semigroup of evolution operators and fixed
point argument we establish existence results for the controllability of
semilinear functional and neutral functional differential inclusions in a
Banach space with infinite delay when the right hand side has convex
as well as nonconvex values.

1. INTRODUCTION

The problem of controllability of linear and nonlinear systems represented
by ODEs in finite dimensional space has been extensively studied. Several
authors have extended the controllability concept to infinite dimensional
systems in Banach space with unbounded operators see the monographs
8,14,28,30] and the references therein. Lasiecka and Triggiani [26] establi-
shed sufficient conditions for controllability of linear and nonlinear systems
in Banach space. With the aid of Sadovskii’s fixed point theory and the
semigroup theory, Fu [19,20] considered the controllability of two classes of
abstract neutral functional differential equations with infinite delay. During
the last decade Balachandran and his collaborators have considered various
classes of first and second order semilinear ordinary, functional and neutral
functional differential equations on Banach spaces. These works and others
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due to other authors are listed in the survey paper by Balachandran and
Dauer [2]. By means of fixed point arguments some of the previous works
were extended to the multivalued case by Benchohra et al (see the book {6]
and the references therein, and the papers [3-5,7]).

In this paper, we are concerned with the controllability of some classes of
first order semilinear functional and neutral functional differential inclusions
in a Banach space. Initially, in Section 3 we will consider the first order
functional differential inclusion

Y (t) € A(t)y(t) + Cu(t) + F(t,y:), a.e te]0,b], (1)

yO=SPEB: (2)

F :[0,b] x B — P(E) is a multivalued map with nonempty compact values,
@ € B, B is the phase space to be specified later, the control function u(-) is
given in L?([0, ], E), the Banach space of admissible control function with
E is a real separable Banach space with the norm |- |, C is a bounded linear
operator from F into E, the family {A(¢) : 0 < ¢ < b} of unbounded linear
operators generates a linear evolution system and P(FE) is the family of all
nonempty subsets of E.

To study the system (1), (2), we assume that the histories y; : (—o0,0] —
E, y:(0) = y(t + 8) belong to some abstract space B.

Later, in Section 4, we study the neutral functional differential inclusions
of the form

9 1y(6) + o(t,w)] € AW + Cult) + Ftw), ae.t€ 0,8, ()

yocheB, (4)

where F and ¢ are as in problem (1), (2), g : [0,b] x B — E. For each of
the above problems we shall present three ex1stence theorems. The first one
when the right hand side is convex valued relies of the Bohnenblust-Karlin’s
fixed point theorem. The second and the third one which are both in the
nonconvex valued right hand side rely on a combination of Schauder’s fixed
point theorem with a selection theorem due to Bressan and Colombo [10]
for lower semicontinuous multivalued operators with nonempty closed and
decomposable values and on a fixed point theorem for contraction multiva-
lued maps due to Covitz and Nadler, respectively. Our results extend to the
multivalued case those considered by Balachandran and Dauer [2], Fu [19 20}
and those considered by Benchohra et al for finite delay.
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2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis which are used throughout this paper.

In this article, we will employ an axiomatic definition of the phase space
B introduced by Hale and Kato [22] and follow the terminology used in [23].
Thus, B will be a linear space of functions mapping (—o0, 0] into E endowed
with a seminorm || - || p. We will assume that B satisfies the following axioms:

(A1) If y : (—o0,0 +b) — E, b > 0, is continuous on (0,0 + b) and y, € B,
then for every t € [0, 0 + b) the following conditions hold:
(i) ¥ is in B;
(ii) fly(® < Hllye||s;
(iii) |lyellp < K (¢ — o) sup{ly(s)l| : o < s <t} + M(t - 0)l{yo |5

(A9) For the function y(-) in (A1), y; is a B-valued continuous function on
[e, o + b].

(A3) The space B is complete.

Here H > 0 is a constant, K, M : [0, 00} — [0, 00), K is continuous and M
is locally bounded, and H, K, M are independent of y(t).

We say that a family {A(¢) : t € IR} generates a unique linear evolution
system {U(t, s) : 0 < s <t < b} satisfying the following properties :

(1) U(t,t) = I (I is the identity operator in E),
(2) Ut,s)U(s,7)=U(t,7)for 0< 1t <s<t<bh,

(3) U(t,s) € L(E) the spaces of bounded linear operators on E, where
every 0 < 8 <t < b and for each y € E, the mapping (t,s) — U(t,s)y
is continuous.

More details on evolution systems and their properties can be found in [1,17].
For the family {A(¢) : 0 < ¢t < b} of linear operators, we introduce the follo-
wing conditions:

(B;) the domain D(A) of {A(t) : 0 < t < b} is dense and independent of
t, A(t) is closed linear operator;

(B;) For each ¢ € [0, b], the resolvent R(), A(t)) exists for all A with Re A < 0
and there exists K > 0 so that ||[R(A, A(t))]| < ﬁﬁ—l;
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(Bs3) For all t,s,7 € {0,b] there exists 0 < o < 1 such that
I(A(t) — A(9) AT () < Kt — 8|

(By4) For each t € [0,b] and some X € p(A(t)), the resolvent set of A(t), the
resolvent R()\, A(t)) is compact operators.

Let (X,|| - ||) be a Banach space. A multi-valued map G : X — P(X) has
convez (closed) values if G{x) is convex (closed) for all z € X. We say that
G is bounded on bounded sets if G(B) is bounded in X for each bounded set
Bof X, ie.,

sup{sup{||y|l : y € G(z)}} < co.
T€B

The map G is called upper semi-continuous (u.s.c.) on X if for each zg € X
the set G(zp) is a nonempty, closed subset of X, and if for each open set N
of X containing G(xzg), there exists an open neighborhood M of zg such that
G(M) C N. Also, G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B C X. If the multi-valued map G is
completely continuous with nonempty compact values, then G is u.s.c. if
and only if G has a closed graph (i.e., T, — T4, Yn — Y, Yn € G(zy) imply
Y« € G(z,)). Finally, we say that G has a fired point if there exists z € X
such that =z € G(z).

In the following, let P(X)={Y C X : Y # @}, Pu(X) = {Y € P(X):
Y closed}, Po(X) = {Y € P(X) : Y bounded},Pe(X) = {Y € P(X):Y
convex}, and Pep(X) = {Y € P(X) : Y compact}. A multi-valued map
G : [0,b] — Pq(X) is said to be measurable if for each z € E, the function
Y : [0,b] — X defined by

Y(t) = d(z, G(t)) = inf{|z — 2| : z € G(¢)}

is measurable where d is the metric induced by the normed Banach space X.
For more details on multivalued maps we refer to the books of Deimling [15],
Gérniewicz [21], Hu and Papageorgiou {24] and Tolstonogov [29].

For each y € C((—o00,b], E) let the set Sg, known as the set of selectors
from F defined by

Sry = {v € L'([0,b},E) : v(t) € F(t, )}, a.e. t € [0,b]}.

Lemma 1. [27] Let X be a Banach space. Let F : [0,b] X X — Py o(X)
be an L'-Carathéodory multivalued map with and let I" be a linear continuous
mapping from L'([0,b], X) to C([0,b], X). Then the operator

I'oSp: C([O, b],X) - cp,c(c’([oy b]aX))’ Yy (Fo SF)(y) = P(SF,!J)
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is a closed graph operator in C([0,b], X) x C([0,b], X).

Our considerations in the convex case are based on the Bohnenblust—
Karlin’s fixed point theorem.

Lemma 2. (Bohnenblust-Karlin [9], see also [31, p. 452]). Let X be a
Banach space and K € Py (X) and suppose that the operator G : K —

P o(K) is upper semicontinuous and the set G(K) is relatively compact in
X. Then G has a fized point in K.

3. FUNCTIONAL DIFFERENTIAL INCLUSIONS

Before stating and proving the main result, we give the definition of the mild
solution of the IVP (1), (2).

Definition 1. We say that the function y(-) : (—o00,b] — E is a mild
solution of system (1), (2) if y(t) = (t) for all t € (—00,0], the restriction
of y(+) to the interval [0,b] is continuous and there ezists v(-) € L*([0,d], E):
v(t) € F(t,y;) a.e [0,b] such that y satisfies the following integral equation:

y(t) = U(t,0)p(0) +/Ot Ul(t, s)v(s)ds+/{j U(t,s)Cu(s)ds, 0<t<b. (5)

Definition 2. The IVP (1), (2) is said to be controllable on the interval
[0, b] if for every initial function ¢ € B and y; € E there ezists a control u €
L([0,b], E) such that the mild solution y(-) of (1), (2) satisfies y(b) = y1.

Let us introduce the following hypotheses which are assumed here after:

(H1) The linear operator W : L2([0,3], E) — C([0, ], E) is defined by
b
Wu =/ U(b, s)Cu(s)ds,
0

and there exists a bounded invertible operator _W_/'"l defined on
L?([0,b], E)/kerW, and positive constants M, M, M such that

WUt s)| <M, 0<s<t<b, ||C|l £ M and |[WH < M.

(H2) The function F : [0,b]x B — P(E) is a nonempty compact multivalued
map, with convex valued, such that:
a) (t,x)— F(t,z) is measurable;
b) z — F(t, ) is upper semi-continuous for a.e. t € [0, b];
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(H3) For each k > 0, there exists a positive function by € L!([0,5], R*)
such that

1E(E, 2)llp := sup{|lv]| : v € F(¢t,2)} < ha(t) for a.e. t € [0, 8],
and for z € B with ||z||p < k; and

1
max{bMM*My, M}

11m inf - P ] hi(8)ds <

(H4) U(t,s) is a compact operator wherever ¢ — s > 0.

Remark 1. For the construction of W see [11].

Theorem 1. Suppose that hypotheses (H1)-(H4) are satisfied. Then the
initial value problem (1), (2) is controllable on (—oo,b).

Proof. Transform the problem into a fixed point problem. Consider the
operator, N : C((—o00,b], E) — P(C((—o0, b}, E)) defined by:

N(y)={ heC((—o0,b,E):

¢ (,O(t), if te ("“O0,0]; \
) = ¢ UE0)e(0) / U(t, s)u(s)ds+ |
/ U(t, s)Cuy(s)ds, if t € [0, b],

where v € SF’y = {v € L1([0, ], E) : v(t) € F(t,y;) for a.e.t € [0,b]}. Using
the assumption (H1), for arbitrary function y(-) define the control

b
uy(t) = W1 [yl — U(b,0)p(0) — /0 U(b, s)v(s)ds] (t).

Next we will prove that N has a fixed point.
Let z(-) : (—o0,b) — E be the function defined by

_ [ UGO0),  if te o,
“@‘{wm,¢ if ¢ € (00,0,

then zo = ¢. For each z € C([0,b], E) with 2(0) = 0, we denote by Z the
function defined by

2(6) = {z(t), if telob],

0, if ¢ € (—o0,0].
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If y(-) satisfies (5), we can decompose it as y(t) = z(t) + z(¢),0 < ¢t < b,
which implies y; = 2 + x, for every 0 < £ < b and the function z(-) satisfies

z(t) = ]o U(t, s)v(s)ds + fot U(t, 8)Cu(s)ds, (6)

where v(t) € F(t,Z; + o) a.e t € [0,b]. Let the operator P : C([0,8], E) —
P(C([0,b], E')) defined by

P(z) = {h e C([0,d], E) :

h(t) = /: U(t,s)v(s)ds + Lt U(t,s)Cu,(s)ds, te€ [0, b]},

where v € Sp, = {v € L*([0,b),E) : v(t) € F(t,%; + z;) for a.e.t € [0,d]}.
Obviously the operator N has a fixed point is equivalent to P has one, so it
turns to prove that P has a fixed point. We shall use the fixed point theorem
of Bohnenblust-Karlin to prove that P has fixed point. For each positive
number k, let

By, = {2 € C([0,b],E) : 2(0) = 0, [|z(#)|| < &, t € [0,]}.

It is clear that By is closed and convex set in C([0,b], E). We claim that
there exists positive number k such that P(By) C Bg. If is not true, then for
each positive number k, there is function z; € By and h € P(z) such that
|h(t)]| > k for some t € [0,b]. Then we have

t t
k< B! < [ 10 s)I(Cus)(e)lds + / U $)llw(s)lds <
<M / ICHlus(s)lds + M /0 ha(s)ds <

< bMIMTL; [Ilylll + Mg+ M f he(s)ds + M / R (s) ds]

IA

< SMMIGu | + M|6)]) + max{6TTM?TE;, M) [ i (s)ds.

Dividing both sides by k and taking the lower limit and from (H3), we get

SMEM, [l + M),
k

b
+ max {bMM?*M,, M} inf%/ hk(s)ds) -
0

1< lim (

k—oo

= max{bMM>My, M} Jim infi— / hi(8)ds < 1,
—3 00 0
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which yields to a contradiction. Hence there exists a positive number kg such
that P(Bg,) C By,.

Step 1: P(z) is convex for each z € C([0, }], E).

Indeed, if hy, hs belong to P(z), then there exist v1,v2 € S, such that
for each t € [0,b] we have

ha(t) = fo U, 9)oi(s)ds + /0 ‘Ut 5)Cus(s)ds, i=1,2

Let 0 < d < 1. Then for each t € [0, b] we have

t t
(dhl-{-(l—d)hg)(t):fo U(t,s)[dvl(s)+(1——d)v2(s)]ds+]0. U(t, s)Cu,(s)ds,

where

b
u,(t) = Wi [yl —~ U(b,0)p(0) — /(; U(b, s)[dvi(s) + (1 — d)'vg(s)]ds} (1).
Since Sf, is convex (because F has convex values) then
dhi + (1 — d)hg € P(z).

Step 2: P(By,) is relatively compact.

Since By, is bounded and P(By,) C By, it is clear that P(Byg,) is
bounded. It remains to show that P(Bj,) is equicontinuous.
Let i, € [O,b], 71 < 72 and z € By,. Then

|h(m2) — h(m)| = ‘[ U( 'rg,s)v(s)ds+/o U(ry, 8)Cu,(s)ds—
/ U (ry, 8)v(s)ds— / U1, 8)Cus(s)ds] <

< [0 |U(ra,8) — U, ) llo(s)lds + f | U, )lels)lds+

+ [0 1U (2, 8) = Uy, )IIC s (s) | ds+

+/'r2 ”U(Tl,S)HHC’”“uz(s)”dsS

1
T2

< /OTI U (72, 8) — U(r1, 8)||hi, (8)ds +] WU (71, 8)|| Ak, (8)ds+

Tt

+M [ " Clliuss)llds + fo " U, 8) = Ulr, ) IC s ()l ds.

T2
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Noting that

b
luz(s)] < W3 {”yl|l+M“9‘9”+M/0. Ilv(S)lldS] <

b
< W) Il + Mol + 3 [ g (s)ds|.

We see that {|h(mp) — h(m1)|| tend to zero independently of z € By, as
(r9 — 11) — 0. The right-hand side tends to zero as , ~ 7, — 0, and €
sufficiently small, since U(¢, s)(t — s > 0) is a strongly continuous operator
and the compactness implies the continuity in the uniform operator topology.
As a consequence of the Arzeld—Ascoli theorem it suffices to show that the
multivalued P maps By, into a precompact set in E. Let 0 < ¢t < b be fixed
and let € be a real number satisfying 0 < € < t. For z € By, we define

t—¢
he(t) = U(t, t —€) fo U(t — ¢, 8)[v(s) + (Cu)(s)]ds

where v € Sg,. Since U(t, s) is a compact operator, the set H.(t) = {h.(t) :
he € P(y)} is precompact in E for every €, 0 < € < t. Moreover, for every
h € P(z) we have

t t
) =) < [Cllat” [ 10 s)lamds+ [ 1Vt 8)lamua(e)ds,

where
b
B = W [nyln + Mol + M [ hko(s)ds] .

Therefore there are precompact sets arbitrarily close to the set {h(t) : h €
P(z)}. Hence the set {h(t) : h € P(2)} is precompact in E.

Step 3: P has a closed graph.

Let 2n, — 2y, hn € P(2y,) and h, — h.. We shall prove that h, € P(2,).
hn € P(2;) means that there exists v, € Sr,, such that, for each t € [0, b],

i
6

o (£) = ]0 Ut 5)m(s)ds + / U(t, 5)(Cus, )(s)ds.

We have to prove that there exists v, € S, such that, for each t € [0, b],

t t
ha(t) = [0 ULt s)va(s)ds + /0 U2, 5)(Cus. ) (s)ds.
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We have
“ (hn - /Ot U(t, S)CW_I(yI — U(b, 0)¢(0))) _

t
——(h* ~ f U(t,s)\CW (3, — U8, 0)¢(0))) H 0, asn — oo.
0 o0
Consider the operator

T L([0,4], B) — C({0, 8], E),

t b
v I(v)(t) = [ Ul(t, s) [fv(s) +Cw! (/ U(b, s)v(fy)d'y)] ds.
0 0
We can see that the operator I is linear and continuous. Indeed, one has
IT?lleo < Laflv]|Ls,

where L, = M +bM{MM. From Lemma, 1, it follows that T'o Sg is a closed
graph operator. Moreover, we have that

@)~ [ Ut )OW " [y — U(5,0)6(0)] € D(Sk..).

Since zp, — 24, it follows, from Lemma 1, that

fo t U(t, s) [v*(s) —-cw! ( [0 ’ U(b, S)U*('y)d»y)] ds =

t
= hu(t) - U, 0)6(0) — f U(t, s)CW~L(y; — U(b,0)¢(0))ds,
0
for some vy € Sg.,. As a consequence of Lemma 2, we deduce that P has a
fixed point which is a mild solution of (1), (2).

Remark 2. Assume that (H1), (H2), (H4) are satisfied, then a slight
modification of the proof (i.e. use the usual Leray-Schauder alternative) gua-
rantees that (H3) could be replaced by

(H3)* There ezist a continuous non-decreasing function r : [0, 00) — (0, 00),
a function p € L1([0,8],IR) such that

IEE,2)lp < p(t)¥r(|zliB) for t€(0,8], xe€B,

with
*  ds

t
mm{bHMzﬁl, M}/0 p(8)ds < m,

where

¢ = max(M ||, llolll) + bM MM [lly:[| + Mlo]]-
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Let 2 be solutions of the inclusion 2 € AP(z), for some A € (0,1), then
there exists v € S, such that

6] < [ W aliCus)ollds+ [ 0t a)lo(e)ids <
14 t

<M [ 1CH(0)ds + M [ ple)r(lz +aalhds <
0 0

t
< MM}y || + M||@)l) + bAIM2DE; [0 p(sYbr (|7 + o] )ds]+

t
+M f p(s)0p (12 + za|))ds <
0 t
< bMIMTT; [}y ]| + M @ll) + AT M2RE; [0 p(s)r (| 2(s)]|+
+ max(M|\g|l, oll)ds] + M fé p(8)¥r(ll2(s)]| + max(Miel, fell))ds <
U
< max{sMM*M;, M} /0 p(s)wr(l|(s)]| + max(M]l]l, loll))ds+
MM [yl + MYl
We consider the function y defined by

u(t) = sup{|jz(s){l + max(Mllel], folll) :0 < a<t}, 0<E<0.
Let ¢* € [0,1] be such that p(t) = |y(¢t*)|. Then

©) < mes(sFTMTE, M} [ plo)e ()t

+oM MMi([ly]l + Mi|gll] + max(Mllell, lloll).
Let us take the right-hand side of the above inequality as v(t). Then we have
¢ = v(0) = max(Mllol|, [lo][)+oMMMi[lly1 || +MI8ll], u(t) < v(2),t € [0,8],

and
V() = max{bMM?*My, M}p(t)¥r(u(t)), ae te€][0,b].

Using the nondecreasing character of ¢ we get
v'(t) < max{bMM? M, M}p(t)¥r(v(t)) ae. te[0,n].
This implies that for each t € [0, b]

®  ds

Yr(s)

v(t) ds o t
< max{bMM?*M,, M} / p(s)ds < f
¢ d’F(s) 0 c
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Thus from (H3)* there exists a constant K, such that v(t) < K, t € [0,}],
and hence u(t) < K,, t € [0,b]. Since for every t € [0,b], [|2(8)|| < u(t), we
have {|z|loc < K. Set

U, = {z € C([0,8], E) : sup{|2(t)] : 0 < t < b} < K, + 1}.

As in Theorem 1, the operator P : U, — P(C(|0,b], E)) is completely con-
tinuous. From the choice of U, there is no z € U, such that z € AP(z),
for some A € (0,1). As a consequence of the nonlinear alternative of Leray—
Schauder type {16], we deduce that P has a fixed point z in U,. Then the
problem (1), (2) has at least one mild solution on (—oo0, b].

In this part, by using Schauder’s fixed point theorem [31] combined with a
selection theorem due to Bressan and Colombo [10] for lower semicontinuous
multivalued maps with decomposables values we establish the controlability
of the problem (1), (2).

Let A be a subset of [0,b] x B. A is £ ® B measurable if A belongs
to the o-algebra generated by all sets of the form N x D where N is
Lebesgue measurable in [0,b] and D is Borel measurable in B. A subset
A of L1([0,4], E) is decomposable if for all u,» € A and N c L([0,b], E)
measurable the function uxny + vxs-n € A, where x stands for the charac-
teristic function.

Let X a nonempty closed subset of E and G : X — P(E) a multivalued
operator with nonempty closed values. G is lower semi-continuous (l.s.c.) if
the set {x € X : G(z) N B # 0} is open for any open set B in E.

Definition 3. Let Y be a separable metric space and let
N :Y — P(LY([0,b], E))
be a multivalued operator. We say that N has property (BC) if
1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F : [0,b] x B — P(E) be a multivalued map with nonempty compact
values. Assign to F' the multivalued operator

F : C((=00,b], E) — P(L'([0,b], E))
by letting
Fly) = {ve LY{[0,8], E) : v(t) € F(t,y) for a.e. t € [0,5]}.

The operator F is called the Niemytzki operator associated to F.
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Definition 4. Let F : [0,b] x B — P(F) be a multivalued function with
nonempty compact values. We say that F is of lower semi-continuous type
(l.s.c. type) if its associated Niemytzki operator F is lower semi-continous
and has nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.

Theorem 2. [10] Let Y be separable metric space and let N : ' Y —
P(LY([0,d), E)) be a multivalued operator which has property (BC). Then N
has a continuous selection, i.e. there ezxists a continuous function (single-
valued) f : Y — LY([0,b], E) such that f(z) € N(z) for every x € Y.

Let us introduce the following hypotheses which are assumed hereafter:
(A1) F:]0,b] x B — P(FE) is a nonempty compact valued multivalued map
such that:
a) (t,z)— F(t,z) is L ® B measurable;
b) z +— F(t, z) is lower semi-continuous for a.e. t € [0, b].

The following lemma is crucial in the proof of our main theorem:

Lemma 3. [18]. Let F : [0,b] x B — P(E) be a multivalued map with
nonempty, compact values. Assume (Al) and (H2) hold. Then F is of l.s.c.

type.

Theorem 3. Suppose that hypotheses (H1), (H3) and (Al), hold. Then
the problem (1), (2) has at least one solution.

Proof. (H3) and (Al) imply by Lemma 3 that F is of lower semi-
continuous type. Then from Theorem 2 there exists a continuous function

f: C{(~o0,b], E) — LY([0, 8], E)

such that f(y) € F(y) for all y € C{(—o0, b}, E). Consider the following
problem

y'(t) = A)y(t) + Cu(t) + f(w), t€[0,8], (7)
y(t) = o(t), t € (-00,0]. (8)
We consider the operator N : C({(—o0,b], E) — C((—00, b}, E) defined by:

([ (), t if ¢ € (oo, 0;
() = | TG00+ [ U9 u)ds+ |

+ /t Ul(t, s)Cuy(s)ds, if t€]0,b].
L Jo




170 A.Arara et al

As in Theorem 1, let the operator P; : C(([0,b}, E) — C([0,b], E) defined
by:

(PL2)(t) = fo U(t, ) (2 + yo)ds + /0 U(t, s)Cus(s)ds, te[0,b]

where u is the control defined in Theorem 1.

Remark 3. If y € C((—o0,b], E) is a solution of the problem (7), (8),
then y is a solution to the problem (1), (2).

It is clear that P, : By, — By, is continuous and completely continuous.
As a consequence of the theorem of Schauder [31] we deduce that P; has a
fixed point z in By,, then the operator N has a fixed point y which is a mild
solution of the problem (1), (2).

We present, now, a second result for the problem (1), (2) with a non-
convex valued right hand side.

Let (X,d) be a metric space induced from the normed space (X, ]| -1).
Consider Hy : P(X) x P(X) — R4 U {o0}, given by

H;(A, B) = max {sup d(a, B),supd(A, b)} ,
ac A beBB
where d(A,b) = ig&d(a, b), d(a,B) = li’gli;d(a, b). Then (Ppu(X), Hg) is
a

a metric space and (P,(X),Hy) is a generalized (complete) metric space
(see [25]).

Definition 5. A multivalued operator G : X — Py(X) is called

a) vy-Lipschitz if and only if there exists v > 0 such that
H4(G(z),G(y)) < vd(x,y) for each z, y € X,

b) a contraction if and only if it is ~y-Lipschitz with v < 1.

Our considerations are based on the following fixed point theorem for
contraction multivalued operators given by Covitz and Nadler in 1970 [13]
(see also Deimling, [15] Theorem 11.1).

Lemma 4. Let (X,d) be a complete metric space. If G : X — Py(X) is
a contraction then FizG # 0.

Let us introduce the following hypotheses:

(A2) F:[0,b]x B — Pyp(E); (t,x) — F(t,x) is measurable for each z € B.
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(A3) There exists a function ! € L([0, 5], IR™) such that
Hy(F(t,z), F(t,T)) < l(t)||lx — Z|| for a.e. te[0,b] and all z,T € B,
and d(0, F'(t,0)) <I(t) hbozfora.e. te[0,b].

Theorem 4. Suppose that hypotheses (A2) — (A3) are satisfied. Then the
IVP (1), (2) has at least one mild solution.

Remark 4. For each z € C([0,b}, E) the set Sg, is nonempty since by
(A2), F has a measurable selection (see [12], Theorem III.6).

Proof. Let P : C(|0,b}, E) — P(C([0,d], E)) where P is defined in Theo-
rem 1 are solutions of the problem (1), (2). We shall show that P satisfies
the assumptions of Lemma 4. The proof will be given in two steps.

Step 1: P(z) € Py(C([0,b], E)) for each z € C([0,b], E).
Indeed, let (2p)n>0 € P(z) be such that z, — Z in C([0,b], E). Then
z € C([0,b], E) and there exists v, € Sf, such that, for each £ € [0, 8],

zn(t):]; U(t,s)vn(s)ds+/0 U(t, 8)(Cu,)(s)ds.

Using the fact that F' has compact values and from (A2), {A3), we may pass
to a subsequence if necessary to get that v, converges to v in L([0,5], E)
and hence v € Sg,. Then, for each t € [0, b],

zp(t) — 2(t) = /Ot U(t,s)v(s)ds + /: Ult, s)(Cu;)(s)ds.
So, Z € P(z).
Step 2: There exists v < 1 such that
Hi(P(z), P(2.)) < 7l|z — 24]loc for each z, 2z, € C([0,b], E).
Let 2,2, € C([0,b], E} and h € P(z). Then there exists v(t) € F(t,2 + x¢)
such that, for each t € [0, b],

t
h(t) = /0 Ut $)0(s)ds /0 ULt 5)(Cus)(s)ds.

From (A3), it follows that Hy(F(t, 31 +x:), F(t, Zs, + 1)) < U(2)]|2(2) — 2.(D)]}-
Hence, there is w € F(t, 2, +x¢) such that [v(t) —w| < I(#)||z(t) —2.(t)]l, t €
[0, 8]. Consider U : [0,b] — P(E), given by

Ut)={w € E: u(t) - w| <1{)]|2(t) — 2@}
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Since the multivalued operator V(t) = U(t) N F(¢, Z« + x¢) is measurable
(see Proposition I11.4 in [12]), there exists a function ¢ — T(t), which is a
measurable selection for V. So, T(t) € F(t, Z« + x¢) and

lo(t) — o(t)] < I{t)]|zt) — 2.(t)|] for each t € [0,b].
Let us define, for each t € [0, ],

t t
h(t) = /(; Ul(t,s)v(s)ds + ./0 U(t, s)(Cu,,(s)ds.
Then we have

h(t) — h(t)| =
= ‘/(; U(t, s){(Cu;)(s) —~ (Cuy,)(s)lds +]O U(t, s)[v(s) —W(S)stg <
t 3
<M /0 | 1Clus(s) — e, (5)lds + [0 1(s)M|2(s) ~ 2u(s)lds <
< M/O 1(8)lz(s) — z«(8)|ds+
4 b
+ MT fo W) [ /0 U, s)Hv(w)——ii(w)dw] ds <

< MM?*M, /: [fob lv(w) — @‘(w))|dw} ds+
+ 3 [ 10)z(s) ~ 2ol <

< MR [ 1s)1a6) ~ 2 (@)lds + M [ Us)a() — 2.(0)]ds <

; t
< /0 1(s)l|2(s) — zu(s)|lds = ;11; fo (€XO)Yds|jz — 2]l <

L rrw
< = ~ 25,
= 're 2z — 2] B
where 7 > 1, L(t) = [¢I(s)ds, I(t) = max(MI(t), MM*M1bl(t) and | - ||z
is the Bielecki-type norm on C({0, b}, E) defined by
— t *TL(t) .
Il = max () e}
Therefore, ||h — hllg < %Hz — Z|lz- By an analogous relation, obtained
by interchanging the roles of y and ¥, it follows that Hg(P(z), P(2)) <

jjz — 2,|j5. So, P is a contraction, and thus, by Lemma 4 it has a fixed
point z, which is a mild solution to (1), (2).
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4. NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS

Let us introduce the following hypotheses which are assumed here after:

(A4) There exisc Ly > 0 such that

1A (s, o)l < Lillpliz +1), 0<¢t,s<b, p € B.

(AB5) The function g is completely continuous and for any bounded set Q@ C
C((—o0,b}, E) the set {t — g(t,z:) : ¢ € Q} is equicontinuous in
c([o, 4], E).

(A6) There is My > 0 such that [JA™1(¢)|| < My, for all 0 <t < b.
(A7) There exist L, > 0 such that
1A(8)g(s1, ) — A(t)g(s2,P)|| < Lu(ls1 — 82| + llo — Bll)
for 0<t,81,80<b,p, ¥ € B.
Theorem 5. Assume that hypothesis (H1)-(H4) and (A4)-(AT7) hold. If

Lg= L*Kb(M(} -+ bM) <1,

(1+bMMM,) (LiMyKy + bML 1Ky + MKyy) <1,
where Ky = sup{K(t) : 0 <t < b}. Then the problem (3), (4) is controllable
on (—o0,b).

Proof. Consider the operator N : C((—oc0,b], E) — P(C((—00,b], E))
defined by:

Ni(y) = { h € C((—o0,b}, E) :

(9)

[ (1), if t € (—00,0]; )
U(t, ?) [(0) + g(0, ¥)] — g(t, ye)+
mt)={ + [0 U(t, 5) A(s)g(s, ys)ds+ >
L +/t U(t, 3)[Cu(s) + v(s)}ds, if t € [0,8],
0 J

where v € Sg,,. Using the assumption (H1), for arbitrary function y(-) define
the control

u(t) = W [y1 = U(b,0)((0) + 9(0, ) + g(b,ye)-
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b b
- [ U(b, ) A(s)g(s, ys)ds — [ U (b, 8)u(s)ds] ()
0 0

It shall be show that when using this control the operator N1 has a fixed point
y(-). Then y(-) is a mild solution of system (3), (4). By analogue of Theorem
1 we consider the operator P; : C(|0,b], E) — P(C([0, b}, E)) defined by

Pi(z) = {h € C([0,b], E) : h(t) = U(t,0)9(0, ¢) — g(t, Z¢ + @)+

t t
+f Ul(t,s)A(s)g(8,Zs + z5)ds + f U(t, s)(Cu(s)ds + v(s))ds,v € Sg .}
0 0

As in Theorem 1 we can show that there exists ko > 0 such that Py(By,) C
By, and Pj : By, — Py (Bk,) is completely continuous. As a consequence
the fixed point theorem of Bohnenblust-Karlin we deduce that P; has a fixed
point z in By,, then the problem (3), (4) has at least mild one solution.

Now we consider nonconvex version of the problem (3), (4).

Theorem 6. Assume that the hypotheses (H1), (H3), (H4), (Al), (A4),
(A5) and the condition (9) are satisfied then the problem (3), (4) has at least
mild one solution.

Proof. (Al) and (H3) imply by Lemma 1 that F' is of lower semi-conti-
nuous type. Then from Theorem 2 there exists a continuous function

f: C((~00,b], E) — L}([0, 8], E)

such that f(y) € F(y) for all y € C({—o0,b}, E). Consider the following
problem

S - gt = ), te 0B (10)

y(t) = o(t) € B. (11)
Consider the operator N, : C((—00,b], E) — C((—00,b], E)) defined by:

([ p(2), if t€ (—o0,0];
U(t,0)[¢(0) + g(0, 0)] — g(t,ye)+

(N.y)(t) = 4 +/:U(t, 8)A(s)g(s,ys)ds+

+[t U(t, s)[Cu(s) + f(ys)lds, if telo,b].
0
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Let P, : C([0,8], E) — C([0,b], E)) defined by
t
(Px2)(t) = U(t,0)9(0, ) ~ g(t, % + ) + /0 U(t,8)A(s)g(s,Zs + z5)ds+
+ /Ot U(t, 8)Cu,(s)ds + fot U(t,s)f(Zs + z¢)ds.

By Schauder’s fixed point we can show that P, has at least one fixed point,
this implies that N, has fixed point which is mild solution of the problem
(3), (4).

Now we present a result for the problem (3), (4) by using fixed point
theorem for contraction multivalued operators given by Covitz and Nadler.

Theorem 7. Suppose that hypotheses (A2)-(A3), (A7) and the condition
(A8) There ezists L > 0 such that

|A(t)g(s,0) — A)g(s, @) < Lllp — |l for 0<t,8<b, ¢, P€ B,

are satisfied. If =1 + L < 1, then the the problem (3), (4) has at least one
mald solution.

Proof. Let Py : C([0,b], E) — P(C([0,b], E)) where P; is defined in
Theorem 5. We shall show that P, satisfies the assumptions of Lemma, 4 will
be given in two steps. As in Theorem 4, we show that for each z € C(|0, b}, E),
P1(z) € P4(C(|0,8), E)). Now we prove that there exist v < 1 such that

Hy(P1(2), P1(2)) £ llz — 240 for each z,z. € C([0, 4], E).

Let 2,2, € C([0,b], E) and h € P1(z). Then there exists v(t) € F(t, Z + x¢)
such that, for each ¢ € [0, b],

t
h(t) = U(t,0)g(0,¢) — g(t,Zt + x¢) + /0 U(t,s)A(8)g(s,Zs + zs5)ds+

¢ t
+/ U(t,s)Cu,(s)ds +f U(t, s)v(s)ds.
0 0
From (A3), it follows that
Hd(F(t:Zt + mt)a F(t: Zxy T xt) < l(t)“Z(t) - Z*(t)”.
Hence, there is w € F(t, ., + z;) such that

[o(t) — w] < UE)[2() — 2], ¢ €[0,8].
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Consider U : {0,5] — P(E), given by
U(t) = {w € E: |v(t) —w| <I)]l2(t) — 2+ (B)]}-

Since the multivalued operator V(t) = U(t) N F(t,Z« + x) is measurable
(see Proposition II1.4 in [12]), there exists a function ¢ — T(t), which is a
measurable selection for V. So, w(t) € F(t,Z« + z;) and

lo(t) —o(t)] < U(t)||zt) — z(t)|| for each ¢ € [0,0]
Let us define, for each t € [0, b],

t
h(t) = U(t,0)9(0, p) — g(t,Z; + 1) + /0 U(t,s)A(s)g(s,Zs + zs)ds+

+ fot Ult, s)Cu,(s)ds + /Ot U(t, s)v(s)ds.
Then we have
1) — RO = | A OIADg(t 2 + 32) ~ A)g(t, Fae + )]+
A
+ fo U(t,s)[A(8)g(s,Zs + x5) — A(3)g(8,Zss + T5)]|ds+
4 f U(t, 5)[(Cus)(s) ~ (Cuz)(s))ds + / U, s)lo(s) — o(s)lds| <
0 : 0

< LMyllz(t) - Z(®)]| + [0 ML|7(s) — Z(s)|lds+

i t
M fo W)~ . () + ]0 (s)Ml2(s) — za(s)llds <
< Lijz(t) ~ z(®)l + ]0 MLMol%(s) — Z(s)|lds+

t t
+ M/ 1(8)]|2(8) — z.(8)llds + Mﬁ/ |W_1|L||z(s) — z(8)||ds+

0 ; 0
+ M2TIbL [ W1[|2(s) — za(s)|[ds+

0
t b
M -1 — v{w
+ M3 [ [ | UGt - )cw] ds <
< ILMoll=(t) - 2 (8)]) + fo MLMol[(s) — Z4(s)lds+
t 1

+ Mf 1(8)||=z(s) —z*(s)||d3+H1MﬂL/ |2(s) — z«(8)||ds+

0 0]

t
+ M M2IBL / 12(s) — z(s)||ds+
0
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+ W M*W b fo t Us)|12(s) — 2 (s)||ds <

1 t
< (2+7) [@Oytsls - alp < (2+2) O -l
0

where L.(t) = [ L(s)ds,
le(t) = max{MI(t), M MZM bl(t), M LMy, M;MMLMy, M; M*>MbL}
and || - || is the Bielecki-type norm on C(|0, b}, E') defined by

— ~7L.(t)
l2llg = tm[ga;]{llz(t)ne }

Therefore,
_ 1
Ih=Flg < (L4 ) e - 2l

By an analogous relation; obtained by interchanging the roles of y and 7, it
follows that

_ — 1
HaPr(), Pa(e) < (L4 7 ) = =
So, P, is a contraction, and thus, by Lemma 4 it has a fixed point z, which
is a mild solution to (3), (4).

Remark 5. Assume that (H1), (H2), (H3)*, (H4), (A5)—(AT) are satisfi-
ed, then a slight modification of the proof and use the usual Leray-Schauder
alternative guarantees that (A4) could be replaced by

(A4)* There exist a continuous non-decreasing function 1, : [0,00) — (0, c0),
a function q € L([0,8],IR) such that

1A®)g(t, )| < at)yy(lizliz) for te[0,b], z€ B.

Then the problem (3), (4) has at least one mild solution on (—oo,b|.

5. AN EXAMPLE

As an application of our results we consider the following partial neutral
functional differential inclusions of the form

t 7 22
% [z(t,m) + /;Oo-/(; b(s —t,y,z)z(s, y)dyds] — aft, m)g-—ég—;—@— € (12)
Q(t,z(t — r,x),2:(t — 7, z))) + d(z)ult), 0<z<m, tel0b],
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2(t,0) = 2z(t,m) =0, tel0,b

z(t,z) = ¢(t,z), t<0, 0<z<m, (13)

where a(t,z) is a continuous function and is uniformly Hélder continuous in
t. Let

t ™
g(t,w)(z) = / j b(s —t,y,z)z(s,y)dyds, 0<z <,
—OQ ¢ —0O0

and
F(t,w)(x) =Q (t,w(t — ), a%}w(t - a:)) , 0<z<m.

Take E = L?[0,n] and A(t) defined by A(t)w = —a(t,z)w” with domain
D(A) = {w € F,w,w'are absolutely continuous, w” € E,w(0) = w(n) =
0}. Then A(t) generates an evolution system U(t, s) satisfying assumptions
(By) — (By) (see [17]). Here we take the phase space B = Cy x L3(f; E),
which contains all classes of function ¢ : (—00,0] — E such that ¢ is
Lebesgue measurable and fjo]|? is Lebesgue integrable on (—oo,0] where

f 1 (—00,0) — IR is a positive integrable function. The norm in B is defined
by

0 1/2
el = 160)] + ( [ f(s)uso(s)u?ds) .

The general case of phase space B, x LP(f;E),r > 0,1 < p < o0, has
been discussed in (here we only let (r = 0, p = 2). From [23], under some
conditions B is a phase space verifying axioms (A1) — (A3), (B1) — (By4) and

in this case K(t) =1+ ( ffm f (s)ds) 2 (see [23]).

(i) The function b is measurable and

/ f / b2(;(g’m)dsdydm<oo.

ii) The function 2Zb(s,y,z) and —3—25!) s,y,x) are measurable, b(s,y,0) =
oz or

b(s,y,m)) =0 and sup N(t) < oc, where
t[0,b]

N(t) = '/: /joo /01r f_(lsj (a(s, :z:)g;gb(s,y, a:))zdsdyd:c.
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Finally let C' € L(IR, E) be defined as
(Cu)(z) =d(z)u, 0<z<w, uelR, d(z)e€kE.

Thus, under the above definitions of F, g, A(-) and C, system (12}, (13) can
be represented by the abstract Cauchy problem (3), (4). Furthermore, more

appropriate conditions on b, Q,d ensure the controllability of system (12),
(13) by Theorems 5, 6, 7.
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TEOPEMMW KEPYBAHHS JJisI HAMMIBJIHINHUX
PYHKIIOHAJIbBHUX NTUPEPEHHUIAJIBHAX BKJIFOYEHD
3 HEOBME2KEHUM 3ATAIOBAHHAM

Amapis APAPA ', Myddax BEHYOPA 1,
Jlex TOPHEBIY 2, A6denveani YAXAB !

1Cini-Bens-Abechxuit yriBepcurer,
22000 Cigi-Benn-Abe, Amxup
Zynisepcurer imveni Hikonaa Koneprixa,
Hlomina 12/18, 87-100 Topyus, IToasma

Ha ocroBi pe3ysnbTaTIB [IPO MiBTPYIH OIEPATOPIB €BOIOII Ta TEOPEM IIPO
HEPYXOMY TOYKY Y poOOTI BCTAHOBJIEHO TBEP/KEHHS NP0 KepYBaHHS A4 Ha-
HiBJIHIMHKX Ta HERTPATBEHUX PYHKIIOHAIBLHUX JUQepeHIiaTbHUX BKIIOYEHD
y 6aHAXOBOMY IIPOCTOPI 3 HEOOMEKEHHM 3araloBaHHIM.



