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Hocaimkeno anredbpy npoeKTuBHUX AndepeHItiaIbHIX iHBAPIAHTIB Ta OMUCAHO /IEeAKi KJIach Ipo-
€KTUBHUX TJIOCKUX KPUBUX.

1. Introduction

In this paper we continue investigation of projective differential invariants for curves in
the complex projective plane. Many of these results are classical and mainly they go back
to Halphen’s dissertation [2]. The case of real curves was considered in [5], here we analyze
the case of complex and algebraic.

Curves under consideration are smooth and complex but they possibly might have sin-
gularities in a projective sense. For example, singular, from the projective point of view, are
points on a curve, where tangent line has second order contact, i.e. inflection or flex points.
Another example of singularities are provided by points, where osculating quadric has 5-th
order contact, so-called Monge points |5].

We give a detail description of SL3 (C) -orbits of the projective action on the jets of plane
curves up to 5-th order and classify all possible projective singularities.

The level of 5-th jets taken for the only reason: starting from 6-jets regular orbits have
trivial stabilizers, and from the level of 7-jets first differential invariants come up. It worth
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to mention, that the orbit classification gives projective classification, or projective normal
forms for plane curves, up to 6-th order jets.

To find the full algebra of projective differential invariants we introduce the Study deriva-
tion. As opposed to the real case, this derivation has order 7 in complex case (order 5 in the
real case).

The Study derivation is a projective invariant and it allows to produce new projective
invariants from the known ones. Moreover, as it follows from the general result [6], the field
of rational projective differential invariants is generated by the projective curvature [5] and
the Study derivation. This field separates regular orbits.

The rest of the paper is devoted to cubics and repeats the known result of Weierstrass
that projective classes of regular cubics can be described by one parameter. We give an
explicit formula to find this parameter.

2. Jet bundle structure

Let CP? be the complex projective plane and let J*¥ be the manifold of k-jets of non-
parameterized curves on the plane.
We shall denote by [L]¥ € J the k-jet of curve L C CP? at the point a € L. Let

a

mer ¥ — I mey o [L)F— [L)L, k > 1, be the natural projections.

The structure of jet-manifolds can be described as follows:

e JO = CP?%

e Fibres ﬂié (a),a € CP? of the projection m ¢ are projectivizations of the tangent

planes P (T,P?) = CP!, my, : J' B CP%

e Fibres m,_; ([L]F™"), when k > 2, are affine lines, and the vector spaces associated

with them are S¥7* ® v,, where 7 = T*L is the cotangent space, and v, = T,P?/T,L
is the normal space to a curve at the point a € L.

Let (x,u) be an affine chart on the plane. Denote by (x,u, us, ...., u;) the natural coor-
dinates in the space of k-jets, where
O'h
i L K - - b 5
u (1) = 20 )

ifL=1,% {u = h(x)} is a graph of function h in a neighborhood of point a = (b, h (b)).

In these coordinates the affine action is given by translations along tensors
A _
0= dek ® 0y € S*TF @ vy,

and has the form (z, u, u, ..., up_1, up) — (T, U1, ..., ug_1, up+N), where 9, = 9, mod T,L.

Finally, any curve L C CP? determines curves L*) C J*, so-called k-th prolongations of
L, which are formed by points [L]¥, where point a runs over curve L.

The action of projective group SLs3 (C) can be also prolonged in manifolds J* in the
natural way:

k
™ L]y — [p (L)

where ¢ € SL3 (C) is a projective transformation.



ON PROJECTIVE CLASSIFICATION OF ALGEBRAIC CURVES 53

3. Special classes of plane curves

We use special classes of curves, model curves, to construct tensor invariants. The
construction is based on the following observation. Assume that we have a class 91 of
plane curves which is invariant under projective transformations and such that for any point
z € J* there is a unique curve L = L (x3) € M with k-jet xy, i.e. such that z; = [L]F,
where a = 7y, (xy).

Then (k + 1)-jets 2341 = [L (x1)]**! can be taken as basic points in the affine line
W,;il’k (71) and the corresponding section m :J¥ — J¥+1 we’ll consider as the zero section in
the line bundle gy, @ J¥T — J*.

Let now L C CP? be an arbitrary curve. Then curves L&)  J&+1 and m (L®) c Jk+!
differs on element O, € Sk“T,zk ® vy. The last tensor is a projective differential invariant of
order (k+ 1) in the sense that ¢* (@¢(L)) = Oy, for arbitrary projective transformation .

Let’s now realize this scheme for different classes of projective curves.

3.1. Straight Lines

Let 9% be now the class of straight lines. Then, for any point z; € J' one can find a
unique straight line L (x1), such that x; = [L (z1)]!. The above construction gives projective
differential invariant of order 2

Oy, € SQTL* X vr,.

It is easy to check, that, if L = Ly, is the graph of function u = h () in the affine coordinates,
then the restriction of tensor ©, on this curve has the form: Oy, = h” (x) % ® 0,. Let
Oy = uy % ® 9,. Then Oy = ®2|L§f)' Denote by II, C J? a submanifold, where ©, = 0.

Then the points Iy (L) = IIo N L@ are precisely inflection or flex points on the curve,
i.e. points where tangent lines have 2-rd order contact with the curve.

3.2. Quadrics
Let 91 be now the class of quadrics. Taking derivatives of a general quadric and eliminating

its coefficients we get the Monge equation: 9 usus? + 40 us® — 45 upusus = 0, or

Busus 40 ug
Us =

Us 9 u3

Therefore, for any point z; € J*\ m;; (Ils) there is a unique quadric Q (z4) such that

Q (24)]5 = 74
Follow the above observation, we get projective differential invariant G5 € ST ® vy,
where

RORA 40 (h(g))3 dz® — Susu 40ud\ dx® —
— (5) _ Y G _ _ 3y Uz | A
Oa = (h e Ty gy ) s @0 or s (“5 w9 u§> 5 0

in the domain J® \ 755 (II3).

Denote by IIs C J°\ m;, (I) the submanifold, where ©5 = 0. Then the points II5 (L) =
II; N L® will be called Monge points. In other words, the Monge points are exactly the
points where osculating quadrics have 5-th order contact with the curve.
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3.3. Cubics

Let 9t be now the class of cubics on the projective plane.

Taking derivatives of general cubic up to order 9 and eliminating its coefficients we arrive
at equation (see, for example, [8]): ugPrug + Py = 0, where Py is a polynomial of degree 10
and order 8, P; =7 (60)™3 det(Mj) is a a polynomial of degree 8 and order 7, and

120 Us 30 Uy 6 Us Ug U7/7
360 U9 120 Us 30 Uy 6 Us Ug
M7 = ||—180 u22 0 20 U32 10 U3U4 2 UsUs + 5U42/4
0 180us? 120 usus 30 uqus + 20 us®  6usug + 10 uguy
0 0 180 UQQ 180 U3U9 60 U32 +45u 42U
more explicitly
Py = — 33600 uguduy — 810 ujusugur + 1134 udususug — 756 uyuius 4 13230 ugusufus—

— 2835 uguyus—12600 uiuiusus — 189 udul —7875 usuzui+720 uyusur — 4725 uyu;+

+ 11200 u3+1890 ubuiue+6720 usujus+31500 usuzu; —3150 uyuzusue+162 udusus.

Therefore, ug = —ufj‘)7 for cubics. In other words, for any point x5 € J%\ (75 (Ily) U g+ (IT7)),
where IT; = P (0) C J7, there is a unique cubic Q (zg) such that [Q (z,)]% = 5.

Therefore, as above, for any curve L we have projective differential invariant

@gL € SQTE X vy, where @9 = (Ug -+

in jet coordinates in the domain J°\ (mg3 (IIy) U mg7 (II7)).
Denote by Ily € J?\ (g5 (Il3) U mg 7 (I7)) the submanifold, where ©9 = 0.
Then the points
Iy (L) = g N LY

will be called the Monge cubic points. Those are the points where osculating cubics have
9-th order contact with the curve.

4. Projective orbits in jet spaces

4.1. Orbits in 2-jet space

At first, let’s remark that the action of the projective group on the manifold of 1-jets is
transitive.
It is easy to check that the stabilizer St; C SL3 (C) of point (0,0,0) € J* is formed by

matrices
a;p a2z 0

A= 0 922 0 with 110922033 = 1.

31 dzz (33

The action of St; on the fibre of projection 7y : J* — J' has the form:

A®) . (0,0,0,uy) —> (O, 0,0, a;; uz) )
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Therefore, there is the only one open regular orbit [T,y = J? \ II, and the singular orbit IT,:
J? = Ty U Tl,.
Elements pyy = (0,0,0,1) € Ty, po = (0,0,0,0) € Il can be taken as representatives of

these orbits.

4.2. Orbits in 3-jet space

Consider the action of the stabilizer of point (0,0,0,1) from the regular orbit IIy, on the
fibre of projection 35 : J3 — J2.
This stabilizer Sts of the regular point pyy is formed by matrices

a1 Q12 0
_ 2 -1
A=10 afazz O

asy as2 ass
Their action in the fibre of projection my; : J3 — J? is affine :
A® 1 (0,0,0,1,u3) — (0,0,0,1, a4 us + fa),

where oy = agzaly, B4 = 3(ai1as — araass) ayy’. Therefore, Iz = 755 (Ily) is the open
regular orbit.
The stabilizer Sty of the singular point (0,0,0,0) is formed by matrices

a;; a2 0O
A= 0 929 0

a3; Aaz2 ass

which act in the following way: A® : (0,0,0,0,u3) (0,0, 0,0, ‘;%fug) Therefore, the
11

preimage 73, (Il;) of the singular orbit is a union of two orbits Il = {(z,u,u;,0,0)} and
I3 = {(0,0,0,0,\), A # 0}.
Therefore, the space of 3-jets has the following decomposition of SLj (C)-action:

J? = Tl30 U Tl3; U Tl3g,
where II3y is the regular open orbit. The points
P30 = (0707()’ 170) € H307 P31 = (0,0, 0707 1) € H31> P32 = (Oa 0707070) € HSQ

can be taken as representatives of these orbits.

4.3. Orbits in 4-jet space

At first, we consider the action of the stabilizer Sts o of the regular point (0,0,0,1,0) on the
fibre of the projection 3 : J* — J3. This stabilizer is formed by matrices

-1
11 @A11031033 0

_ 2 -1
A= 0 aj;Gss 0

a31 a32 ass3
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with the following affine action:
AW . (0,0,0,1,0,uy) —> (O, 0,0,1,0,a2;a;;> ug + (6a33a32 — 3a§1) al_f) .

Therefore, 1149 = 7r4_’§ (IT30) is the open regular orbit.
The stabilizer St of point (0,0, 0,0, 1) from the singular orbit Il is formed by matrices

ai; a2 0
f4 — O a%ltlgg- O
asy as32 ass
with the affine action A® : (0,0,0,0,1,uy) — (0,0,0,0, 1, assa;; us + S8asiay;’). Therefore,

I, = W;?l) (I31) is an orbit.
Finally, the stabilizer St; 5 of point (0,0,0,0,0) from orbit II3, is formed by matrices

apn aiz 0

A= 0 9292 0

az1 azz2 ass3
with the action A® : (0,0,0,0,0,us) = (0,0,0,0,0, alsasa;;* us). Therefore, the preimage
7r4’7§ (I3) of the singular orbit II3p is a union of two orbits Ily3 = {(x,u,u1,0,0,0)} and

Iy = W;:,l, (T131) \ I43. Summarizing, we see that there is the only one open regular orbit
H40 and three singular orbits H417 H42 and H432 J4 = H40 U H41 U H42 U H43. The pOiIltS

Pao = (07 07 OJ ]-7 07 0) S H407 Pa1 = (07 07 07 07 17 0) S H417
P2 = (0, 0, O, O, 0, 1) < 1_1427 P4z = (O, 0, 0, O, O, 0) & H43
can be taken as representatives of these orbits.

4.4. Orbits in 5-jet space

Let’s begin with preimage of regular orbit Ily.
The stabilizer Sty of point (0,0,0,1,0,0) is formed by matrices

-1
(11 (A11031033 0

—1
f4 = 0 a%1a33 0
2
a310833
asi 5 Q33

and has the following action on the fibre:
A®):(0,0,0,1,0,0,us) — (0,0,0,1,0,0, asa;; us) -

Therefore, the preimage 7 1 (I40) of the regular orbit is a union two orbits: the singular one
15 and the open regular orbit Il5) = Wg% (ITgp) \ ITs.
The stabilizer Sty of point (0,0,0,0,1,0) from the singular orbit Il;; is formed by

matrices
11 Q12 0

A=|0 alaz O

0 asy  ass
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and acts in the following way
A®):(0,0,0,0,1,0,u5) = (0,0,0,0,1,0, a3ya;i* us — 10arza;a;y’) -

Therefore, 115, = 7r5_7i (I14) is an orbit.
The stabilizer St,5 of point (0,0,0,0,0,1) from the singular orbit Il;; is formed by

matrices
11 Q12 0

A=10 ataz; O
asi asz2 ass
and acts as A® : (0,0,0,0,0,1,u5) ~ (0,0,0,0,0,1,as3a; us + 15as1a7). Therefore,
II5, = 7r5_j (I42) is an orbit too.
Finally, the stabilizer St4 3 of point (0,0,0,0,0,0) from the singular orbit Il43 is formed
by matrices
ajip a0
A=1]0 a»p 0
azy Qagz 0ass
and acts as A®) : (0,0,0,0,0,0,us) — (0,0,0,0,0,1,a3;a; us). Therefore, the preimage
5.4 (Ily3) is a union of two orbits: IT54 = {(z, u,u1,0,0,0,0)} and 53 = m5; (Ils3) \ Isa.
Summarizing, we conclude that SLj (R)-action in J° has the orbit decomposition:

J? = T30 U 5 U I5; U Il5p U [53 U 5y,

where II5q is the unique regular open orbit.
The points

Pso = (070707 170707 1) S H507 Ps = (070707 1707070) < H57

Ps1 = (Oa 07 07 07 1a O) 0) € H517 Ps2 = (07 07 Oa 07 07 17 0) € H527
P53 = <07 OJ 07 07 07 OJ 1) S H537 P54 = (07 07 07 07 07 07 0) € H54
can be taken as representatives of the orbits.

4.5. Orbits in 6-jet space

Let’s begin with preimage of the regular orbit II5y. Then the stabilizer Sts( of the point ps
is formed by matrices

ass Qs 0
A= 0 ass 0 with agg =1.
a3y %a3la§31 ass
Its action in the fibre has the following form

3
A® :(0,0,0,1,0,0,1,ug) — (0,0,0,1,0,0,1, ug + 2L,
ass

and therefore Ilgy = 4 51) (IT50) is an open regular orbit.
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The stabilizer St of the point ps is formed by matrices

-1
11 a11031033 0
_ 2 -1 3 _
A=10 ai,as3 01, where aj; =1,

1.2 -1
31 303033  a33

which acts as: A© :(0,0,0,1,0,0,0,ug) — (0,0,0,1,0,0,0, assa;;'us). Therefore, preimage
wg’é (IT5) is a union of three orbits mg5 (Il5) = Il U Il with the following representatives

Pe1 = (07 07 07 17 Oa 07 07 1) y De2 = (07 Oa 07 17 07 Oa 07 0) .

The stabilizer Sts; of the point ps; = (0,0,0,0,1,0,0) € II5; generates by matrices

a1 0 0
_ 3 -2
A=10 ajjaz; 0|,
0 32 33

where a}; = azs. This groups acts in the fibre in the following way:
A®:(0,0,0,0,1,0,0,u5) — (0,0,0,1,0,0,0,af;us + 40a as) .

Therefore, the preimage Ilg3 = 7r6_,é (Il51) is an orbit.
The stabilizer Sts of the point psy = (0,0,0,0,0,1,0) € II5, formed by matrices

ai a12 0
_ 4 -3
A=10 ajaz 0|,
0 a32 a33

where a}, = aZ;, and acts in the following way
A®:(0,0,0,0,0,1,0,u5) —> (0,0,0,1,0,0,0,a ug) -
Therefore, ﬂa; (IT52) is a union of orbits Waé (IT59) = Igq U g5 with representatives
pes = (0,0,0,0,0,1,0,1),pg5 = (0,0,0,0,0,1,0,0) .
The stabilizer Sts 3 of the point ps3 = (0,0,0,0,0,0,1) € II;3 formed by matrices

ail a12 0
_ 5 —4
A=]|0 a}az; 0],

ais a3z as3
where af; = a3;, and acts in the following way:
A®:(0,0,0,0,0,0,1,u6) — (0,0,0,0,0,0,1, azgzar; ug + 24 azail') .

Therefore, I1gg = 7r6’,; (IT53) is an orbit with representative pgs = (0,0,0,0,0,0,1,0). Finally,
the stabilizer Sts 4 of the point psy = (0,0,0,0,0,0,1) € 154 is formed by matrices
air a0
A= 0 9292 0 s

13 A3z ass
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where aj1a90a33 = 1, and acts in the following way:
A®:(0,0,0,0,0,0,0,ug) — (0,0,0,1,0,0,0, atyal ue).

Therefore, the preimage 7 s (I54) is a union of two orbits Ilg; and Tlgs with representatives
per = (0,0,0,0,0,0,0,1) and pes = (0,0,0,0,0,0,0,0)

respectively.
Summarizing, we get the following result.

Theorem 1. SLj (C)-action in J® splits into the following orbit decompo-
sition:
J® = Tlgo U Iy U Tlgp U T3 U Iy U Mg U Mg U Tg7 U Tgs,

where Ilgy is the only open regular orbit.
These orbits have the following representatives

Peo = (070707 170707 17 O)? P61 = (O, 0707 1707 0707 1)7 DPe2 = (070707 17070707 O)?
DPe3 = (07070707170707())7 Pesa = (070707070717071)7 Pes = (07070707071707())7
Pe6 = (07070a 070707 1a O>7 Per = (Oa 0707070a 0)07 1)7 Pes = (07070a 0707070a O)

As a corollary of this theorem we get the following SLj (C)-classification of 6-jets of
projective curves.

Theorem 2. Let L C CP? be a projective curve. Then for any point a € L there are
projective coordinates (x,y) such that x (a) = y (a) = 0 and the curve can be written in the
form y = p(z) + ¢ (v), where function ¢ () has seventh order of smallness and polynomial
p (x) has one of the following form:

peo(x) = 2* + 2°, pei(x) = 2° + 2%, pea(z) = 22,
pes(z) = 3, pes = a* + 18, pes =
pes = 2°, per = 25, peg = 0,

where the polynomials p;; correspond to the orbits II;;.

4.6. Stabilizers of regular orbit

The open orbit Ilgy = J¢\ 762 (Il2) \ 765 (I15) as well as its elements will be called regular.
A point a € L on a projective curve we call regular if [L]® € Tlgo; in the opposite case it
will be called singular.
It worth to note that our definitions differ from the standard ones: both regular and
singular points belong to smooth complex curve, and their singularity has projective nature.
Remark also that the previous theorem states that the regular orbit is connected even
though singular orbits II; and II; have codimension 1.
Before to consider differential invariants of projective curves we’ll finish this section by
description of stabilizers of regular point in J*, when k = 2,3, 4,5, 6.
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Take 2-jet pao = (0,0,0,1). Then the stabilizer is a 4-dimensional group and consist of

matrices
1 o 0
Sty = 0 B! 0l|l:a,7,0€C, peC*
vy 0 B

For 3-jet p3p = (0,0, 0, 1,0) the stabilizer is a 3 -dimensional group and consist of matrices

1 a 0
Sty = 0 B! 0:a,veC, BeC*
af v B
For 4-jet pyo = (0,0,0,1,0,0) the stabilizer is a 2 -dimensional group and consist of
matrices
1 « 0
St, = 0 B!t 0ll:aeC, pBeC*
af 30’8
For 5-jet pso = (0,0,0,1,0,0,1) the stabilizer is a 1-dimensional group and consist of
matrices
1 o 0
St =<{10 1 0/:acC},
a a2 1

2
and for the 6-jet pgo = (0,0,0,1,0,0,1,0) the stabilizer is trivial.

5. Projective Differential Invariants

5.1. Relative Invariants

Recall that a function f on the k-jet space J* is said to be a relative projective differential
invariant of order < k, if fog® = C(g~") f, for all element g € SLs (C), and a 1-cocycle
C on the group.

An infinitesimal version of this states that Ly (f) = ¢(X) f for all vectors X € sl3 (C),
and a 1-cocycle ¢ on the Lie algebra.

Here we denote by X*) the prolongation of the vector field X to the space of k-jets, and
by L&) the correspondent Lie derivative.

To find relative invariants, we remark that, as we have seen, zeroes of functions

5U3U4 40 ug

PQZUQ and P5:U5— 5
Us 9 uj

determine singular orbits Il and II5. Therefore, these functions are relative invariants of
the SLj (C)-action. Indeed, it can be easily check that X (P,) = ay (X) - P, where

2 2
X:(2@1711'4-&2,237—{—&17211,4-@173—&3,11' —ag,gxu)@ﬁ—(a1,1u+2a272u+a271x+a273—ag,lxu—&g,gu )au

is a general element of Lie algebra sl3 (C). Here ag (X) = =3 (a12 — agox) u1 —3 a1 1+3as @
is the corresponding 1-cocycle.
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In the similar way, X® (P5) = a5 (X) - P5, where
(071 (X) = —6 ((11,2 — a3723:) uy + 3@372’& — 9(11,1 +9 a3 1T — 3 az2.

For the same reasons zeros of the function P define cubics, and therefore this function
is a relative invariant. Indeed, XV (P;) = oy (X) - Py, where

(07%4 (X) = —32 (al’g — ag’gft) uy — 40 aii + 40 az1l — 8 as 2 + 8 ag oU.

Cocycles as, a5 and a; are not independent, and obey the relation 16as + 8as — 3a7 = 0.
Another relative invariant we can get from the volume form Q = dx A du, because

X(Q) = ag(X)2,

where ag (X) = 3a11 + 3az2 — 3ag12 — 3asou. This is not independent 1-cocycle, and we
have the relation oy — 2a9 + a5 = 0.

The last relative invariant can be obtained from the contact form w = du — u;dx. In this
case XV (w) = a1 (X)w, where 1-cocycle a; has the form

(0751 (X) = _(G/LQ — &3721})U1 + aii + 2 Q29 — A31T — 2 a3 2U.

This cocycle is linearly dependent with the previous ones: 2ay — 3a; + ay = 0.
These relations between 1-cocycles allow us to construct the following invariant tensors.

Theorem 3. The following tensors on jet spaces are SLg (C)-invariants:

. P
Function @; = W,
Differential 1-f ki
ifferential 1-form ws = ———w
ST PZP
. . Ps
Differential 2-form )5 = o Q.
2

5.2. Algebra of projective differential invariants

Let’s denote by 7, and v, the vector bundles on J* induced by projection T,1 from the
canonical bundles 7, v; on J!, where

7 ([L]s) = T.L and v ([L],) = T.P*/T,L.

As we have seen symmetric differential forms
2

d —
@2:112%@3”652(72*)@1/2 and O3 =60 o - O,.

The form o will be referred to a the Study 3-form. This form is obviously SL3 (C)-invariant
and in affine coordinates can be written by:
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In addition to the Study form we introduce a Study derivation as a total derivation V such
that

o <v7 V7 V) = Q7'
In affine coordinates this derivation has form
P d
VT RR A

This is a SLj (C)-invariant derivation.

It is easy to check that the invariant ()7 is an affine function in u; having the form
Py s
Q7 = P_55u7 _I_ PR

Applying the Study derivation we get an 8-th differential invariant

Q8:V(Q7):Q;2P2u8+..., (1)
5
and
Qr+1 =V (Qr),

for k£ > 7. All of these invariants are rational functions on the jet spaces which are defined
on the preimages of regular orbit Ilg.

Let us specify now the notion of a differential invariant.

First of all remark that all bundles 7 ;1 : J* — J*~! are affine, when k£ > 2, and J? is
a total space of the bundle over CP? with fibres CP*.

Therefore, all manifolds J* are algebraic and we can talk about functions which are
rational.

We say that a rational function f on manifold k-jets J* is a SL3(C)-differential invariant
(or simply projective differential invariant) of order k if X® (f) = 0 for any vector field
X € 5[3(@)

Therefore, due to the Rosenlicht theorem (see, [9]) differential invariants Q7, ..., Qx,
separate regular SL3 (C)-orbits in J* and we arrive at the following result.

Theorem 4. 1. Any projective differential invariant of order k is a rational function of
invariants Q7, ..., Q.

2. The field of differential invariants of order < k separates regular orbits in J k.

6. Projective equivalence of algebraic plane curves

6.1. SL;(C)- action

Let L and L be an algebraic plane curves, and let L) L®) < J* be their prolongations. We
say that L and L are projectively equivalent if g (L) = L, for some element g € SL3 (C).

All curves in this section are irreducible and not straight lines or quadrics. Then the
values Qr(L) = Qg|Lx of invariants @y on the curve L are well defined.
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The function Q7 (L) we will call projective curvature of the curve (cf. [5]).

We will consider curves L such that the function Qg(L) # 0, i.e., because V(Q7) = Qs,
L is not is a curve of constant projective curvature. Functions Q7(L) and Qs(L) are rational
functions on L, and therefore they satisfy an algebraic relation

F(Qr (L), Qs (L)) = 0. (2)

Denote by X, = F71(0) C C? the curve defining by (2).

We call this curve defining curve, and the minimal F (in 2) defining function.

It follows from the construction of the defining curve, that two projectively equivalent
algebraic curves have the same defining curve. Moreover, the following result holds.

Theorem 5. Two irreducible algebraic plane curves L and Z, which are not straight lines
or quadrics, are projectively equivalent if and only if their defining curves coincide.

Proof. Let’s prove the sufficiency. First of all, function @7 (L) might be considered as
local coordinate on L in an open domain. Then, in this domain, relation 2 can be viewed as
a relation Qg(L) — ®(Q7(L)) = 0, for an analytical function ®.

Let’s consider now relation

Qs —2(Q7) =0 (3)
in jet space of the 8-th order as ordinary differential equation. Remark, that both curves L
and L are local solutions of this equation. Moreover, relation (1) shows that solutions of the
above differential equation are uniquely defined by their 8-jets.

Let us take points ¢ € L and a € L from the corresponding domains, where the invariant
Q7 is a local coordinate such that Q7(L)(a) = Q7(L)(a) .

Then there is a projective transformation ¢, which equalize 7-jets, ¢V ([L]7) = [Z]g It
follows from the fact that ()7 is the only projective invariant of the order < 7.

Relation (2) shows that o® ([L]8) = [L]S. Remark that, projective transformations are
symmetries of differential equation (3). Hence, (L) is a solution (3) too. But 8-jets of L
and ¢ (L) at point a equal. Therefore, due to the uniqueness of solutions, L= ¢ (L). O

6.2. Cubics

As an example of application of the above theorem let’s consider cubic curves. As we have
seen these curves are solutions of equation

U2P7UQ + Pg = 0.

The left hand side of the equation is an obviously relative invariant.
This invariant can be rewritten in terms of invariants as follows:
PP

Q

Therefore, if the cubic curves, which satisfy the above Theorem, are solutions of the 9-th

4
Q- 5@ - 0 - 00 50t

order differential equation

216 49

11 7
QoQ7 — g@g - 5Q7Q8 - g@? - m@? = 0. (4)
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Let ® be the defining function of a cubic. Then, applying the Study derivative to the

relation Qg = @ (Q)7), we get Qg = ' (Q7) P (Q7).
Relation (4) can be rewritten now as a differential equation for defining function ® (7):

343
2 259200 72 — 12600 7®D’ + 14175 D2 + 1225 D = 0.

Integrating this equation we get the following relation between invariants Q7 and (g which
depends on arbitrary constant ¢ and has the following form F? + ¢GQ;° = 0, where

49 343 2401 7
F —_ 7 4 v 3
147456 @s + 3317760 @ + (199065600 * 192

Q?) Qi+

49 16807 5 343 5 343
- ( 25920 47 T 26873856000> Qs+ (Q7 1036800) <Q7 9331200
and

G =117649 — 6401203200 Q3 + 18151560 Qg + 583443000 Q3 + 87071293440000 Q5 —
— 493807104000 Q3Qs + 3174474240000 Q2Q32 + 7001316000 Q3 4 28934010000 Q.

In other words, regular cubics are projectively defined by constant c.
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