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It is proved that for any separately continuous function (more generally, KC-
function) f : X x Y — Z with values in an Ng-space Z and any subset S C Y
having a countable base in Y the set {z € X : {z} x S C C(f)} is comeager in X.
On the other hand, there exists a separately continuous map f : 2 x [0,w] = Z
to a Fréchet-Urysohn cosmic space Z with a unique non-isolated point such that

D(f) =2 x {w}.

T. Banax. Touku nenepepenocmi HaAPI3HO HENEPEPBHUT PYHKYIT 31 3HAYEHHAMU Y
No-npocmopaz // Mar. sicamk HTIII, 14 (2017) 29-35.

Joseneno, wo mia Hapizno nenepepsuoi ¢ynkuii (3aranpaime, KC-dynkuii)
f: X XY — Z 3i 3navennavu y No-mpoctopi Z ta migvuoxwuan S C Y 31 37iden-
mOM0 623010 B Y, muoxkuna {x € X : {z} x S C C(f)} 3asmmkosa B X. Takox
nobynoBano kocMmiunwmii npoctip ®@pente-Ypucona Z 3 €IuHOIO HEI30JIbOBAHOIO TO-
9KOIO Ta Hapi3HO HenepepsHy dyHkmo f: 2% X [0,w] = Z 3 D(f) = 2¥ x {w}.

This short note is another step in numerous generalizations [7], [L1]-[17], of
the classical theorem of Baire [1] describing the largeness properties of the set
C(f) of continuity points of a separately continuous function f: X xY — Z.
For functions with values in metrizable spaces, one of the most general results
was proved by Bouziad and Troallic [4]. To formulate their result we need to
recall the notion of lower quasicontinuous multivalued function.
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A multivalued function F' : X — Y between topological spaces is called
lower quasicontinuous at a point x € X if for any neighborhood O, C X
of  and any open set U C Y intersecting the set F'(z), there exists a non-
empty open set V' C O, such that F(v)NU # & for all v € V. We say
that a multivalued function F' : X —o Y is lower quasicontinuous if it is lower
quasicontinuous at each point = € X.

It is clear that a function f: X — Y between topological spaces is quasi-
continuous if and only if the multivalued function F': X — Y, F: x — {f(x)},
is lower quasicontinuous.

A family B of open sets of a topological space Y is called a base at a subset
S C X if for any open set U C Y and a point y € SN U there exists a set
B € B such that y € B C U. We shall say that a subset S of a topological
space Y has countable base in Y if Y has a countable base at S.

The following theorem was proved by Bouziad and Troallic in [4].

Theorem 1 (Bouziad-Troallic). Let f : X x Y — Z be a function defined
on the product of two topological spaces with values in a metrizable space Z.
Assume that the space Y has a countable base B at a subset S C'Y such that
1) for every B € B the multivalued function Fp : X — Z,
Fp:xz— f({z} x B), is lower quasicontinuous;
2) for every x € X the function f*:Y — Z, f*:y— f(x,y),
is continuous at each point y € S.

Then the set {x € X : {x} x S C C(f)} is comeager in X.

We recall that a subset A of a topological space X is comeager if its com-
plement X \ A is meager in X, which means that X \ A is a countable union
of nowhere dense sets.

A function f: X XY — Z is called a KC-function if

e for every y € Y the function fy,: X — Z, f,: « — f(z,y), is quasicon-
tinuous;

e for every z € X the function f*: Y — Z, f*: y — f(z,y), is continuous.

It is clear that each separately continuous function is a K C-function.
Bouziad-Troallic Theorem 1 implies the following result of Maslyuchenko

[12]. For separately continuous functions this result was proved by Calbrix and
Troallic [5].

Corollary 1 (Maslyuchenko). If f: X xY — Z is a KC-function defined on
the product of two topological spaces with values in a metrizable space Z, then
for any subset S C Y with countable base in'Y the set {x € X : {z} x S C
C(f)} is comeager in X.
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In this paper we show that Theorem 1 and Corollary 1 remain true for
functions f : X x Y — Z with values in an Np-space Z (i.e., regular spaces
possessing a countable k-network).

A family NV of subsets of a topological space X is called

e a network if for any open set U C X and point « € U there exists a set
N € N such that z € N C U;

e a k-network if for any open set U C X and compact subset K C U there
exists a finite subfamily ¥ C N with K C JF C U.

It is clear that for a family B of subsets of a topological space we have the
implications: (base of the topology = k-network = network).

A topological space X is called

e cosmic if X is regular and has a countable network;

e No-space if X is regular and has a countable k-network.

For any topological space we have the implications:
metrizable separable = an Ng-space = cosmic.

Cosmic spaces and Ng-spaces form two important classes of generalized
metric spaces, which are closed under many topological operations, see [6, §4
and §11]. These spaces have nice characterizations in terms of their function
spaces Cp(X) and Cy(X). Here for a topological space X we denote by Cp(X)
and Cy(X) the linear space of continuous real-valued functions on X, endowed
with the topology of pointwise convergence and the compact-open topology,
respectively.

The following characterization of cosmic spaces is well-known, see (8, 4.1.3],
[6, 4.9].

Theorem 2. For a Tychonoff space X the following conditions are equivalent:
1) X is cosmic;
2) the function space Cy(X) is cosmic;
3) X is the image of a separable metrizable space M under a continuous

surjective map f: M — X.

No-Spaces have a similar (and even more interesting) characterization in-
volving function spaces Cy(X) and also subproper and compact-covering maps.

A map f: X — Y between topological spaces is called
o compact-covering if each compact subset Ky C Y coincides with the
image f(Kx) of some compact subset Kx C X;

o subproper if f admits a function s : ¥ — X such that f os = idy and
for every compact set K C Y the closure s(K) of s(K) in X is compact.
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It is clear that each subproper map is compact-covering. Subproper maps were
introduced and studied in [3].

Theorem 3. For a Tychonoff space X the following conditions are equivalent:

1) X is an Wg-space;

2) the function space Cy(X) is an Rg-space;

3) the function space Cy(X) is cosmic;

4) X is the image of a separable metrizable space M under a continuous
subproper map f : M — X;

5) X is the image of a separable metrizable space M under a continuous
compact-covering map f: M — X.

Proof. The implication (1) = (2) is a classical result of Michael [9] (see also
[6, 11.5]), (2) = (3) is trivial and (3) = (1) can be found in [8, 4.1.3]. The
implication (1) = (4) is proved in [3, 7.2] and (4) = (5) = (1) are trivial (for
the last implication, see 6, p.494]). O

The following theorem is the main result of this note.

Theorem 4. Let f: X XY — Z be a function defined on the product of two
topological spaces with values in an Rg-space Z. Assume that the space Y has
a countable base By at some subset S C Y such that
1) for every B € By the multivalued function Fp : X —o Z,
Fp:xz— f({z} x B), is lower quasicontinuous;
2) for every x € X the function f*:Y — Z, f*:yw— f(x,y),
is continuous at each point y € S.
Then the set {x € X : {x} x S C C(f)} is comeager in X.

Proof. By Theorem 3, the function space C(Z) is cosmic and by Theorem 2,
Cx(Z) is the image of a metrizable separable space T' under a continuous map
§:T — Cr(Z). It will be convenient to denote the image £(t) € Cx(Z) of an
element ¢t € T by &.

Now consider the function

g: X XY XT =R, g:(z,y,t) = &(f(z,y)).

Fix any countable base Bt of the topology of the metrizable separable space
T. It is clear that the countable family B={U xV :U € By, V € Br}is a
base of Y x T at the subset SxT CY xT.

We claim that for any set B = U x V € B the multivalued function

Gp: X —oR, Gp:ax— g({z} xU xV),



CONTINUITY POINTS OF K C-FUNCTIONS WITH VALUES IN Ng-SPACES 33

is lower quasicontinuous at each point x € X. Fix any neighborhood O, C X
and any open set W C R containing some point g(z,y,t) = &§&(f(z,y)) with
(y,t) € U x V = B. The continuity of the function & € Ci(Z) yields a
neighborhood Oy, .y C Z of f(z,y) such that §(Op.,)) C W.

By the lower quasicontinuity of the multivalued function Fy : X —o Z,
Fy : o' — f({2'} x U), there exists a non-empty open set O, C O, such
that for every 2’ € O there exists y' € U such that f(2',y) € Op(zy)-
Then g(2',y',t) = &(f(2',9")) € &(Of(zy)) C W and hence Gp(z') N W =
g{2'} x U x V)NW 3 g(2/,y/,t) is not empty.

Next, we show that for every z € X the map ¢* : ¥ xT — R,
g* : (y,t) — g(z,y,t), is continuous at each point (y,t) of the set S x T.
Since the space Y x T is first-countable at (y,t), it suffices to show that for
any sequence {(Yn,tn)}tnew C Y x T that converges to (y,t), the sequence
(9(z, yn, t”))nEw converges to g(z,y,t) in R. The continuity of the function f*

xT

at y ensures that the sequence (f(a:,yn))nau converges to f(x,y) in Z. The
continuity of the map £ : T — Ci(Z) guarantees that the function sequence
(&4, )new converges to & in Ck(Z). Now the definition of compact-open topol-
ogy on Cx(Z) implies that the sequence (g(w, Yn, tn))n&) = (ftn (f(z, yn)))n@

converges to g(z,y,t) = &(f(z,y)).
Now we can apply Theorem 1 and conclude that the set R := {x € X :

{z} x S xT C C(g)} is comeager in X. We claim that R x S C C(f).
Assuming that f is discontinuous at some point (z,y) € R x S, we can find
a neighborhood Oy(,,) C Z of f(z,y) in Z such that f(Op,)) ¢ Ofay)
for any neighborhood O,y C X x Y of (z,y). The Ro-space Z is Ty-
chonoff (being regular is Lindeléf). So, we can find a continuous function
¢ Z — [0,1] such that ¢(f(z,y)) = 0 and » ([0,1)) C Of(z,y)- Since
¢ € Cx(Z) = &(T), there exists t € T such that & = ¢. It follows that
g(z,y,t) = &(f(x,y)) = 0. By the continuity of the function g at (z,y,t),
there exists a neighborhood O(,,) C X x Y such that g(O,,) x {t}) C [0,1).
It follows that p(f(Oy))) = &(f(Oy))) = 9(Oyy x {t}) C [0,1) and hence
F(O@y) € ¢ 1([0,1)) C Of(yy), which contradicts the choice of the neigh-
borhood Og¢(,.,). This contradiction shows that R x S C C(f) and hence the
set {x € X : {z} x S C C(f)} D R is comeager in X. O

Corollary 2. If f: X XY — Z is a KC-function defined on the product of
two topological spaces with values in an Ng-space Z, then for any subset S C Y
with countable base in'Y the set {x € X : {z} x S C C(f)} is comeager in X.

Corollary 2 implies the following result proved in [2, Corollary 3.10].

Corollary 3. Let X be a topological space, Y be a second-countable topolog-
ical space and Z be an Ng-space. For any KC-function f: X XY — Z the set
D(f) of discontinuity points of f has meager projection on X.
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Theorem 4 and Corollary 2 cannot be generalized to cosmic spaces as shown
by the following example, in which 2 = {0, 1}* is the Cantor cube and [0,w] =
wU{w} is the closed segment of ordinals, endowed with the interval topology.
So, [0,w] is a compact countable space with a unique non-isolated point w.
Let us recall that a topological space X is Fréchet-Urysohn if for any subset
A C X and point a € A, there exists a sequence {a, }ne, C A that converges
to a.

Example 1. There exist a Fréchet-Urysohn cosmic space Z with a unique
non-isolated point, and a separately continuous function f : 2% x [0,w] — Z
such that C(f) =2“ x [0,w) and D(f) = 2¥ x {w}.

Proof. Let 2<¥ = J, ¢, 2", where 2 = {0,1}. Observe that for any function
z € 2¥ and any n € w the restriction z|n belongs to 2" C 2<¥.

Choose any point oo ¢ 2<% that does not belong to 2<% and consider the
space Z = {oo} U 2<%, endowed with the topology 7 consisting of sets U C Z
having the following property: if co € U, then for any x € 2% there exists
n € w such that z|m € U for all m > n in w. It is easy to see that the space
Z is regular (being a Tj-space with a unique non-isolated point) and cosmic
(being countable). The definition of the topology 7 ensures that the space Z
is Fréchet-Urysohn.

Now consider the function f : 2% x [0,w] — Z defined by

flaan) = {x\n it n < w;

oo  otherwise.

It is easy to check (sf. [10, Theorem 1]) that f is separately continuoous and
C(f) =2¥ x[0,w), so D(f) =2% x {w}. O

Remark 1. The space Z from Example 1 is stratifiable (being a regular count-
able space with a unique non-isolated point).

A regular topological space X is called an R-space if X has a o-discrete k-
network [6, §11]. The class of (paracompact) N-spaces contains all metrizable
spaces and all Ny-spaces.

Problem 5. Can Theorem 4 be generalized to functions with values in (para-
compact) N-spaces Z7

The following proposition from |2, 4.5] yields a partial answer to Problem 5.

Proposition 1. If f : X XY — Z is a separately continuous function defined
on the product of a countably cellular space X and a second-countable space
Y with values in an W-space Z, then the set {x € X : {a} xY C C(f)} is
comeager in X.
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