
Ìàòåìàòè÷íèé Âiñíèê Mathematical Bulletin

Íàóêîâîãî Òîâàðèñòâà of Taras Shevchenko

iì. Òàðàñà Øåâ÷åíêà Scienti�c Society

2017. � Ò.14 2017. � V.14

CONTINUITY POINTS OF SEPARATELY CONTINUOUS

FUNCTIONS WITH VALUES IN ℵ0-SPACES

Taras Banakh

Faculty of Mechanics and Mathematics, Ivan Franko National University of

Lviv, Universytetska 1, Lviv

T. Banakh, Continuity points of separately continuous functions with values in ℵ0-
spaces, Math. Bull. Shevchenko Sci. Soc. 14 (2017) 29–35.

It is proved that for any separately continuous function (more generally, KC-
function) f : X × Y → Z with values in an ℵ0-space Z and any subset S ⊂ Y
having a countable base in Y the set {x ∈ X : {x} × S ⊂ C(f)} is comeager in X.
On the other hand, there exists a separately continuous map f : 2ω × [0, ω] → Z
to a Fréchet-Urysohn cosmic space Z with a unique non-isolated point such that
D(f) = 2ω × {ω}.

Ò. Áàíàõ. Òî÷êè íåïåðåðâíîñòi íàðiçíî íåïåðåðâíèõ ôóíêöié çi çíà÷åííÿìè ó

ℵ0-ïðîñòîðàõ // Ìàò. âiñíèê ÍÒØ, 14 (2017) 29�35.

Äîâåäåíî, ùî äëÿ íàðiçíî íåïåðåðâíî¨ ôóíêöi¨ (çàãàëüíiøå, KC-ôóíêöi¨)
f : X × Y → Z çi çíà÷åííÿìè ó ℵ0-ïðîñòîði Z òà ïiäìíîæèíè S ⊂ Y çi çëi÷åí-
íîþ áàçîþ â Y , ìíîæèíà {x ∈ X : {x} × S ⊂ C(f)} çàëèøêîâà â X. Òàêîæ
ïîáóäîâàíî êîñìi÷íèé ïðîñòið Ôðåøå-Óðèñîíà Z ç ¹äèíîþ íåiçîëüîâàíîþ òî-
÷êîþ òà íàðiçíî íåïåðåðâíó ôóíêöiþ f : 2ω × [0, ω]→ Z ç D(f) = 2ω × {ω}.

This short note is another step in numerous generalizations [7], [11]�[17], of
the classical theorem of Baire [1] describing the largeness properties of the set
C(f) of continuity points of a separately continuous function f : X × Y → Z.
For functions with values in metrizable spaces, one of the most general results
was proved by Bouziad and Troallic [4]. To formulate their result we need to
recall the notion of lower quasicontinuous multivalued function.
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A multivalued function F : X ( Y between topological spaces is called
lower quasicontinuous at a point x ∈ X if for any neighborhood Ox ⊂ X
of x and any open set U ⊂ Y intersecting the set F (x), there exists a non-
empty open set V ⊂ Ox such that F (v) ∩ U 6= ∅ for all v ∈ V . We say
that a multivalued function F : X ( Y is lower quasicontinuous if it is lower
quasicontinuous at each point x ∈ X.

It is clear that a function f : X → Y between topological spaces is quasi-

continuous if and only if the multivalued function F : X ( Y , F : x 7→ {f(x)},
is lower quasicontinuous.

A family B of open sets of a topological space Y is called a base at a subset
S ⊂ X if for any open set U ⊂ Y and a point y ∈ S ∩ U there exists a set
B ∈ B such that y ∈ B ⊂ U . We shall say that a subset S of a topological
space Y has countable base in Y if Y has a countable base at S.

The following theorem was proved by Bouziad and Troallic in [4].

Theorem 1 (Bouziad-Troallic). Let f : X × Y → Z be a function de�ned

on the product of two topological spaces with values in a metrizable space Z.
Assume that the space Y has a countable base B at a subset S ⊂ Y such that

1) for every B ∈ B the multivalued function FB : X ( Z,
FB : x 7→ f({x} ×B), is lower quasicontinuous;

2) for every x ∈ X the function fx : Y → Z, fx : y 7→ f(x, y),
is continuous at each point y ∈ S.

Then the set {x ∈ X : {x} × S ⊂ C(f)} is comeager in X.

We recall that a subset A of a topological space X is comeager if its com-
plement X \ A is meager in X, which means that X \ A is a countable union
of nowhere dense sets.

A function f : X × Y → Z is called a KC-function if

• for every y ∈ Y the function fy : X → Z, fy : x 7→ f(x, y), is quasicon-
tinuous;

• for every x ∈ X the function fx : Y → Z, fx : y 7→ f(x, y), is continuous.

It is clear that each separately continuous function is a KC-function.

Bouziad-Troallic Theorem 1 implies the following result of Maslyuchenko
[12]. For separately continuous functions this result was proved by Calbrix and
Troallic [5].

Corollary 1 (Maslyuchenko). If f : X × Y → Z is a KC-function de�ned on

the product of two topological spaces with values in a metrizable space Z, then
for any subset S ⊂ Y with countable base in Y the set {x ∈ X : {x} × S ⊂
C(f)} is comeager in X.
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In this paper we show that Theorem 1 and Corollary 1 remain true for
functions f : X × Y → Z with values in an ℵ0-space Z (i.e., regular spaces
possessing a countable k-network).

A family N of subsets of a topological space X is called

• a network if for any open set U ⊂ X and point x ∈ U there exists a set
N ∈ N such that x ∈ N ⊂ U ;
• a k-network if for any open set U ⊂ X and compact subset K ⊂ U there
exists a �nite subfamily F ⊂ N with K ⊂

⋃
F ⊂ U .

It is clear that for a family B of subsets of a topological space we have the
implications: (base of the topology ⇒ k-network ⇒ network).

A topological space X is called

• cosmic if X is regular and has a countable network;

• ℵ0-space if X is regular and has a countable k-network.

For any topological space we have the implications:

metrizable separable ⇒ an ℵ0-space ⇒ cosmic.

Cosmic spaces and ℵ0-spaces form two important classes of generalized
metric spaces, which are closed under many topological operations, see [6, �4
and �11]. These spaces have nice characterizations in terms of their function
spaces Cp(X) and Ck(X). Here for a topological space X we denote by Cp(X)
and Ck(X) the linear space of continuous real-valued functions on X, endowed
with the topology of pointwise convergence and the compact-open topology,
respectively.

The following characterization of cosmic spaces is well-known, see [8, 4.1.3],
[6, 4.9].

Theorem 2. For a Tychono� space X the following conditions are equivalent:

1) X is cosmic;

2) the function space Cp(X) is cosmic;

3) X is the image of a separable metrizable space M under a continuous

surjective map f : M → X.

ℵ0-Spaces have a similar (and even more interesting) characterization in-
volving function spaces Ck(X) and also subproper and compact-covering maps.

A map f : X → Y between topological spaces is called

• compact-covering if each compact subset KY ⊂ Y coincides with the
image f(KX) of some compact subset KX ⊂ X;

• subproper if f admits a function s : Y → X such that f ◦ s = idY and
for every compact set K ⊂ Y the closure s(K) of s(K) in X is compact.
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It is clear that each subproper map is compact-covering. Subproper maps were
introduced and studied in [3].

Theorem 3. For a Tychono� space X the following conditions are equivalent:

1) X is an ℵ0-space;
2) the function space Ck(X) is an ℵ0-space;
3) the function space Ck(X) is cosmic;

4) X is the image of a separable metrizable space M under a continuous

subproper map f : M → X;

5) X is the image of a separable metrizable space M under a continuous

compact-covering map f : M → X.

Proof. The implication (1) ⇒ (2) is a classical result of Michael [9] (see also
[6, 11.5]), (2) ⇒ (3) is trivial and (3) ⇒ (1) can be found in [8, 4.1.3]. The
implication (1)⇒ (4) is proved in [3, 7.2] and (4)⇒ (5)⇒ (1) are trivial (for
the last implication, see [6, p.494]).

The following theorem is the main result of this note.

Theorem 4. Let f : X × Y → Z be a function de�ned on the product of two

topological spaces with values in an ℵ0-space Z. Assume that the space Y has

a countable base BY at some subset S ⊂ Y such that

1) for every B ∈ BY the multivalued function FB : X ( Z,
FB : x 7→ f({x} ×B), is lower quasicontinuous;

2) for every x ∈ X the function fx : Y → Z, fx : y 7→ f(x, y),
is continuous at each point y ∈ S.

Then the set {x ∈ X : {x} × S ⊂ C(f)} is comeager in X.

Proof. By Theorem 3, the function space Ck(Z) is cosmic and by Theorem 2,
Ck(Z) is the image of a metrizable separable space T under a continuous map
ξ : T → Ck(Z). It will be convenient to denote the image ξ(t) ∈ Ck(Z) of an
element t ∈ T by ξt.

Now consider the function

g : X × Y × T → R, g : (x, y, t) 7→ ξt(f(x, y)).

Fix any countable base BT of the topology of the metrizable separable space
T . It is clear that the countable family B = {U × V : U ∈ BY , V ∈ BT } is a
base of Y × T at the subset S × T ⊂ Y × T .

We claim that for any set B = U × V ∈ B the multivalued function

GB : X ( R, GB : x 7→ g({x} × U × V ),
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is lower quasicontinuous at each point x ∈ X. Fix any neighborhood Ox ⊂ X
and any open set W ⊂ R containing some point g(x, y, t) = ξt(f(x, y)) with
(y, t) ∈ U × V = B. The continuity of the function ξt ∈ Ck(Z) yields a
neighborhood Of(x,y) ⊂ Z of f(x, y) such that ξt(Of(x,y)) ⊂W .

By the lower quasicontinuity of the multivalued function FU : X ( Z,
FU : x′ 7→ f({x′} × U), there exists a non-empty open set O′x ⊂ Ox such
that for every x′ ∈ O′x there exists y′ ∈ U such that f(x′, y′) ∈ Of(x,y).
Then g(x′, y′, t) = ξt(f(x′, y′)) ∈ ξt(Of(x,y)) ⊂ W and hence GB(x′) ∩W =
g({x′} × U × V ) ∩W 3 g(x′, y′, t) is not empty.

Next, we show that for every x ∈ X the map gx : Y × T → R,
gx : (y, t) 7→ g(x, y, t), is continuous at each point (y, t) of the set S × T .
Since the space Y × T is �rst-countable at (y, t), it su�ces to show that for
any sequence {(yn, tn)}n∈ω ⊂ Y × T that converges to (y, t), the sequence(
g(x, yn, tn)

)
n∈ω converges to g(x, y, t) in R. The continuity of the function fx

at y ensures that the sequence
(
f(x, yn)

)
n∈ω converges to f(x, y) in Z. The

continuity of the map ξ : T → Ck(Z) guarantees that the function sequence
(ξtn)n∈ω converges to ξt in Ck(Z). Now the de�nition of compact-open topol-
ogy on Ck(Z) implies that the sequence

(
g(x, yn, tn)

)
n∈ω =

(
ξtn(f(x, yn))

)
n∈ω

converges to g(x, y, t) = ξt(f(x, y)).
Now we can apply Theorem 1 and conclude that the set R := {x ∈ X :

{x} × S × T ⊂ C(g)} is comeager in X. We claim that R× S ⊂ C(f).
Assuming that f is discontinuous at some point (x, y) ∈ R×S, we can �nd

a neighborhood Of(x,y) ⊂ Z of f(x, y) in Z such that f(O(x,y)) 6⊂ Of(x,y)

for any neighborhood O(x,y) ⊂ X × Y of (x, y). The ℵ0-space Z is Ty-
chono� (being regular is Lindel�of). So, we can �nd a continuous function
ϕ : Z → [0, 1] such that ϕ(f(x, y)) = 0 and ϕ−1([0, 1)) ⊂ Of(x,y). Since
ϕ ∈ Ck(Z) = ξ(T ), there exists t ∈ T such that ξt = ϕ. It follows that
g(x, y, t) = ξt(f(x, y)) = 0. By the continuity of the function g at (x, y, t),
there exists a neighborhood O(x,y) ⊂ X × Y such that g(O(x,y) × {t}) ⊂ [0, 1).
It follows that ϕ(f(O(x,y))) = ξt(f(O(x,y))) = g(O(x,y)×{t}) ⊂ [0, 1) and hence
f(O(x,y)) ⊂ ϕ−1([0, 1)) ⊂ Of(x,y), which contradicts the choice of the neigh-
borhood Of(x,y). This contradiction shows that R × S ⊂ C(f) and hence the
set {x ∈ X : {x} × S ⊂ C(f)} ⊃ R is comeager in X.

Corollary 2. If f : X × Y → Z is a KC-function de�ned on the product of

two topological spaces with values in an ℵ0-space Z, then for any subset S ⊂ Y
with countable base in Y the set {x ∈ X : {x}×S ⊂ C(f)} is comeager in X.

Corollary 2 implies the following result proved in [2, Corollary 3.10].

Corollary 3. Let X be a topological space, Y be a second-countable topolog-

ical space and Z be an ℵ0-space. For any KC-function f : X ×Y → Z the set

D(f) of discontinuity points of f has meager projection on X.
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Theorem 4 and Corollary 2 cannot be generalized to cosmic spaces as shown
by the following example, in which 2ω = {0, 1}ω is the Cantor cube and [0, ω] =
ω ∪ {ω} is the closed segment of ordinals, endowed with the interval topology.
So, [0, ω] is a compact countable space with a unique non-isolated point ω.
Let us recall that a topological space X is Fr�echet-Urysohn if for any subset
A ⊂ X and point a ∈ Ā, there exists a sequence {an}n∈ω ⊂ A that converges
to a.

Example 1. There exist a Fr�echet-Urysohn cosmic space Z with a unique
non-isolated point, and a separately continuous function f : 2ω × [0, ω] → Z
such that C(f) = 2ω × [0, ω) and D(f) = 2ω × {ω}.

Proof. Let 2<ω =
⋃

n∈ω 2n, where 2 = {0, 1}. Observe that for any function
x ∈ 2ω and any n ∈ ω the restriction x|n belongs to 2n ⊂ 2<ω.

Choose any point ∞ /∈ 2<ω that does not belong to 2<ω and consider the
space Z = {∞} ∪ 2<ω, endowed with the topology τ consisting of sets U ⊂ Z
having the following property: if ∞ ∈ U , then for any x ∈ 2ω there exists
n ∈ ω such that x|m ∈ U for all m ≥ n in ω. It is easy to see that the space
Z is regular (being a T1-space with a unique non-isolated point) and cosmic
(being countable). The de�nition of the topology τ ensures that the space Z
is Fr�echet-Urysohn.

Now consider the function f : 2ω × [0, ω]→ Z de�ned by

f(x, n) =

{
x|n if n < ω;

∞ otherwise.

It is easy to check (sf. [10, Theorem 1]) that f is separately continuoous and
C(f) = 2ω × [0, ω), so D(f) = 2ω × {ω}.

Remark 1. The space Z from Example 1 is strati�able (being a regular count-
able space with a unique non-isolated point).

A regular topological space X is called an ℵ-space if X has a σ-discrete k-
network [6, �11]. The class of (paracompact) ℵ-spaces contains all metrizable
spaces and all ℵ0-spaces.

Problem 5. Can Theorem 4 be generalized to functions with values in (para-

compact) ℵ-spaces Z?

The following proposition from [2, 4.5] yields a partial answer to Problem 5.

Proposition 1. If f : X × Y → Z is a separately continuous function de�ned

on the product of a countably cellular space X and a second-countable space

Y with values in an ℵ-space Z, then the set {x ∈ X : {x} × Y ⊂ C(f)} is

comeager in X.
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