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We prove that for any topological space X of countable tightness, each
o-convex subspace F of the space SC,(X) of scatteredly continuous real-
valued functions on X has network weight nw(F) < nw(X). This implies
that for a metrizable separable space X, each compact convex subset in
the function space SC,(X) is metrizable. Another corollary says that two
Tychonoff spaces X,Y with countable tightness and topologically isomor-
phic linear topological spaces SC,(X) and SC,(Y) have the same network
weight nw(X) = nw(Y). Also we prove that each zero-dimensional sep-
arable Rosenthal compact space is homeomorphic to a compact subset of
the function space SC,(w*) over the space w* of irrationals.

This paper was motivated by the problem of studying the linear-topo-
logical structure of the space SC,(X) of scatteredly continuous real-valued
functions on a topological space X, addressed in [1, 2|.

A function f : X — Y between two topological spaces is called scat-
teredly continuous if for each non-empty subspace A C X the restriction
flA : A — Y has a point of continuity. Scatteredly continuous func-
tions were introduced in [3| (as almost continuous functions) and studied
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in details in [4], [5] and [6]. If a topological space Y is regular, then the
scattered continuity of a function f : X — Y is equivalent to the weak
discontinuity of f; see [3], [, 4.4]. We recall that a function f : X — Y
is weakly discontinuous if each subspace A C X contains an open dense
subspace U C A such that the restriction f|U : U — Y is continuous.

For a topological space X by SC,(X) C R¥ we denote the linear space
of all scatteredly continuous (equivalently, weakly discontinuous) functions
on X, endowed with the topology of pointwise convergence. It is clear that
the space SC,(X) contains the linear subspace C,(X) of all continuous
real-valued functions on X. Topological properties of the function spaces
C,(X) were intensively studied by topologists, see [7]. In particular, they
studied the interplay between topological invariants of topological space
X and its function space C,(X).

Let us recall [8, 9] that for a topological space X its

e weight w(X) is the smallest cardinality of a base of the topology of
X.

Y

e network weight w(X) is the smallest cardinality of a network of the
topology of X;

e tightness t(X) is the smallest infinite cardinal x such that for each
subset A C X and a point @ € A in its closure there is a subset
B C A of cardinality |B| < k such that a € B;

e Lindeldf number [(X) is the smallest infinite cardinal s such that
each open cover of X has a subcover of cardinality < k;

o hereditary Lindelof number hl(X) = sup{l(Z): Z C X},

e density d(X) if the smallest cardinality of a dense subset of X;
e the hereditary density hd(X) = sup{d(Z) : Z C X};

e spread s(X) = sup{|D| : D is a discrete subspace of X}.

By |7, §L.1], for each Tychonoff space X the function space C,(X) has
weight w(C,(X)) = |X| and network weight nw(SC,(X)) = nw(X). For
the function space SC,(X) the situation is a bit different.
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Proposition 1. For any Ti-space X we have
s(SCy(X)) = nw(SC,(X)) = w(SC,(X)) = | X].

Proof. 1t is clear that s(SC,(X)) < nw(SC,(X)) < w(SC,(X)) <
w(RY) = |X|. To see that |X| < s(SC,(X)), observe that for each point
a € X the characteristic function

1

0, otherwise

, ifr=a
5a:X—>R:{

of the singleton {a} is scatteredly continuous, and the subspace D = {4, :
a € X} C SC,(X) has cardinality |X| and is discrete in SC,(X). O

The deviation of a subset F C SC,(X) from being a subset of C,(X)
can be measured with help of the cardinal number dec(F) called the de-
composition number of F. It is defined as the smallest cardinality |C| of a
cover C of X such that for each C' € C and f € F the restriction f|C is
continuous. If the function family F consists of a single function f, then
the decomposition number dec(F) = dec({f}) coincides with the decom-
position number dec(f) of the function f, studied in [10]. It is clear that
dec(Cp(X)) = 1.

Proposition 2. For a T topological space X the decomposition number
dec(SC,(X)) is equal to the decomposition number dec(D) of the subset
D ={d,:a € X} C SC,(X) and is equal to the smallest cardinality
ddec(X) of a cover of X by discrete subspaces.

Proof. 1t is clear that dec(D) < dec(SC,(X)) < ddec(X). To prove that
dec(D) > ddec(X), take a cover C of X of cardinality |C| = dec(D) such
that for each C € C and each characteristic function §, € D the restriction
9,4|C' is continuous. We claim that each space C € C is discrete. Assuming
conversely that C' contains a non-isolated point ¢ € C, observe that for
the characteristic function . of the singleton {c} the restriction 0.|C' is
not continuous. But this contradicts the choice of the cover C. Therefore
the cover C consists of discrete subspaces of X and ddec(X) < |C| =
dec(D). O
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In contrast to the whole function space SC,(X) which has large decom-
position number dec(SC,(X)), its o-convex subsets have decomposition
numbers bounded from above by the hereditary Lindeléf number of X.

Following [11] and [12], we define a subset C' of a linear topological
space L to be o-convex if for any sequence of pomts (Zn)new in C and any

sequence of positive real numbers (%, ),ec, With Z t, = 1 the series Z tnln

n=0 n=0
converges to some point ¢ € C'. It is easy to see that each compact convex

subset K C L is o-convex. On the other hand, each o-convex subset of a
linear topological space L is necessarily convex and bounded in L.
The main result of this paper is the following;:

Theorem 1. For any topological space X of countable tightness, each o-
convex subset F C SC,(X) has decomposition number dec(F) < hi(X).

This theorem will be proved in Section 3. Now we derive some simple
corollaries of this theorem.

Corollary 1. For any topological space X of countable tightness, each
o-convex subset F C SC,(X) has network weight nw(F) < nw(X). More-
over,

nw(X) = max{nw(F) : F is a o-convex subset of SC,(X)}
provided the space X is Tychonoff.

Proof. By Theorem 1, each o-convex subset F C SC,(X) has decompo-
sition number dec(F) < hl(X). Consequently, we can find a disjoint cover
C of X of cardinality |C| = dec(F) < hl(X) such that for each C' € C and
f € F the restriction f|C' is continuous.

Let Z =&C = {(z,C) € X xC:z € C} C X xC be the topological
sum of the family C, and 7 : 7 — X, 7 : (,C) — =z, be the natural
projection of Z onto X. Since the cover C is disjoint, the map 7 : Z — X
is bijective and hence induces a topological isomorphism 7* : R* — RZ,
7*: f — fom. The choice of the cover C guarantees that 7*(F) C Cp(Z).
By (the proof of) Theorem 1.1.3 of 7], nw(C,(Z)) < nw(Z) and hence

nw(F) = nw(m*(F)) < nw(Cy(2)) < nw(Z) <
<|C| - nw(X) < hl(X) - nw(X) = nw(X).
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If the space X is Tychonoff, then the “closed unit ball”

B={f € G(X) : supf(a)| < 1} € Gy(X)

is o-convex and has network weight nw(B) = nw(X) according to Theorem

[.1.3 of [7]. So,
nw(X) = max{nw(F) : F is a o-convex subset of SC,(X)}.

]

In the same way we can derive some bounds on the weight of compact
convex subsets in function spaces SC,(X).

Corollary 2. For any topological space X of countable tightness, each com-
pact convex subset K C SC,(X) has weight w(K) < max{hi(X), hd(X)}.
Moreover,

(X)) < sup{w(K) : K is a compact convex subset of SC,(X)} <
< max{hl(X),hd(X)}.

Proof. Given a compact convex subset K C SC,(X), use Theorem 1 to
find a disjoint cover C of X of cardinality |C| = dec(K) < hl(X) such
that for each C' € C and f € K the restriction f|C is continuous. Let
Z = @C and 7 : @C — X be the natural projection, which induces a
linear topological isomorphism 7* : R — R, 7* : f +— f om, with
() C Cp(Z). It follows that the topological sum Z = @&C has density
d(Z) <> d(C) < [C| - hd(X) < max{hl(X), hd(X)}, and so we can fix

cec
a dense subset D C Z of cardinality |D| = d(Z) < max{hl(X),hd(X)}.

Since the restriction operator R : C,(Z) — C,(D), R : f — f|D, is
injective and continuous, we conclude that

w(K) = w(r*(K)) = w(R o7 (K)) < w(R”) =
= |D| - Ny < max{hl(X), hd(X)}.

Next, we show that hl(X) < 7 where

7 = sup{w(K) : K is a compact convex subset of SC,(X)}.
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Assuming conversely that hl(X) > 7 and using the equality hl(X) =
sup{|Z| : Z C X is scattered} established in [9], we can find a scattered
subspace Z C X of cardinality |Z| > 7. It is easy to check that each
function f : X — [0,1] with f(X \ Z) C {0} is scatteredly continuous,
which implies that the subset

Kz ={f€8C,(X): f(Z)co,1], F(X\Z)C{0}}

is compact, convex and homeomorphic to the Tychonoff cube [0, 1]?. Then
7> w(Kz) =w([0,1]%) = |Z| > 7 and this is a desired contradiction that
completes the proof. n

Corollaries 1 or 2 imply:

Corollary 3. For a metrizable separable space X, each compact convex
subspace K C SC,(X) is metrizable.

Finally, let us observe that Corollary 1 implies:

Corollary 4. If for Tychonoff spaces X,Y with countable tightness the
linear topological spaces SCH(X) and SC,(Y') are topologically isomorphic,
then nw(X) = nw(Y).

1 Weakly discontinuous families of functions

In this section we shall generalize the notions of scattered continuity and
weak discontinuity to function families.

A family of functions F C Y¥ from a topological space X to a topo-
logical space Y is called

e scatteredly continuous if each non-empty subset A C X contains
a point @ € A at which each function f|A : A — Y, f € F is
continuous;

o weakly discontinuous if each subset A C X contains an open dense
subspace U C A such that each function f|U : U — Y, f € F is
continuous.
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The following simple characterization can be derived from the corre-
sponding definitions and Theorem 4.4 of 5] (saying that each scatteredly
continuous function with values in a regular topological space is weakly
discontinuous).

Proposition 3. A function family F C Y™ is scatteredly continuous (resp.
weakly discontinuous) if and only if so is the function AF : X — Y7,
AF :z — (f(z))fer. Consequently, for a regular topological space Y, a
function family F C Y is scatteredly continuous if and only if it is weakly
discontinuous.

Propositions Propositions 4.7 and 4.8 [5] imply that each weakly discon-
tinuous function f : X — Y has decomposition number dec(f) < hl(X).
This fact combined with Proposition 3 yields:

Corollary 5. For any topological spaces X,Y , each weakly discontinuous
function family F C Y has decomposition number dec(F) < hi(X).

2 Weak discontinuity of o-convex sets in function
spaces

For a topological space X by SC»(X) we denote the space of all bounded
scatteredly continuous real-valued functions on X. It is a subspace of the
function space SC,(X) C R¥. Each function f € SC;(X) has finite norm

If1] = sup [f ().
zeX

Theorem 2. For any topological space X with countable tightness, each
o-convex subset F C SCr(X) is weakly discontinuous.

Proof. By Proposition 3, the weak discontinuity of the function family F
is equivalent to the scattered continuity of the function AF : X — R,
AF : x — (f(x))fer. Since the space X has countable tightness, the
scattered continuity of AF will follow from Proposition 2.3 of [5] as soon as
we check that for each countable subset Q = {z,,}°°, C X the restriction
AF|Q : Q — R’ has a continuity point. Assuming the converse, for each
point x,, € (Q we can choose a function f, € F such that the restriction
fn]@ is discontinuous at x,,.
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Observe that a function f : Q — R is discontinuous at a point g € @ if
and only if it has strictly positive oscillation

ose,() = infsun{|(x)  f(0)] : 2.y € O,)

at the point ¢. In this definition the infimum is taken over all neighbor-
hoods O, of ¢ in Q.

We shall inductively construct a sequence (t,,)%°; of positive real num-
bers such that for every n € N the following conditions are satisfied:

1) l < %7 tn+1 < %tm and tn+1 ’ an+1H < %tn : anH’

n
2) the function s, = Z tr fr restricted to @ is discontinuous at x,,,
k=1

3) turr - [ fasall < §0sca, (50]@Q).

We start the inductive construction letting ¢; = 1/2. Then the function
$1]Q = t1- f1|@ is discontinuous at x; by the choice of the function f;. Now
assume that for some n € N positive numbers ¢; ..., ¢, has been chosen so

n
that the function s,, = Z tr fr restricted to @ is discontinuous at x,,.
k=1
Choose any positive number %, such that

~ 1 ~ ~
tn+1 < itnu lnt1 - ||fn+1” < %tn ’ anH and tn—i-l ’ ||fn+1|| < %Oscxn(sn|Q)a

and consider the function 5,,, = s, + tn41fur1. If the restriction of this
function to @ is discontinuous at the point x,.1, then put t,. 1, = fni1
and finish the inductive step. If §,,1|Q is continuous at z,1, then put
toni1 = %fnﬂ and observe that the restriction of the function

n+1
17 = 17
Sn4+1 = E tk.fk = Sp + §tn+lfn+1 = Spt+1 — §tn+lfn+l
k=1

to () is discontinuous at x,,1. This completes the inductive construction.

The condition (1) guarantees that Ztn < 1 and hence the number

n=1

oo
to=1— Z t,, is non-negative. Now take any function f, € F and consider

n=1
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the function
5= tufn
n=0

which is well-defined and belongs to F by the o-convexity of F.

The functions fy, s € F C SC,(X) are weakly discontinuous and hence
for some open dense subset U C @ the restrictions s|U and fy|U are
continuous. Pick any point x,, € U. Observe that

s=tofo+snt > thfi

k=n-+1
and hence
oo
Sp =8 —1tofo— E tefe = s — tofo — Un,
k=n-+1

[e.e]

where u, = Z trfr. The conditions (1) and (3) of the inductive con-

k=n+1
struction guarantee that the function u, has norm

o0

1
laall < 3 tallfill < 2ol fasa | < J08C0, (54]Q).

k=n+1

Since s,, = s — tofo — un, the triangle inequality implies that
0< OSCmn(Sn’Q) < OSan<S|Q) + 0SCyg,, (t0f0|Q> + 0SCq,, (un) <

1
S 0 + O + 2||un|| S §OSan(Sn|Q)

which is a desired contradiction, which shows that the restriction AF|Q
has a point of continuity and the family F is weakly discontinuous. O

3 Proof of Theorem 1

Let X be a topological space with countable tightness and F be a o-convex
subset in the function space SC,(X). The o-convexity of F implies that
for each point # € X the subset {f(z) : f € F} C R is bounded (in the
opposite case we could find sequences (f,)new € F¥ and (t,)new € [0, 1]
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with Ztn = 1 such that the series Ztn fn(x) is divergent). Then X =

n=0 n=1

UX where X, = {x € X : n<sup\f( )| <n+1} forn € w.

n=1

It follows that for every n € w the family F| X, = {f|X,: f € F}isa
o-convex subset of the function space SC;(X,,). By Theorem 2, the func-
tion family F|X,, is Weakly discontinuous and by Corollary 5, dec(F|X,,) <

hl(X,). Then dec(F) < Zdec FlX,) < th ) < hl(X).

4 Some Open Problems

The presence of the condition of countable tightness in Theorem 1 and its
corollaries suggests the following open problem.

Problem 1. Is it true w(K) < nw(X) for each topological space X and
each compact convex subset I C SC,(X)?

By Theorem 2, for each topological space X of countable tightness,
each compact convex subset K C SC;(X) is weakly discontinuous.

Problem 2. For which topological spaces X each compact convexr subset
KK C SC,(X) is weakly discontinuous?

According to Corollary 3, each compact convex subset K C SC,(w®) is
metrizable.

Problem 3. Is a compact subset K C SC,(w*) metrizable if K is homeo-
morphic to a compact convexr subset of R*.

Let us recall that a topological space K is Rosenthal compact if K
is homeomorphic to a compact subspace of the space By(X) C RX of
functions of the first Baire class on a Polish space X. In this definition the
space X can be assumed to be equal to the space w® of irrationals.

Problem 4. Is each Rosenthal compact space homeomorphic to a compact
subset of the function space SCy(w™)?

This problem has affirmative solution in the realm of zero-dimensional
separable Rosenthal compacta.
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Theorem 3. Fach zero-dimensional separable Rosenthal compact space K
is homeomorphic to a compact subset of the function space SCy(w®).

Proof. Let D C K be a countable dense subset in K. Let A = Cp(K,?2)
be the space of continuous functions f : K — 2 = {0,1} endowed with
the smallest topology making the restriction operator R : Cp(K,2) — 2P,
R: f+— f|D, continuous. By the characterization of separable Rosenthal
compacta [13], the space A is analytic, i.e., A is the image of the Polish
space X = w® under a continuous map 7 : X — A. Now consider the map
§: K — 24 §: 2 (f(x))ea. This map is continuous and injective by
the zero-dimensionality of K. The map 7 : X — A induces a homeomor-
phism 7* : 24 — 2% 7% : f > fonm. Then 708 : K — 2% is a topological
embedding.

We claim that 7* o 6(K) C SC,(X) N 2%. Given a point z € K, we
need to check that the function 7* o §(z) € 2% is scatteredly continuous.
It will be convenient to denote the function d(z) € 24 by §,. This function
assigns to each f € A = Cp(K) the number §,(f) = f(z) € 2.

By [14, 15|, the Rosenthal compact space K is Fréchet-Urysohn, so

there is a sequence (x,)nen € D* with lim x,, = x. Then the function
n—oo

0 + A — 2, 0, : f — f(zx), is the pointwise limit of the continuous
functions 9,,,, which implies that ¢, is a function of the first Baire class
on A and 6, om : X — 2 is a function of the first Baire class on the
Polish space X. Since this function has discrete range, it is scatteredly
continuous by Theorem 8.1 of |5]. Consequently, 7* o §(x) € SC,(X) and
K is homeomorphic to the compact subset 7 o §(K) C SC,(X). O

A particularly interesting instance of Problem 4 concerns non-
metrizable convex Rosenthal compacta. On of the simples spaces of this
sort is the Helly space. We recall that the Helly space is the subspace
of Bi(I) consisting of all non-decreasing functions f : I — [ of the unit
interval I = [0, 1].

Problem 5. Is the Helly space homeomorphic to a compact subset of the
function space SC,(w*)?
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JoBeieHo, 110 JJjisi JIOBIJIBHOT'O TOIIOJIOTIYHOIO IPOCTOpPY X 3JIiveH-
HOl TicHOTH KOXKHHUIT o-omykiauit migmpoctip F upocropy SC,(X) pos-
piJizKeHo HelepepBHUX JificHo3HaYHUX (BYHKINNH Ha X Mae CiTKOBy Bary
nw(F) < nw(X). 3 1mporo BUILIMBAE, IO I JOBLIHHOTO METPU30BHOIO
cenapadbeIbHOro mpocTopy X KOXKHUI KOMIIAKTHUN OIYKJIMH TiJIITPOCTIp B
SC,(X) € MeTpU30BHIM, & TAKOXK, IO TUXOHIBCLKI mpocTopn X 1Y 3i 3ii-
YEHHOIO TICHOTOI MalOTh OJHAKOBY ciTkoBy Bary nw(X) = nw(Y’), akuio
miniiini Tonosoriuni npocropu SC,(X) i SC,(Y) ronosoriuno izomopdui.
Takoxk j10BeJIeHO, MO0 KOXKHUI HYJIb-BUMIpHUI cenapabe/bHIil KOMITAKT
Pozenrang BKIIaJIa€Thest y MPOCTIP PO3PIIKEHO HelepepBHUX (DYHKITIA
SCp(w*) Haj MOJIBCHKAM IIPOCTOPOM W™





