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We consider the problem of determining whether two polynomial matrices are semis-
calarly equivalent. Large difficulties in this problem arise already for matrices of second
order. In this connection under certain restrictions the necessary and sufficient conditions of
semiscalar equivalence of 2-by-2 polynomial matrices are found.

b.3. [llaBapoBCbKUU. YV Mm08U HANIBCKAASIPHOT €KBIBANEHMHOCI NOATHOMIAABHUX 2 X 2 -
mampuus /| Mart. Bicauk HTII, 14 (2017) 7-28.

HocnigxyeTbcs mpobdjeMa BU3HAYEHHsI, KOJIM JBi OJiHOMiaJIbHi MaTpPULi € HaliBCKAJISIp-
HO eKBiBaJIEHTHi. 3HauHi TPYJHOW Yy Lill MpoOsieMi BUHUKAIOTh BKE JUJISI MATPHULb APYroro
MOPSIAKY. Y 3B’SI3Ky 3 UM, NP TIEBHUX OOMEKEHHSIX BKas3aHi HEOOXi[HI Ta JOCTAaTHI YMOBH
HaIiBCKaJISIPHOT €KBIBAJICHTHOCTI 2 X 2 MOJIHOMiaJIbHUX MaTpPULIb.

Introduction

The notion of semiscalar equivalence of matrices was introduced to algebra by
P.S. Kazimirskii and V.M. Petrychkovych in 1977. By definition [1], two polynomial
matrices are called semiscalarly equivalent if they can be transformed one to the other
by multiplying from the left by a nonsingular numerical matrice and from the right by
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an invertible polynomial matrice. The notion of PS-equivalence of matrices was in-
troduced by J.A. Dias da Silva and T.J. Laffey in 1999. By definition [2], polynomial
matrices A(x) and B(x) are called PS-equivalent provided B(x) = P(x)A(x)Q for
some invertible matrices Q —independent of x and P (x) — dependent on x. We con-
sider the problem of determining whether two matrices are semiscalarly equivalent.
It contains the classical linear algebra problem of reducing a pair of numerical ma-
trices to a canonical form by simultaneous similarity transformations. This problem
has not been extensively studied in the literature. Large difficulties in this problem
arise already for matrices of second order.

In this paper the semiscalar equivalence for one class of polynomial matrices
of second order is investigated. In particular, necessary and sufficient conditions are
found under which two 2-by-2 matrices over the ring C[x] are semiscalarly equivalent.

We consider the ring M(2, C[x]) of order two polynomial matrices over the
field of complex numbers C. Let A(x) € M(2, C[x]). Suppose that the rank of
matrix A(x) is full. According to [1] (see also [3], Section IV, § 1 or [4]) the matrix
A(x) is semiscalarly equivalent to a matrix of lower triangular form with invariant
multipliers on the main diagonal. Without loss of generality, we can assume that the
first invariant multiplier of the considered matrix is identity. Therefore, this matrix
can be considered in the form

1 0

A =1 500

', 0 <dega(x) < degé(x) (1)

since the case with a(x) = 0 is trivial.

In this paper we use the standard notations. In particular, a® () is the value at
x = « of the ¢-th derivative of the polynomial a(x) € C[x] for ¢ € N. Further, by
the symbol 0 we denote the zero column of arbitrary height. The transpose operation
is denoted by the symbol 7. Let M(2, C), M(2, C[x]) denote the rings of 2 x 2
matrices over C, C[x], respectively, and let GL(2, C), GL(2, C[x]) be their groups
of units, respectively.

The determinant |A(x)| is called the characteristic polynomial of A(x) and its
roots are called the characteristic roots of matrix A(x). In this article the charac-
teristic roots of a matrix can be of arbitrary multiplicity. The question of finding
a complete set of invariants for PS-equivalence in the case 2-by-2 matrices without
multiple characteristic roots is discussed in [2]. A different case of semiscalar equiv-
alence of polynomial matrices of second order is considered in [5].
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1. Main results

Let us denote by M the set of characteristic roots of a matrix A(x) of the form (1).
It is clear that the set M is an invariant of the matrix A(x) with respect to semiscalar
equivalence.

On the set M consider the equivalence relation

E={(a,p)e M xM :a(x) =a(p)},
which determined a partition
M ={E(@): 0 e M} )

of M into the equivalence classes E(x) :={f € M : (a,B) € E}.
The following two assertions yield some invariants of the matrix A(x) with re-
spect to semiscalar equivalence.

Proposition 1.1. The partition (2) of the set M of characteristic roots of matrix A(x)
of the form (1) is invariant for the class {CA(x)Q(x)} of semiscalarly equivalent
matrices.

Proof. Let the matrices A(x) (1) and

1 0
B(x) = H by AG) | deg b(x) < deg A(x), 3)
be semiscalarly equivalent, i.e.
SA(x)R(x) = B(x), 4)

where S € GL(2, C) and R(x) € GL(2, C[x]). Introducing the notations S =

Hs,-j f R 1(x) = H rij (x)} f we deduce from (4) the relations
s11 + s12a(x) = ri1(x), ()
s128(x) = ri2(x), (6)
s21 + s22a(x) = b(x)r11(x) + 8(x)ra1(x). (7

Settingx = o and x = B, o # B, «, B € M, we obtain the equalities
521 + s22a(@) = b(a)r11(a) and s21 + s22a(B) = b(B)r11(B).

If a(e) = a(P), then left sides of the resulting relations are equal. Therefore, from
the equality of right sides, taking into account r11(«) = r11(8) # 0 (see (5), (6)),
we have b(«) = b(B). The notion of semiscalar equivalence is a symmetric relation.
Then from b(«) = b(B) a similar argument yields a(x) = a(8). This completes the
proof. O
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Proposition 1.2. Let o be a characteristic root of multiplicity n of a matrix A(x)
of form (1). Let also m be the lowest (non-zero) order of the non-zero derivative
a™ (&) # 0 of the entry a(x) of this matrix atx = «. Then the numberm (andn) is
invariant for the class {CA(x)Q(x)} of semiscalarly equivalent matrices, ifm < n.

Proof. Let a matrix A(x) (1) be semiscalarly equivalent to a matrix B(x) (3) and m’
be the lowest (non-zero) order of the non-zero derivative b (a) # 0 of the entry
b(x) of the matrix B(x) at x = «. Suppose that m < m’. From relations (5) and (7)
we obtain

521 + 522a(x) — s110(x) — s12a(X)b(x) = §(x)r21(x). (8)
Substituting x = « into (8), we find
s21 + s22a(a) — s116() — s12a()b(2r) = 0. 9)
Differentiating both sides of equality (8) m times at x = «, we obtain
5220 (@) — 5120 (@)b(ar) = 0.

The division of both sides of obtained equality by a™ (&) # 0 and the substitution
in (9) yields

522 — S12b(2) = 0,

s21 —s11b(a) = 0.

It is impossible, since the matrix Hs,- 7 Hl is nonsingular. Therefore, m > m’. Taking

into account that the semiscalar equivalence is a symmetric relation, we conclude that
/

m=m'. O

In this paper, we shall restrict our attention to considering the case in which the
partition (2) of the set M has only two equivalence classes:

M =M, U M,. (10)

Recall that the invariance of the partition (2) was established in Proposition 1.
Since the matrix A(x) has full rank, the entry a(x) of the matrix A(x) (1) satisfies
the inequality a(c) # O for some root o« € M.

Theorem 1.3. Let the partition (2) of the set M of characteristic roots of matrices
A(x) (1) and B(x) (3) be of the form (10). Let also nj be the multiplicity of an
arbitrary roota; € M ;m be the lowest (non-zero) order of the non-zero derivatives
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a®™i)(a;) # 0, (a;) # 0 of the entries a(x), b(x) of the matrices A(x), B(x)
j J
atx =oj;

s—m;—1

ax)=aj+ Y aj(x—ap)™ M aj =a(e;).aj0#0, (1)
t=0
s—m;—1

b(x) =bj+ Y bj(x—ap)™ ¥ b; =b(a;).bjo#0,  (12)
t=0

are binomial decomposition of the entries a(x), b(x) into degrees of x — o ifm; <
nj; s = degd(x); a; = b; = 0 for some a; € M. Matrices A(x), B(x) are
semiscalarly equivalent if and only if there exists a number ¢ # 0 satistying the
following conditions:

1ajo = chjy and

ail aiz ... Qig—1 dis; bit bia ... bis,—1 b
aio aj1 ... Qis;—2 Qigsi—1 bio bir ... bisi—2 bis—1
=% , (13)
.ail a2 o bi biz
0 ajo 4 0 bio bi1
si=1, ..., mi—1, m;y +1, ..., nj —m; — 1, for every root a; € M such that

ai =bj =0,m; <nj;

2)
ai a b; . b
C( lyzlnl _ lazml) — ernl _ lbazml (14)
) 0 i0 10
for every pair of roots aj, oy € M such thata; = b; = a; = by = 0, 2m; < n;,
2m; < nj;
3)
2 2
as b
ai, m; + -0 — c (bi,mi + L0) (15)
ap bp

for every roota; € M such thata; = b; = 0, 2m; < n; and for some roota, € M
such thatap, b, # 0;
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4
0 0 apo dpi apsp 0 0 bp() bpl bpsp
ap by
a b
pl Jpsp pl
¢ apo | = prpTsp I bpo |
V2
0 0
0 a, 0 0 b, 0
mp+sp mp+sp
(16)
sp =0, 1, ..., np —mp — 1, for every root a, € M such thata,, b, # 0,
mp <np.

2. Auxiliary statements

We first obtain two lemmas, which will be used in the proof of Theorem 1.3.

Lemma 2.1. For the existence of the non-zero solution of the equation

ao bo 0
ai b1 0
: “
am—1 bm—1 0 =
=0, 17
am bm aobo iz {17
Am+1 bmy1  aobi +aibo >
: L
ag by 1=0 Atbg—m—

over C, where ag, by # 0, it is necessary and sufficient that the following conditions

hold:
ar as ay—1 Qay b1 by by—1 by
ap ap ay—3 ay—1 bo b1 by—2 by—1
_ ) )
ai a . by by
0 dao aq 0 bO bl
v=1,...,m—1, m+1, ..., k,¢c=ag/bo.

’

(18)
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Under the conditions of Lemma every non-zero solution || x19 X20 x30||T of the
equation (17) it is has x1¢9, x20 # 0.

Proof. Necessity. Let the equation (17) have a non-zero solution ||x19 x20 x30]|7.
Then

aox10 + boxao = 0,

aixio + bi1xzo =0,

(19)
Am—-1X10 + bm—1x20 = 0,
and
AmXx10 + bmx20 + aoboxso = 0,
Am+1X10 + bm+11X20 + (@ob1 + a1b1)x30 = 0, 20)

arx10 + brx20 + x30 ko arbg_m—y = 0.
We assume that x19 = 0 or x¢9 = 0. Then, from first equalities (19) and (20) we

obtain x19 = x30 = x39 = 0. This contradicts the assumption that the solution
lx10 Xx20 x30||T is non-zero. So, we have x19, X290 7# 0. From equalities (19) we

obtain the conditions (18), where ¢ = —x20/x10 =ao/bo, forv =1, ..., m — 1.
By (20), if ay, = ¢by, then x30 = O and ap, = cby, forh € {m + 1,...,k}. For
this reason in what follows a, # cby,, where ¢ = —x20/X10 =a0/bo. From the first

and second equalities (20) by excluding x309 we obtain

aoam+1 — am(cb1 + ar) = c*bobm+1 — chm(chr + ay). (21)

If m = 1, then agas — a% = c2(boby — bf). This means that conditions (20) are

fulfilled forv = m+1 = 2. If m > 1, thena; = cb;y and from (21) by multiplication
of the both sides by a6”_1 = cm_lb(’)"_1 we find

altami1 —2a0 Yayam = (b bm1 — 260 b1by). (22)

Denote by Ay, Byw the submatrices obtained, respectively, from matrices

ap a Am  Am+1 b1 by bm  bm+1
ap ai Am—1 am bo by bm—1  bm
and : (23)
al an bl b2
0 ao al 0 bO bl

by obliterating of two last columns and u-th and w-th rows. Denote also by Az, 4+1(A),
Ap+1(B) the determinants of matrices (23), respectively. Decompose them for mi-
nors of order two that are contained in the last two columns. Because |Ayy| =
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| Byw| = 0 for u # m + 1, we have

a a
B (A) = (D" Dm Ay -
0

ai
am—1 a ay a
_| mel m "lAZ,m+1|+---+‘ ! 2"|Am,m+1|)v
ao ai ap ai
and
bm b
Am+1(B) = (—1)m+1(‘ bm ’ZH “|B1, m1|—
0 1
bm—1 bm by by
— -|B . B
' b by ‘ 2,m+1| + bo b ‘ m, m+1|
Since ||ag ai...am—1|| = ¢||bo b1...bm—1]|, each summand of expression in paren-

thesis for A,,+1(A4), possibly except the first two, differs from the corresponding
summand for A, 1(B) by the multiplier ¢!
(22) the equality (18) follows for v = m + 1.
Denote by A, (A) and A, (B) the determinants in the left and right sides of equal-
ity (18), respectively. Suppose by induction A,(A) = ¢" A, (B) for all r such that
m < r < k. Accept for the sake of determinacy r > 2m. In the case where r < 2m

the proof is analogous. From the first r equalities (20) by excluding x3¢ and by suffi-

. From this fact and from the equality

ciently evident transformations we arrive at the system

(@m+1 — (aobO)_lam 2114:() ayb1—y)(—ao)" Ar—m(A) =
= " (b1 — (@000) " bm Yz @ub1-u) (—b0)™ Ar—m(B),
(Am+2 — (aObO)_lam Zi:o aubz—u)(_ao)m+1Ar—m—l(A) =
= Cr+1(bm+2_(a0b0)_1bm Zi:o aub2—u)(_b0)m+1Ar—m—l(B)»
(ar —-m+1 — (aObO) am Zr 2m+1 aubr—2m—u+l —Ar—m+1+
-I-(aobo) am Zr 2m+1 aubr 2m— u+1)( aO)r_mAm(A) =
=c"(b,— m+1—(aob0) Yom o aubr—am—u+1—br—m41+
+(@0b0) " om Yuo" T aubr—am—ut1)(—bo) " Am(B).
(ar — (aobo) ™ am 3,2 aubr—m-— u)( —ap) ' A1(A) =
= "t (by — (aobo) ™ bm Yy —¢ @ubr—m—u)(—bo) "' A1(B),
(@r+1 — (@obo) Yam Yonlo " aubr—m—ut1)(— ao)
= " (bry1 — (@0bo) " bm X0 0 aubr—m—u+1)(=bo)",

(24)
where ¢ = ag/by.
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Adding the left sides of equality (24) and separately the right sides, we obtain the

equality:

(—ao) art1+ (—ao) "'ar Ay(A) + ...+ (—a0) " ar-mi1Am(A) + ...
+ (—a0)" am+10r—m(A) + (_aO)milam Ar—m+1(A)—

— (a0bo) " am (b1 Ar—m(A)(—ag)" ! + baAr 1 (A)(—ag)" T + ...
+bj, r—m;81(A)(—a;0)") + (aobo) ™ am (b1 Ar_m(A)(—ao)" '+

+ b2 Ar—m—1(A)(—a0)" 2+ .. by A1 (A)(—a0) +br—mi1(—ao) -

r—2m+1
— @r—m+1 — (GObO)_lam Z aubr—am—u+1)(=ao)" " Am(A) =

u=0

=" ((=bo) bry1 + (—bo) " b, AL (B) + ... 4+ (=b0) " br—mi1 Am(B)+ . ..
+ (=b0)" bmt1Ar—m(B) + (_bO)milbmAr—m+l(B)_

— (a0b0) b (@1 Ar—m(B)(—=bo)™ T + ay Ar_m1(B)(=bo)" > + ...

+ ar-mA1(B)(=bo)") + (aobo) ™ bm(ar A r—m(B)(—=bo)" '+

+ aZAr—m—l(B)(_bO)m+2+ o +ar—mAl(B)(_bO)r+ar—m+1(_bO)r+1)_
r—2m+1

— (br—m+1 — (@ob0) 'bm Y aubram—ut1)(=bj0) " Ap(B)).

u=0

Grouping similar terms in both sides of obtained equality we arrive to

(—ao) ar+1 + (—a0) 'ar A(A) + ...+ (—a0) " ar—mi1Dm(A) + ...+

25

)

+ (=a0)™amt1Ar—m(A) + (—a0)™ L am Ar—m+1(A) + (@obo)  ambr—m+1(—ao) ' —

r—2m+1

- (ar—m+1 - (Clobo)_lam Z aubr—2m—u+1)(_a0)r_mAm(A) =

u=1

="t (=bo) b1 + (=bo)" "'by AY(B) + ... 4 (—=b0) " br—mi1Am(B) + ...

+ (=b0)" b1 Ar—m(B) + (=)™ ' by Ar—m11(B) + (@obo) ' bmar—m+1(—bo) t'—

r—2m+1
— (br—m+1 = (@0b0) "bm D @ubr—am—ut1)(=b0)" " Am(B)). (26)
u=1
It follows from (20), that
r—2m-+1
ar—m+1 + (aobO)_lam Z aubr—om—ut1 =
u=0

r—2m+1
= c(br-mt1 + (@ob0) 'bm > aubr—am-ut1).

u=0
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From this relation it is easy to be sure that the following equality is true

(aobo) " ambr—m+1(—ag) -
r—2m+1
- (ar—m-H - (aObO)_lam Z aubr—Zm—u-H)(_aO)r_mAm(A) =
u=0
(27)
= " ((aobo) ' bmar—m41(=bo) T
r—2m-+1
— (br-m+1(@0b0) 'bm D aubr-am-u+t1)(—bo) " Am(B)).
u=0

From (19) and the induction hypothesis we can write

(—a0)" 2am—18r—mi2(A) + ... + (—a0)azAr—1(A) + a1 A (A) =
" (=bo)" 2bm—1Ar—m+2(B) + ... + (=bj0)b ;28 r—1(B) + b1 Ay (B)).
(28)
Comparing (26), (27) and (28), we obtain equality

(—ao) ar+1 + (—ao)" "'a, A1(A) + ... + (—ag)aaAr—1(A) + a1 A (A) =
" ((=bo) brg1+(=bo) " br AL (B)+ ... +(=bo)b2Ar—1(B)+b1 A (B)),
(29)
ie. Arr1(A) = ¢"T1A,11(B), where ¢ = ag/bg. The necessity of conditions of
the Lemma is proved.

Sufficiency. Consider equalities (19) and (20) as one system of equations in three
unknowns X19, X20, X30. In conditions (18) ¢ = ag/bo. This means that x;¢9 = 1,
X209 = —c satisfies the first equation of the system (19). From condition with v = 1
it follows that x19 = 1, xp90 = —c satisfies the second equation of (19). Next, third
and all following equalities in system (19) for x;9 = 1, x29 = —c can be recurrently
obtained from conditions (18) with v = 2, ..., m — 1. Evidently, the values

x10 = 1,X20 = —¢, Xx30 = (chm — am)(aobo) ™, (30)

satisfy the first equation (20). We compute both determinants in equality (20) with
v = m + 1. After annihilation of equal summands on both sides of the obtained
equality and after division by ag' = ¢™bg' with the help of simple transformations
we can obtain the following relation

Ami1 — Chmi1 + (cbm — am)(aobo)  (aphi + ai1by) = 0.

This means that (30) satisfies the second equation of system (20).
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Assume by induction that (30) satisfies the first # — m + 1 equations of system
(20), i.e.

am — b + (b — am)(aobo) " 'agho = 0,
Am+1 — Chms1 + (Chm — am)(@obo) ™' Yy —o aubi—u = 0,

ar —cby + (cby — am)(aobO)_l ;_:'3 aybr—m—u = 0.

(3D

In so doing, we may think for the sake of determinacy r > 2m. In opposite
case the proof is analogous. Taking into account the conditions (18) and inductive
assumption, we can write equalities (27), (28) and (29). From these equalities we
obtain relation (26). This relation implies the equality (25). It is evident that from
the second and all following equalities of (31) we find that first r — m equalities of
(24) are valid. The first r — m equalities of (24) along with relation (25) yield the
last equality of (24). This equality after shortening in (—ag)” = ¢" (—bo)" and after
some simplifications can be written in the form

r—m+1
ar+1 — cbry1 + (chm — am)(aobO)_l Z aybr—m—u+1 = 0.

u=0

This means that (30) is the solution of (r — m + 2)-th equation of system (20).

We inductively proved the existence of the non-zero solution (30) of systems (19)
and (20). Thus, matrix equation (17) has non-zero solution. ]

Lemma 2.2. For the existence of the non-zero solution of the equation

a b ab
ao bo aby + aph
ai b_q aby +ai1b
: : : X1
am—1 bm-1 abm—1 + am—1b |l x2 || =0, (32)
am bm aby, + agbo + amb X3
Am+1 bms1 abmy1 +aobt +aibo + amy1b
ar by aby + Zf_:(’)n a_tbg_m—s +arb

over C, wherea, b, ag, by # 0, k > m, m > 1, it is necessary and sufficient that
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the following conditions hold:

0O ... 0 dog di1 ... dy 0O ... 0 b() bl bv
aq aM+U—1a0 T, bl
a0 | = pmre-ip, T T T by (33)
0 0
0 a 0 0 b 0
m+v m+v

forv e {0,1,...,k}.
Under the conditions of Lemma in every non-zero solution ||x19 X20 X30 ||T of
the equation (17) it is necessary that x19, X2¢9 # 0.

Proof. Necessity. The equality (33) for v = 0 holds true trivially. Assume that the
equation (32) has a non-zero solution. Then the matrix of this equation has rank less
than 3. The two first rows of the matrix are linearly independent. Then, each other
row of the matrix linearly depends on these first two rows. Because

a b ab
ao bg abg+aph | =0, v=1,...,m—1,
ay by aby +ayb

we have Z—g = Z—g. This implies the equality (33) forv = 1, ..., m — 1. From the
equality

a b ab

ap bo abg + agh =0

we have
ab(z,ao — agbmab + aymboab — aﬁbob =0,

whence, after division of both sides by abagbg, we obtain equality (33) for v = m.
Assume by induction that equality (33) holds true for all v withm < v < r < k.
Consider the equality

a b ab

ap bo abg + agh = 0.

+1-m
ar+1 br+1 abryr + Z::() atbr+1-m—t + ar+1b
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After calculation of the determinant, we obtain the equation

r+1—m r+l1—-m
abo Z arby41-m—t — aobr+1ab + ar41boab — aob Z arbr+1-m—t = 0.
1=0 1=0

We can divide by abagby its both sides to obtain the equality

a b 1 1 r+1—-m
r+1 r+1

[ — E b —m—r = 0. 34
ao bo (aob abo) = GeOr+1-m—t (34)

Let us denote by Ay (a) and A, (b) the determinants in the left and right sides of the
equality (33), respectively. Considering the inductive assumption, we can write the
equalities

(_l)m_laoa_l((arao)_lAr+l—m(a) - (brbO)_lAr—H—m(b)) =0,
(—="ara= (@ ao) ™ Arom(a) — (6" bo) I Ar—m(b)) = 0,

............................................... (35)
(1) ar—ma="((a™ag)~' A1(a) — (b™bo) "' A1 (b)) = 0,

(=1 ar41-ma=" ((@" " ao) ™' Ag(a) — (0™ bo) ! Ao (D)) = 0,

(=1 bob™ ((a" a0) ™' Art1-m(@) — (B"bo) ' Ar1-m(h)) = 0,
(=1)™b1b™ (@ ao) T Ar—m(a) — (b" " bo) Tt Ar—m(b)) = 0,
............................................... (36)

(1) br—mb ™ ((@™a0) ' Ar(a) — (b™bo) " A1 (b)) = 0,
(=1)"br+1-mb™ (@™ ao) ™' Ao(a) — (b bo) ! Ag (b)) = 0.

Decompose the determinants A, y1(a) and A, 1(b) for entries of their last columns.
Then the left and right sides of equality (33) for v = r 4 1 can be written in the form

@"*"ao) " Ar1(a) = (@ ag) (D" arp 1™ (=) ar 11-ma” Ao(a)+
+ D" apd A (@) 4+ o+ (DT and™ T A1 () F (37)

+ (=D"a1a" Ar—m(@) + (=) apa" " Ar_pmi1(a)),

(B o) Ar 1 (B) = (0" ho) T (1) by 1 BT 4 (1) by 1—mb” Ao (b)+
+ (=" pa™ YA (D) + ..+ (=D)AL, (D) + (38)

+ (=11 Ar—n(b) + (=1 bob™ T Ap 1 (D)).
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It is easy to make sure that the following identity is true

b~ (bo(a"ao) ' Ar—mr1(@ (1)1 + bi(@ ag) T Arm(@) (=D + ..+
+ br—m(@™a0) ' A1(@)(=1)" "t + br_mt1 (@™t ag) M Ag(@) (=17 +
+a  (=ao(b"bo) " Ar—mr1(BY (=D — a1 (B bo) T Ay () (=) — ...~

— ar—m (B™b) T AL(B) (=) T = a1 (B bo) T Mg (B)(— 1))+ (39)
r+l1-m r+1—m

+ (=" (@ob)™" Y arbri1-m—t—(=1)""(@bo)™" Y atbri1-m—t = 0.
t=0 t=0

We add left sides of equalities (35), (36) and multiplied by (—1)"**" left side of the
equality (34) and separately we add right sides of the these equalities. Taking into
account the expression (37), (38) for (@™ " ag) ' Ars1(a), (™ bo) 1 Ar11(D)
and the identity (39), we obtain (a7 ag) ! A,11(a) — (BT ho) "1 Ar11(b) = 0.
This means that the equality (33) for v = r +1 is true. The necessity of the conditions
of Lemma is proved.

Sufficiency. Assume that the conditions (33) is satisfied forv = 1, ..., m — 1.
Then, the submatrix formed by first m 4 1 rows of the matrix from the equation (32)
has rank less than 3. In fact, this rank is equal to 2, because, as has been stated above,
the first two rows of this matrix are linearly independent. The equality (33) forv = m
implies that (m + 2)-th row of the matrix of equation (32) linearly depends on its first
two rows. Our inductive assumption is the following. Let each of the first r + 2,
m < r < k, rows of the matrix of equation (32) linearly depend on its first two rows.
We now reverse the order of arguments, as compared to the proof of the necessity,
passing from relation (33) for v = r + 1 to relation (34). This relation implies that
the minor of order 3 of the matrix of equation (32) that is contained in 1-th, 2-nd
and (r + 3)-th rows is equal to zero. This means that indicated rows are linearly
dependent. The above argument inductively proves that the matrix of equation (32)
has the 2. This implies that the equation (32) has a non-zero solution.
The remaining part of the lemma will be proved by contradiction. Let ||x19 X20 X307

be a non-zero solution of the equation (32), where x;9 = 0 or x¢9 = 0. For this rea-
son we have the equality

X20
X30

X10

[0 rens |
X30

bo ab() + Cl()b

a ab
ag abgy + agb

‘z(_)or

‘:6.

Since a, b, ag, bo # 0, the determinants of the 2 x 2 matrices of these equations
are different from 0. Hence, |x20 x30/|7 = 0 or ||x10 x30]|7 = 0, i.e., actually,
lx10 X20 x30]|7 = 0, contrary to the our assumption. Therefore, in the non-zero
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solution ||x19 x20 x30||7 of the equation (32) necessarily x19, X290 % 0. Lemma is
proved. O

3. Proof of the Theorem

Necessity. Assume that matrices A(x) and B(x) of the forms (1) and (3) are semis-
calarly equivalent. Then, the entries a(x) and b(x) of these matrices satisfy the
congruence

sopa(x) —s11b(x) —s12a(x)b(x) =0 mod §(x), (40)

where s11, $22 # 0. Construct the decompositions of the entries a(x), b(x) into
degrees of binomial x — «; (see (11), (12)) for o; € M such that a; = b; = 0,
m; < n;, and compare the coefficients of equal degrees of binomial x — «; on both
sides of the congruence (40). Then, we obtain

saoai; —s11bir =0 fort € {0,1,...,[; —m; — 1} where [; := min(2m;, n;).

This implies s11/$22 = ajo/bio and equality (13), where ¢ = s11/522 = aio/bio,
for all ®; € M such that 2m; > n;.

Taking into account the roots o; € M such that 2m; < n; and comparing the
coefficients of equal degrees of binomial x —¢; on both sides of the congruence (40),
we obtain the system of the equalities, written in matrix form:

aio bio 0
aix bi1 0
$22
ai, m;—1 bi,m,'—l 0 =
Aim; im; aijobio p
—o12
ai, m;+1 bi, m; +1 aiobi1 + airbio
n;i—2m;—1
ai, nj—m;—1 bi,ng—m,-—l tl=() ! aitbi,ni—Zmi—l—t

Since 511, 522 # 0, this equality implies the first condition of Theorem 1.3 (ac-
cording to Lemma 2.1).

Let «j, «; € M be the arbitrary pair of the entries such that ¢; = b; = 0,
2m; < nj,a; = by = 0,2m; < n;. For the coefficients ajm;, aim,, bim;. bim,.
aijo # 0, ajg # 0, bjo # 0, bjy # 0 of the decomposition of the forms (11), (12)
into degrees of binomials x — ¢, x — @y, the congruence (40) implies the relations

$220im; — S11bim; — S12ai0bio = 0, 52205, — S11b1m; — S12a10b10 = 0.
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Excluding s1, from these equalities and considering that a;o = cbijg, aj9 = cbjyg,
¢ = $11/$22, we obtain the equality (14) from the second condition of the Theorem.
For the coefficients a;o, @im;. bio. bim; and for the free terms of the decompo-

sitions of the form (11), (12) into degrees of x — «;, x — a for roots «;, ap € M
such that a; = b; = 0, 2m; < n;, ap, b, # 0, the congruence (40) yields the
system

§22ai0 — S11bio = 0,

$220im; — $11bim; — s12ai0bio = 0,

S$22dp — Sllbp — Slzapbp =0.

Excluding s1, from two last equalities of these system and putting a;o = cb;q for
¢ = $11/822, we obtain have equality (15) from the third condition of Theorem 1.3.

For the coefficients of the decompositions (11), (12) into degrees of binomial
X — op for roots o, € M such that a,, b, # 0, m, < np, the congruence (40)
yields the system

S$22dp — Sllbp — Slzapbp = 0,
$20ap; — S11bpt — 512(Aptbp + bprap) =0,

fort € {0,1,...,lp —mp—1} where [, = min(2mp,np). After excluding 512 from
this system, we obtain
Apt b t
£ = biz (1)
4 iz

fort € {0,1,...,1, —mp — 1}, where ¢ = s11/522. This implies the equality (16)
for the roots o, € M such thata,, by, #0,m, <np,2mp > ny. If 2my < np,
then the congruence (40) implies the system of the equalities, written in the matrix

form as
r =
|F G HI-lls22 —s11 —s12|” =0,
where
ap bp
apo bpo
F=| apmye1 |. G=| bpme-1 |- (42)
Apm, bpmp
Ap, mp+1 bp,mp-‘rl
Ap,np—mp—1 bp,np—mp—l
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apbp

H = ap,mp—1bp + apbp m,—1
apm,bp + apobpo + apbpm,
dp, mp-i-lbp + apObpl + aplbpo + apbp,mp—f-l

np—2mp—1

apnp—mp—1bp+ 3420 aptbp.n,—2mp—1-1 + apbpn,—m,—1
(43)
Since s11, $22 # 0, by the Lemma 2 from the obtained equality we have
0 ... 0 apo apr ... aps, 0 ... 0 bpo bpr ... bps,
Gy e b, " .
apl mp+sp—1 bpl
_ 4p apo
dpo | = pretsely o bpo |’
0 0
0 a, 0 0 b, O
mp+sp mp+sp
(44)
fors, €{0,1,...,np —mp—1}. Here fort € {0, 1,...,m, — 1} the equalities (41)

hold. Now multiply the left side of the equality (44) by the left side of the equality
(41) at t = 0 and carry out analogous operation with right sides. As a result, we
obtain the equality (16). This proves the last condition of Theorem 1.3 and necessity
entirely.

Sufficiency. Assume that the conditions 1) —4) of Theorem 1.3 are fulfilled. Consider
the matrix equations

aio bio 0
X
ail bi1 0 ! 5 45)
. X2 =0,
: 3
ai,mi—1 bi,m;—1 0O
Aim; bim; ajobio
X
ai, m;+1 i, m;+1 aijobi1 + ai1bio 1 _
) ) x2 | =0, (46)

n;i—2m;—1
Ai,nj—m;—1 bi,n,'—m,-—l tl=0 ' aitbi,ni—Zmi—l—t
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in the unknown vector-column |x; x3 x3||7, were written by the coefficients of the
decompositions (11), (12) for some root o; € M. For an arbitrary fixed root o; € M
such that a; = b; = 0, m; < nj, 2m; > n; by Lemma 2.1 the equation (45) has a
non-zero solution. If 2m; < n;, by Lemma 2.1 both these equations (45), (46) have
common non-zero solution. Evidently, that first two rows of the matrix of each of
these equations are linearly independent and each other row of this matrix is a linear
combination of the first two rows. Taking into account that

1
ajo  bio 0 -0
Aim: bim. aiobio ¢ -
i Em (cbim; — @im; )(aiobio) ™!
we conclude that
Ix1 x2 x3|T =11 —¢ (chim;—aim;)(@iobio) || (47)

is the common non-zero solution of the equations (45), (46).
From the condition 2) we deduce the relation

(chim; — @im;)(aiobio) " = (chim, — arm,)(@robro) "

for other arbitrary root «; € M such that a; = b; = 0, 2m; < ny, different from
a; € M. This means that the solution (47) does not depend on the choice of the root
a; € M satisfying the condition 1). So, we can write the congruence

a(x) —cb(x) —cra(x)b(x) =0 mod (x — ;)™ (48)

where
c1 = (aim; — chim;)(@iobio) ™", 49)
for arbitrary root ; € M such thata; = b; = 0 (including the roots «; with m; > n;,
if such roots exist). Thus, one subset of the partition (10) of the set M of roots ¢; is
exhausted.
The fulfillment of the equality (16) for s, = 0 means that CZ%’O = %70. Taking
into account this fact, we see that the relation (44) follows from the the equality (16)

for every s, € {1,...,np,—mp—1}. Moreover, by Lemma 2.2 the equation
IF G HIl-x1 x2 x3]|" =0, (50)

(with F, G and H defined as in (42), (43)) has a non-zero solution. Since the first
two rows of the matrix of the equation (50) are linearly independent and

1
—c =0,
(chp —ap)(apbp)™t

ap bp apbp

apo bpo apobp +apbpo
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the column |x; x3 x3)|T = |[I —c (cbhp —ap)(aphp)™! |7 is the solution of the
equation (50) for arbitrary root &, € M such thatap, b, # 0. From the condition 3)
we deduce the relation

(¢bp — ap)(apbp)_1 = (cbim; — aimi)(aiobi())_l'

Therefore, a solution of the equation (50) can be written in the form (47). This means
that the following congruence is satisfied

a(x) —cb(x) —cra(x)b(x) =0 mod (x —ap)"?, (51)

where ¢ is defined as in congruence (48) (see (49)). In addition, the congruence (51)
is fulfilled for arbitrary root ¢, € M such thatap, b, # 0. Now comparing (48) and
(81), we have the congruence

a(x) —cb(x) —cra(x)b(x) =0 mod §(x).

Let r21(x) be determined as the result of dividing the left side of the congruence by
8(x). Then, we write

a(x) — cb(x) —c1a(x)b(x) = 8(x)rz1(x). (52)

Write (52) in the form a(x) = b(x)r11(x)+8(x)r21(x), where r11(x) = c+cra(x),
and denote r12(x) = ¢16(x), r22(x) = 1 — b(x)ri12(x). Now it can be written

\ |-

It is evident that the left factor on the left side of determined equation and the right

rin(x) ri2(x)
r21(x) r22(x)

c C1

0 1

a(x) 6(x) b(x) 6(x)

o s

1 OH

factor on the right side are invertible matrices. Thus, the matrices A(x) and B(x) are
semiscalarly equivalent. Theorem 1.3 is proved.

4. Some corollaries of Theorem 1.3

Corollary 4.1. Let the partition (2) of the set M of characteristic roots of matrices
A(x) be of the form (10). Let also the entry a(x) of the matrix A(x) in the notations
of Theorem 1.3 satisty the following conditions:
1) m; <nj <2mj,a; =0, fortherootsa; € M,i € {1,...,r} wherer > 1;
2) mp <np <2mp,ap#0, forrootsa, € M, p € {r+1,...,q} whereq > r;

3) my, > ny, forall oy, € M which are different from o, op.
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Such a matrix A(x) in the class {CA(x)Q(x)} of semiscalarly equivalent matrices is
determined up to constant factors ¢ # 0 and 1/c of the rows

laio air ... Adin;—m;—1 --. Aro dr1 ... ar,nr—mr—IH
and
1
> ”ar—i—l,o ar+1,1 -+ Ar+1,0p41—mpy1—1 -+ dg0 dg1 ... aq,nq—mq—ln,
a
r+1
respectively.

Proof. Since n; < 2m; and n, < 2m, it follows that n; —m; — 1 < m; — 1 and
np—mp—1=<mp—1. By Theorem 1.3, in the case under consideration matrices
A(x), B(x) are semiscalarly equivalent if and only if the ratio ¢ = a;o/b;jo does
not depend on the choice of i € {1,...,r} and the equalities (13), (16) are valid for
every s; € {l,...,n; —m; —l}ands, € {0,1,...,n, —mp — 1}, respectively. The
fulfillment of the equality (13), where ¢ = a;o/ bio, fors; € {1,...,n; —m; — 1}, is
equivalent to the fulfillment of the equality

laio ai1 ... aipn;—m;—1ll = ¢ |bio bi1 ... bin;—m;—1

for arbitrary i € {1,...,r}. The equality (16) for s, € {0,1,...,np, —m, — 1} is
valid if and only if when

1 1
g HapO apl ... ap,n,,—mp—1H = @ ”bp() bpl . bp,np—mp—l“
for arbitrary p e {r +1,...,¢}. O

Corollary 4.2. Let the partition (2) of the set M of characteristic roots of matrices
A(x) be of the form (10). Let also in the notations of Theorem 1.3 a; = 0 for some
roota; € M andmj; > nj for every rootaj € M. Such matrix A(x) in the class
{CA(x)Q(x)} of semiscalarly equivalent matrices is determined up to constant factor
of its entry a(x).

Proof. Let the entry b(x) of the matrix B(x) of the form (3) satisfy the condition
b(a;) = b; = 0 for the same o; € M for which a¢; = 0. By Proposition 1.1, if
matrices A(x) and B(x) are semiscalarly equivalent, then the equivalence a; = 0 <
b; = 0 is valid for arbitrary @; € M. Moreover, by (the same) Proposition 1.1,
all non-zero values of the polynomial b(x) (as a(x)) at the points of the set M are
equal, i.e. for arbitrary pair «p, oy € M such that a,, a; # 0 we have a, =
ag # 0and b, = by; # 0. We take into consideration that by Proposition 1.2,
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a®(aj) = bD(a;) =0, € {1,...,n; — 1}, for every &; € M. From what has
been said it follows that there exists a number ¢ € C such that every characteristic
root j € M of multiplicity 7 ; is the root of the polynomial ¢(x) = a(x) — ch(x)
of the same multiplicity # ;. Taking into account that deg a(x), deg b(x) < degd(x),
we conclude that ¢(x) = 0 and thus a(x) = ¢ b(x). O

Remark. The conditions of Corollary 4.2 hold for any matrix A(x) of the form (1)
without multiple characteristic roots, if its entry a(x) takes on the set of characteristic
roots exactly two different values, one of which is zero.

5. Examples

Example 5.1. Consider the matrices

Alx) = 1 0
o x? = x3 At 35 xt—dxS xS —daxT 4+ X8 |
B(x) 1 0
x) = :
x2ox3 42l S 36 Ty T Xt —dxS+6x0—4xT4xB

Each of the characteristic roots a; = 0, ap = 1 of these matrices are of multiplicity
4. The decompositions of entries

a(x) = x? —x3 4+ 4x* —3x°, b(x) =x2—x3+ %x“ — %xs + %x‘s — ITIx7
into degrees of binomial x — 1 are of the form:
a(x)=1-8x—1%>—15(x—1)> —11(x — D* =3(x — 1)°,
b(x) = %—2(x—1)2—%(x—1)3—§(x-l)t%(x—1)5—10(x—1)6—%(x—1)7.

By Corollary 4.1, the matrices A(x), B(x) are semiscalarly equivalent. In fact,

—1

1
A(x) = - B(x) -
() ” o 1 |B®
1+ x2 —x3 4+ 4x* —3x° x4 —4x5 4 6x8 — 4x7 4 B
—%—%x—x2+%x3—34—3x4 1—x2+x3—%x4+%x5—¥x6+%x7

Example 5.2. Consider the matrix

1 0

A =
x) H 2-3x+x3 1224
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with characteristic roots «; = 1, ap = —1, each of multiplicity 2. The decomposi-
tions of entry a(x) = 2 — 3x + x? into degrees of binomials x — 1, x + 1 are of the
form:
ax)=3x—-1D>+x-1>=4-3x+ D>+ (x+1)>.
Matrix A(x) satisfies the conditions of Corollary 4.2. Therefore, for matrices A(x)
1 0

b(x) 1—2x%+ x4
lent, it is necessary and sufficient that a(x) = cbh(x), where ¢ € C, ¢ # 0.

and B(x) = , where b(1) = 0, to be semiscalarly equiva-

Remark. Assume that the matrices A(x) and B(x) from Theorem 1.3 are semis-
calarly equivalent, i.e. SA(x)R(x) = B(x). In this case Theorem 1.3 provides a
method for constructing the transforming matrices .S, R(x). Such method was used
in Example 5.1. However, this is the subject of another study.
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